test_min
    
    
    
      test_min,
      a Fortran77 code which
      defines problems involving the minimization
      of a scalar function of a scalar argument.
    
    
      The code can be useful for testing algorithms that 
      attempt to minimize a scalar function of a scalar argument.
      Each problem has an index number, and there are a corresponding
      set of routines, with names beginning with the index number, to:
      
        - 
          evaluate f(x);
        
 
        - 
          evaluate f'(x);
        
 
        - 
          evaluate f"(x);
        
 
        - 
          return the title of the problem;
        
 
        - 
          return a starting point;
        
 
        - 
          return a starting search interval;
        
 
        - 
          return the exact solution;
        
 
      
    
    
      There is also a "generic" problem interface, whose routines all
      begin with "P00".  This allows the user to call all possible
      problems in a single simple loop, by passing the desired index
      number through the generic interface.
    
    
      The functions can be invoked by an index number, and include:
      
        - 
          f(x) = ( x - 2 )^2 + 1;
          a PNG image;
         
        - 
          f(x) = x^2 + exp ( -x );
          a PNG image;
         
        - 
          f(x) = x^4 + 2x^2 + x + 3;
          a PNG image;
         
        - 
          f(x) = exp ( x ) + 0.01 / x;
          a PNG image;
         
        - 
          f(x) = exp ( x ) - 2 * x + 0.01 / x - 0.000001 / x^2;
          a PNG image;
         
        - 
          f(x) = 2 - x;
          a PNG image;
         
        - 
          f(x) = ( x + sin ( x ) ) * exp ( -x^2 );
          a PNG image;
         
        - 
          f(x) = 3 * x^2 + 1 + ( log ( ( x - pi )^2 ) ) / pi^4;
          a PNG image;
         
        - 
          f(x) = x^2 - 10 sin ( x^2 - 3x + 2);
          a PNG image;
         
        - 
          f(x) = cos(x)+5*cos(1.6*x)-2*cos(2*x)+5*cos(4.5*x)+7*cos(9*x);
          a PNG image;
         
        - 
          f(x) = 1+|3x-1|;
          a PNG image;
         
        - 
          f(x) = x^2+sin(53*x);
          a PNG image;
         
        - 
          f(x) = 2*x^4-7*x^2+3*x+5;
          a PNG image;
         
        - 
          f(x) = 1.0 / ( ( x - 0.3 )^2 + 0.01 ) + 1.0 / ( ( x - 0.9 )^2 + 0.04 ) - 6.0;
          a PNG image;
         
      
    
    
      Licensing:
    
    
      The information on this web page is distributed under the MIT license.
    
    
      Languages:
    
    
      test_min is available in
      a C version and
      a C++ version and
      a Fortran77 version and
      a Fortran90 version and
      a MATLAB version and
      an Octave version and
      a Python version.
    
    
      Related Data and Programs:
    
    
      
      test_min_test
    
    
      
      brent,
      a Fortran77 library which
      contains Richard Brent's routines for finding the zero, local minimizer,
      or global minimizer of a scalar function of a scalar argument, without
      the use of derivative information.
    
    
      Reference:
    
    
      
        - 
          Isabel Beichl, Dianne O'Leary, Francis Sullivan,
          Monte Carlo Minimization and Counting: One, Two, Too Many,
          Computing in Science and Engineering,
          Volume 9, Number 1, January/February 2007.
         
        - 
          Richard Brent,
          Algorithms for Minimization without Derivatives,
          Dover, 2002,
          ISBN: 0-486-41998-3,
          LC: QA402.5.B74.
         
        - 
          David Kahaner, Cleve Moler, Steven Nash,
          Numerical Methods and Software,
          Prentice Hall, 1989,
          ISBN: 0-13-627258-4,
          LC: TA345.K34.
         
        - 
          Arnold Krommer, Christoph Ueberhuber,
          Numerical Integration on Advanced Computer Systems,
          Springer, 1994,
          ISBN: 3540584102,
          LC: QA299.3.K76.
         
        - 
          Dianne O'Leary,
          Scientific Computing with Case Studies,
          SIAM, 2008,
          ISBN13: 978-0-898716-66-5,
          LC: QA401.O44.
         
        - 
          LE Scales,
          Introduction to Non-Linear Optimization,
          Springer, 1985,
          ISBN: 0-387-91252-5,
          LC: QA402.5.S33.
         
      
    
    
      Source Code:
    
    
      
    
    
    
      Last revised on 09 December 2023.