function harmonic_number ( n ) c*********************************************************************72 c cc harmonic_number() computes the Nth harmonic number. c c Discussion: c c H(N) = Sum ( 1 <= I <= N ) 1 / I c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 29 March 2025 c c Author: c c John Burkardt c c Input: c c integer N: the index of the harmonic number. c c Output: c c real VALUE: the value of the harmonic number. c implicit none double precision harmonic_number integer i integer n double precision value value = 0.0D+00 do i = 1, n value = value + 1.0D+00 / i end do harmonic_number = value return end function steinerberger_function ( n, x ) c*********************************************************************72 c cc steinerberger_function() evaluates the Steinerberger function. c c Discussion: c c f(n,x) = sum ( 1 <= k <= n ) abs ( sin ( pi * k * x ) ) / k c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 29 March 2025 c c Author: c c John Burkardt c c Reference: c c John D Cook, c Pushing numerical integration software to its limits, c https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ c Posted 12 June 2023. c c John D Cook, c Plotting a function with lots of local minima, c https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ c Posted 12 June 2023. c c Stefan Steinerberger, c A amusing sequence of functions, c Mathematics Magazine, c Volume 91, Number 4, October 2018, pages 262-266. c c Input: c c integer N: the index of the function. c c real X: the evaluation point. c c Output: c c real VALUE: the function value. c implicit none integer k integer n double precision, parameter :: r8_pi = 3.141592653589793D+00 double precision steinerberger_function double precision value double precision x value = 0.0D+00 do k = 1, n value = value + abs ( sin ( k * r8_pi * x ) ) / k end do steinerberger_function = value return end function steinerberger_integral01 ( n ) c*********************************************************************72 c cc steinerberger_integral01() returns the Steinerberger integral from 0 to 1. c c Licensing: c c This code is distributed under the MIT license. c c Modified: c c 29 March 2025 c c Author: c c John Burkardt c c Reference: c c John D Cook, c Pushing numerical integration software to its limits, c https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ c Posted 12 June 2023. c c John D Cook, c Plotting a function with lots of local minima, c https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ c Posted 12 June 2023. c c Stefan Steinerberger, c A amusing sequence of functions, c Mathematics Magazine, c Volume 91, Number 4, October 2018, pages 262-266. c c Input: c c integer N: the index of the function. c c Output: c c real VALUE: the value of the integral from 0 to 1. c implicit none double precision harmonic_number integer n double precision, parameter :: r8_pi = 3.141592653589793D+00 double precision steinerberger_integral01 steinerberger_integral01 = 2.0D+00 * harmonic_number ( n ) / r8_pi return end