test_interp_2d, a FORTRAN77 code which defines test problems for interpolation of data z(x,y)), depending on a 2D argument.
The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.
test_interp_2d is available in a C version and a C++ version and a Fortran90 version and a MATLAB version and an Octave version and a Python version.
lagrange_interp_2d, a FORTRAN77 library which defines and evaluates the Lagrange polynomial p(x,y) which interpolates a set of data depending on a 2D argument that was evaluated on a product grid, so that p(x(i),y(j)) = z(i,j).
padua, a FORTRAN77 library which returns the points and weights for Padu sets, useful for interpolation in 2D. GNUPLOT is used to plot the points.
PWL_INTERP_2D, a FORTRAN77 library which evaluates a piecewise linear interpolant to data defined on a regular 2D grid.
R8LIB, a FORTRAN77 library which contains many utility routines, using double precision real (R8) arithmetic.
RBF_INTERP_2D, a FORTRAN77 library which defines and evaluates radial basis function (RBF) interpolants to 2D data.
SHEPARD_INTERP_2D, a FORTRAN77 library which defines and evaluates Shepard interpolants to 2D data, based on inverse distance weighting.
TEST_INTERP_1D, a FORTRAN77 library which defines test problems for interpolation of data y(x), depending on a 1D argument.
TEST_INTERP_ND, a FORTRAN77 library which defines test problems for interpolation of data z(x), depending on an M-dimensional argument.
TOMS526, a FORTRAN77 library which interpolates scattered bivariate data, This is ACM TOMS algorithm 526, by Hiroshi Akima;
TOMS660, a FORTRAN77 library which takes scattered 2D data and produces an interpolating function F(X,Y), this is ACM TOMS algorithm 660, called qshep2d, by Robert Renka.
TOMS790, a FORTRAN77 library which computes an interpolating function to a set of scattered data in the plane; this library is commonly called CSHEP2D; by Robert Renka; this is ACM TOMS algorithm 790.
TOMS886, a FORTRAN77 library which defines the Padua points for interpolation in a 2D region, including the rectangle, triangle, and ellipse, by Marco Caliari, Stefano de Marchi, Marco Vianello. This is ACM TOMS algorithm 886.
VANDERMONDE_INTERP_2D, a FORTRAN77 library which finds a polynomial interpolant to data z(x,y) of a 2D argument by setting up and solving a linear system for the polynomial coefficients, involving the Vandermonde matrix.