c c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c . . c . copyright (c) 1998 by UCAR . c . . c . University Corporation for Atmospheric Research . c . . c . all rights reserved . c . . c . . c . SPHEREPACK . c . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c c c c ... file shags.f c c this file contains code and documentation for subroutines c shags and shagsi c c ... files which must be loaded with shags.f c c sphcom.f, hrfft.f, gaqd.f c c subroutine shags(nlat,nlon,isym,nt,g,idg,jdg,a,b,mdab,ndab, c 1 wshags,lshags,work,lwork,ierror) c c subroutine shags performs the spherical harmonic analysis c on the array g and stores the result in the arrays a and b. c the analysis is performed on a gaussian grid in colatitude c and an equally spaced grid in longitude. the associated c legendre functions are stored rather than recomputed as they c are in subroutine shagc. the analysis is described below c at output parameters a,b. c c input parameters c c nlat the number of points in the gaussian colatitude grid on the c full sphere. these lie in the interval (0,pi) and are compu c in radians in theta(1),...,theta(nlat) by subroutine gaqd. c if nlat is odd the equator will be included as the grid poi c theta((nlat+1)/2). if nlat is even the equator will be c excluded as a grid point and will lie half way between c theta(nlat/2) and theta(nlat/2+1). nlat must be at least 3. c note: on the half sphere, the number of grid points in the c colatitudinal direction is nlat/2 if nlat is even or c (nlat+1)/2 if nlat is odd. c c nlon the number of distinct londitude points. nlon determines c the grid increment in longitude as 2*pi/nlon. for example c nlon = 72 for a five degree grid. nlon must be greater c than or equal to 4. the efficiency of the computation is c improved when nlon is a product of small prime numbers. c c isym = 0 no symmetries exist about the equator. the analysis c is performed on the entire sphere. i.e. on the c array g(i,j) for i=1,...,nlat and j=1,...,nlon. c (see description of g below) c c = 1 g is antisymmetric about the equator. the analysis c is performed on the northern hemisphere only. i.e. c if nlat is odd the analysis is performed on the c array g(i,j) for i=1,...,(nlat+1)/2 and j=1,...,nlon. c if nlat is even the analysis is performed on the c array g(i,j) for i=1,...,nlat/2 and j=1,...,nlon. c c c = 2 g is symmetric about the equator. the analysis is c performed on the northern hemisphere only. i.e. c if nlat is odd the analysis is performed on the c array g(i,j) for i=1,...,(nlat+1)/2 and j=1,...,nlon. c if nlat is even the analysis is performed on the c array g(i,j) for i=1,...,nlat/2 and j=1,...,nlon. c c nt the number of analyses. in the program that calls shags, c the arrays g,a and b can be three dimensional in which c case multiple analyses will be performed. the third c index is the analysis index which assumes the values c k=1,...,nt. for a single analysis set nt=1. the c discription of the remaining parameters is simplified c by assuming that nt=1 or that the arrays g,a and b c have only two dimensions. c c g a two or three dimensional array (see input parameter c nt) that contains the discrete function to be analyzed. c g(i,j) contains the value of the function at the gaussian c point theta(i) and longitude point phi(j) = (j-1)*2*pi/nlon c the index ranges are defined above at the input parameter c isym. c c idg the first dimension of the array g as it appears in the c program that calls shags. if isym equals zero then idg c must be at least nlat. if isym is nonzero then idg must c be at least nlat/2 if nlat is even or at least (nlat+1)/2 c if nlat is odd. c c jdg the second dimension of the array g as it appears in the c program that calls shags. jdg must be at least nlon. c c mdab the first dimension of the arrays a and b as it appears c in the program that calls shags. mdab must be at least c min0((nlon+2)/2,nlat) if nlon is even or at least c min0((nlon+1)/2,nlat) if nlon is odd. c c ndab the second dimension of the arrays a and b as it appears c in the program that calls shags. ndab must be at least nlat c c wshags an array which must be initialized by subroutine shagsi. c once initialized, wshags can be used repeatedly by shags c as long as nlat and nlon remain unchanged. wshags must c not be altered between calls of shags. c c lshags the dimension of the array wshags as it appears in the c program that calls shags. define c c l1 = min0(nlat,(nlon+2)/2) if nlon is even or c l1 = min0(nlat,(nlon+1)/2) if nlon is odd c c and c c l2 = nlat/2 if nlat is even or c l2 = (nlat+1)/2 if nlat is odd c c then lshags must be at least c c nlat*(3*(l1+l2)-2)+(l1-1)*(l2*(2*nlat-l1)-3*l1)/2+nlon+15 c c work a real work space which need not be saved c c c lwork the dimension of the array work as it appears in the c program that calls shags. define c c l2 = nlat/2 if nlat is even or c l2 = (nlat+1)/2 if nlat is odd c c c if isym is zero then lwork must be at least c c nlat*nlon*(nt+1) c c if isym is nonzero then lwork must be at least c c l2*nlon*(nt+1) c c ************************************************************** c c output parameters c c a,b both a,b are two or three dimensional arrays (see input c parameter nt) that contain the spherical harmonic c coefficients in the representation of g(i,j) given in the c discription of subroutine shags. for isym=0, a(m,n) and c b(m,n) are given by the equations listed below. symmetric c versions are used when isym is greater than zero. c c definitions c c 1. the normalized associated legendre functions c c pbar(m,n,theta) = sqrt((2*n+1)*factorial(n-m)/(2*factorial(n+m))) c *sin(theta)**m/(2**n*factorial(n)) times the c (n+m)th derivative of (x**2-1)**n with respect c to x=cos(theta). c c 2. the fourier transform of g(i,j). c c c(m,i) = 2/nlon times the sum from j=1 to j=nlon of c g(i,j)*cos((m-1)*(j-1)*2*pi/nlon) c (the first and last terms in this sum c are divided by 2) c c s(m,i) = 2/nlon times the sum from j=2 to j=nlon of c g(i,j)*sin((m-1)*(j-1)*2*pi/nlon) c c c 3. the gaussian points and weights on the sphere c (computed by subroutine gaqd). c c theta(1),...,theta(nlat) (gaussian pts in radians) c wts(1),...,wts(nlat) (corresponding gaussian weights) c c c 4. the maximum (plus one) longitudinal wave number c c mmax = min0(nlat,(nlon+2)/2) if nlon is even or c mmax = min0(nlat,(nlon+1)/2) if nlon is odd. c c c then for m=0,...,mmax-1 and n=m,...,nlat-1 the arrays a,b c are given by c c a(m+1,n+1) = the sum from i=1 to i=nlat of c c(m+1,i)*wts(i)*pbar(m,n,theta(i)) c c b(m+1,n+1) = the sum from i=1 to nlat of c s(m+1,i)*wts(i)*pbar(m,n,theta(i)) c c ierror = 0 no errors c = 1 error in the specification of nlat c = 2 error in the specification of nlon c = 3 error in the specification of isym c = 4 error in the specification of nt c = 5 error in the specification of idg c = 6 error in the specification of jdg c = 7 error in the specification of mdab c = 8 error in the specification of ndab c = 9 error in the specification of lshags c = 10 error in the specification of lwork c c c **************************************************************** c c subroutine shagsi(nlat,nlon,wshags,lshags,work,lwork,dwork,ldwork, c + ierror) c c subroutine shagsi initializes the array wshags which can then c be used repeatedly by subroutines shags. it precomputes c and stores in wshags quantities such as gaussian weights, c legendre polynomial coefficients, and fft trigonometric tables. c c input parameters c c nlat the number of points in the gaussian colatitude grid on the c full sphere. these lie in the interval (0,pi) and are compu c in radians in theta(1),...,theta(nlat) by subroutine gaqd. c if nlat is odd the equator will be included as the grid poi c theta((nlat+1)/2). if nlat is even the equator will be c excluded as a grid point and will lie half way between c theta(nlat/2) and theta(nlat/2+1). nlat must be at least 3. c note: on the half sphere, the number of grid points in the c colatitudinal direction is nlat/2 if nlat is even or c (nlat+1)/2 if nlat is odd. c c nlon the number of distinct londitude points. nlon determines c the grid increment in longitude as 2*pi/nlon. for example c nlon = 72 for a five degree grid. nlon must be greater c than or equal to 4. the efficiency of the computation is c improved when nlon is a product of small prime numbers. c c wshags an array which must be initialized by subroutine shagsi. c once initialized, wshags can be used repeatedly by shags c as long as nlat and nlon remain unchanged. wshags must c not be altered between calls of shags. c c lshags the dimension of the array wshags as it appears in the c program that calls shags. define c c l1 = min0(nlat,(nlon+2)/2) if nlon is even or c l1 = min0(nlat,(nlon+1)/2) if nlon is odd c c and c c l2 = nlat/2 if nlat is even or c l2 = (nlat+1)/2 if nlat is odd c c then lshags must be at least c c nlat*(3*(l1+l2)-2)+(l1-1)*(l2*(2*nlat-l1)-3*l1)/2+nlon+15 c c work a real work space which need not be saved c c lwork the dimension of the array work as it appears in the c program that calls shagsi. lwork must be at least c 4*nlat*(nlat+2)+2 in the routine calling shagsi c c dwork a double precision work array that does not have to be saved. c c ldwork the length of dwork in the calling routine. ldwork must c be at least nlat*(nlat+4) c c output parameter c c wshags an array which must be initialized before calling shags or c once initialized, wshags can be used repeatedly by shags or c as long as nlat and nlon remain unchanged. wshags must not c altered between calls of shasc. c c ierror = 0 no errors c = 1 error in the specification of nlat c = 2 error in the specification of nlon c = 3 error in the specification of lshags c = 4 error in the specification of lwork c = 5 error in the specification of ldwork c = 6 failure in gaqd to compute gaussian points c (due to failure in eigenvalue routine) c c c **************************************************************** subroutine shags(nlat,nlon,mode,nt,g,idg,jdg,a,b,mdab,ndab, 1 wshags,lshags,work,lwork,ierror) c subroutine shags performs the spherical harmonic analysis on c a gaussian grid on the array(s) in g and returns the coefficients c in array(s) a,b. the necessary legendre polynomials are fully c stored in this version. c dimension g(idg,jdg,1),a(mdab,ndab,1),b(mdab,ndab,1), 1 wshags(lshags),work(lwork) c check input parameters ierror = 1 if (nlat.lt.3) return ierror = 2 if (nlon.lt.4) return ierror = 3 if (mode.lt.0 .or.mode.gt.2) return c set m limit for pmn l = min0((nlon+2)/2,nlat) c set gaussian point nearest equator pointer late = (nlat+mod(nlat,2))/2 c set number of grid points for analysis/synthesis lat = nlat if (mode.ne.0) lat = late ierror = 4 if (nt.lt.1) return ierror = 5 if (idg.lt.lat) return ierror = 6 if (jdg.lt.nlon) return ierror = 7 if(mdab .lt. l) return ierror = 8 if(ndab .lt. nlat) return l1 = l l2 = late ierror = 9 c check permanent work space length c lp= nlat*(3*(l1+l2)-2)+(l1-1)*(l2*(2*nlat-l1)-3*l1)/2+nlon+15 if(lshags.lt.lp) return ierror = 10 c check temporary work space length if (mode.eq.0 .and. lwork.lt.nlat*nlon*(nt+1)) return if (mode.ne.0 .and. lwork.lt.l2*nlon*(nt+1)) return ierror = 0 c set starting address for gaussian wts ,fft values, c and fully stored legendre polys in wshags iwts = 1 ifft = nlat+2*nlat*late+3*(l*(l-1)/2+(nlat-l)*(l-1))+1 ipmn = ifft+nlon+15 c set pointer for internal storage of g iw = lat*nlon*nt+1 call shags1(nlat,nlon,l,lat,mode,g,idg,jdg,nt,a,b,mdab,ndab, 1wshags(iwts),wshags(ifft),wshags(ipmn),late,work,work(iw)) return end subroutine shags1(nlat,nlon,l,lat,mode,gs,idg,jdg,nt,a,b,mdab, 1 ndab,wts,wfft,pmn,late,g,work) dimension gs(idg,jdg,nt),a(mdab,ndab,nt), 1 b(mdab,ndab,nt),g(lat,nlon,nt) dimension wfft(1),pmn(late,1),wts(nlat),work(1) c set gs array internally in shags1 do 100 k=1,nt do 100 j=1,nlon do 100 i=1,lat g(i,j,k) = gs(i,j,k) 100 continue c do fourier transform do 101 k=1,nt call hrfftf(lat,nlon,g(1,1,k),lat,wfft,work) 101 continue c scale result sfn = 2.0/float(nlon) do 102 k=1,nt do 102 j=1,nlon do 102 i=1,lat g(i,j,k) = sfn*g(i,j,k) 102 continue c compute using gaussian quadrature c a(n,m) = s (ga(theta,m)*pnm(theta)*sin(theta)*dtheta) c b(n,m) = s (gb(theta,m)*pnm(theta)*sin(theta)*dtheta) c here ga,gb are the cos(phi),sin(phi) coefficients of c the fourier expansion of g(theta,phi) in phi. as a result c of the above fourier transform they are stored in array c g as follows: c for each theta(i) and k= l-1 c ga(0),ga(1),gb(1),ga(2),gb(2),...,ga(k-1),gb(k-1),ga(k) c correspond to c g(i,1),g(i,2),g(i,3),g(i,4),g(i,5),...,g(i,2l-4),g(i,2l-3),g(i,2l-2) c whenever 2*l-2 = nlon exactly c initialize coefficients to zero do 103 k=1,nt do 103 np1=1,nlat do 103 mp1=1,l a(mp1,np1,k) = 0.0 b(mp1,np1,k) = 0.0 103 continue c set mp1 limit on b(mp1) calculation lm1 = l if (nlon .eq. l+l-2) lm1 = l-1 if (mode.eq.0) then c for full sphere (mode=0) and even/odd reduction: c overwrite g(i) with (g(i)+g(nlat-i+1))*wts(i) c overwrite g(nlat-i+1) with (g(i)-g(nlat-i+1))*wts(i) nl2 = nlat/2 do 104 k=1,nt do 104 j=1,nlon do 105 i=1,nl2 is = nlat-i+1 t1 = g(i,j,k) t2 = g(is,j,k) g(i,j,k) = wts(i)*(t1+t2) g(is,j,k) = wts(i)*(t1-t2) 105 continue c adjust equator if necessary(nlat odd) if (mod(nlat,2).ne.0) g(late,j,k) = wts(late)*g(late,j,k) 104 continue c set m = 0 coefficients first mp1 = 1 m = 0 mml1 = m*(2*nlat-m-1)/2 do 106 k=1,nt do 106 i=1,late is = nlat-i+1 do 107 np1=1,nlat,2 c n even a(1,np1,k) = a(1,np1,k)+g(i,1,k)*pmn(i,mml1+np1) 107 continue do 108 np1=2,nlat,2 c n odd a(1,np1,k) = a(1,np1,k)+g(is,1,k)*pmn(i,mml1+np1) 108 continue 106 continue c compute m.ge.1 coefficients next do 109 mp1=2,lm1 m = mp1-1 mml1 = m*(2*nlat-m-1)/2 mp2 = mp1+1 do 110 k=1,nt do 111 i=1,late is = nlat-i+1 c n-m even do 112 np1=mp1,nlat,2 a(mp1,np1,k) = a(mp1,np1,k)+g(i,2*m,k)*pmn(i,mml1+np1) b(mp1,np1,k) = b(mp1,np1,k)+g(i,2*m+1,k)*pmn(i,mml1+np1) 112 continue c n-m odd do 113 np1=mp2,nlat,2 a(mp1,np1,k) = a(mp1,np1,k)+g(is,2*m,k)*pmn(i,mml1+np1) b(mp1,np1,k) = b(mp1,np1,k)+g(is,2*m+1,k)*pmn(i,mml1+np1) 113 continue 111 continue 110 continue 109 continue if (nlon .eq. l+l-2) then c compute m=l-1, n=l-1,l,...,nlat-1 coefficients m = l-1 mml1 = m*(2*nlat-m-1)/2 do 114 k=1,nt do 114 i=1,late is = nlat-i+1 do 124 np1=l,nlat,2 mn = mml1+np1 a(l,np1,k) = a(l,np1,k)+0.5*g(i,nlon,k)*pmn(i,mn) 124 continue c n-m odd lp1 = l+1 do 125 np1=lp1,nlat,2 mn = mml1+np1 a(l,np1,k) = a(l,np1,k)+0.5*g(is,nlon,k)*pmn(i,mn) 125 continue 114 continue end if else c half sphere c overwrite g(i) with wts(i)*(g(i)+g(i)) for i=1,...,nlate/2 nl2 = nlat/2 do 116 k=1,nt do 116 j=1,nlon do 115 i=1,nl2 g(i,j,k) = wts(i)*(g(i,j,k)+g(i,j,k)) 115 continue c adjust equator separately if a grid point if (nl2.lt.late) g(late,j,k) = wts(late)*g(late,j,k) 116 continue c set m = 0 coefficients first mp1 = 1 m = 0 mml1 = m*(2*nlat-m-1)/2 ms = 1 if (mode.eq.1) ms = 2 do 117 k=1,nt do 117 i=1,late do 117 np1=ms,nlat,2 a(1,np1,k) = a(1,np1,k)+g(i,1,k)*pmn(i,mml1+np1) 117 continue c compute m.ge.1 coefficients next do 118 mp1=2,lm1 m = mp1-1 mml1 = m*(2*nlat-m-1)/2 ms = mp1 if (mode.eq.1) ms = mp1+1 do 119 k=1,nt do 119 i=1,late do 119 np1=ms,nlat,2 a(mp1,np1,k) = a(mp1,np1,k)+g(i,2*m,k)*pmn(i,mml1+np1) b(mp1,np1,k) = b(mp1,np1,k)+g(i,2*m+1,k)*pmn(i,mml1+np1) 119 continue 118 continue if (nlon.eq.l+l-2) then c compute n=m=l-1 coefficients last m = l-1 mml1 = m*(2*nlat-m-1)/2 c set starting n for mode even ns = l c set starting n for mode odd if (mode.eq.1) ns = l+1 do 120 k=1,nt do 120 i=1,late do 120 np1=ns,nlat,2 mn = mml1+np1 a(l,np1,k) = a(l,np1,k)+0.5*g(i,nlon,k)*pmn(i,mn) 120 continue end if end if return end subroutine shagsi(nlat,nlon,wshags,lshags,work,lwork,dwork,ldwork, + ierror) c c this subroutine must be called before calling shags or shsgs with c fixed nlat,nlon. it precomputes the gaussian weights, points c and all necessary legendre polys and stores them in wshags. c these quantities must be preserved when calling shags or shsgs c repeatedly with fixed nlat,nlon. dwork must be of length at c least nlat*(nlat+4) in the routine calling shagsi. This is c not checked. undetectable errors will result if dwork is c smaller than nlat*(nlat+4). c dimension wshags(lshags),work(lwork) double precision dwork(ldwork) ierror = 1 if (nlat.lt.3) return ierror = 2 if (nlon.lt.4) return c set triangular truncation limit for spherical harmonic basis l = min0((nlon+2)/2,nlat) c set equator or nearest point (if excluded) pointer late = (nlat+1)/2 l1 = l l2 = late c check permanent work space length ierror = 3 lp=nlat*(3*(l1+l2)-2)+(l1-1)*(l2*(2*nlat-l1)-3*l1)/2+nlon+15 if(lshags.lt.lp) return ierror = 4 c check temporary work space if (lwork.lt.4*nlat*(nlat+2)+2) return ierror = 5 c check double precision temporary space if (ldwork .lt. nlat*(nlat+4)) return ierror = 0 c set preliminary quantites needed to compute and store legendre polys ldw = nlat*(nlat+4) call shagsp(nlat,nlon,wshags,lshags,dwork,ldwork,ierror) if (ierror.ne.0) return c set legendre poly pointer in wshags ipmnf = nlat+2*nlat*late+3*(l*(l-1)/2+(nlat-l)*(l-1))+nlon+16 call shagss1(nlat,l,late,wshags,work,wshags(ipmnf)) return end subroutine shagss1(nlat,l,late,w,pmn,pmnf) dimension w(1),pmn(nlat,late,3),pmnf(late,1) c compute and store legendre polys for i=1,...,late,m=0,...,l-1 c and n=m,...,l-1 do i=1,nlat do j=1,late do k=1,3 pmn(i,j,k) = 0.0 end do end do end do do 100 mp1=1,l m = mp1-1 mml1 = m*(2*nlat-m-1)/2 c compute pmn for n=m,...,nlat-1 and i=1,...,(l+1)/2 mode = 0 call legin(mode,l,nlat,m,w,pmn,km) c store above in pmnf do 101 np1=mp1,nlat mn = mml1+np1 do 102 i=1,late pmnf(i,mn) = pmn(np1,i,km) 102 continue 101 continue 100 continue return end subroutine shagsp(nlat,nlon,wshags,lshags,dwork,ldwork,ierror) dimension wshags(lshags) double precision dwork(ldwork) ierror = 1 if (nlat.lt.3) return ierror = 2 if (nlon.lt.4) return c set triangular truncation limit for spherical harmonic basis l = min0((nlon+2)/2,nlat) c set equator or nearest point (if excluded) pointer late = (nlat+mod(nlat,2))/2 l1 = l l2 = late ierror = 3 c check permanent work space length if (lshags .lt. nlat*(2*l2+3*l1-2)+3*l1*(1-l1)/2+nlon+15)return ierror = 4 c if (lwork.lt.4*nlat*(nlat+2)+2) return if (ldwork.lt.nlat*(nlat+4))return ierror = 0 c set pointers i1 = 1 i2 = i1+nlat i3 = i2+nlat*late i4 = i3+nlat*late i5 = i4+l*(l-1)/2 +(nlat-l)*(l-1) i6 = i5+l*(l-1)/2 +(nlat-l)*(l-1) i7 = i6+l*(l-1)/2 +(nlat-l)*(l-1) c set indices in temp work for double precision gaussian wts and pts idth = 1 c idwts = idth+2*nlat c iw = idwts+2*nlat idwts = idth+nlat iw = idwts+nlat call shagsp1(nlat,nlon,l,late,wshags(i1),wshags(i2),wshags(i3), 1wshags(i4),wshags(i5),wshags(i6),wshags(i7),dwork(idth), 2dwork(idwts),dwork(iw),ierror) if (ierror.ne.0) ierror = 6 return end subroutine shagsp1(nlat,nlon,l,late,wts,p0n,p1n,abel,bbel,cbel, + wfft,dtheta,dwts,work,ier) dimension wts(nlat),p0n(nlat,late),p1n(nlat,late),abel(1),bbel(1), 1 cbel(1),wfft(1),dtheta(nlat),dwts(nlat) double precision pb,dtheta,dwts,work(*) indx(m,n) = (n-1)*(n-2)/2+m-1 imndx(m,n) = l*(l-1)/2+(n-l-1)*(l-1)+m-1 call hrffti(nlon,wfft) c compute double precision gaussian points and weights c lw = 4*nlat*(nlat+2) lw = nlat*(nlat+2) call gaqd(nlat,dtheta,dwts,work,lw,ier) if (ier.ne.0) return c store gaussian weights single precision to save computation c in inner loops in analysis do 100 i=1,nlat wts(i) = dwts(i) 100 continue c initialize p0n,p1n using double precision dnlfk,dnlft do 101 np1=1,nlat do 101 i=1,late p0n(np1,i) = 0.0 p1n(np1,i) = 0.0 101 continue c compute m=n=0 legendre polynomials for all theta(i) np1 = 1 n = 0 m = 0 call dnlfk(m,n,work) do 103 i=1,late call dnlft(m,n,dtheta(i),work,pb) p0n(1,i) = pb 103 continue c compute p0n,p1n for all theta(i) when n.gt.0 do 104 np1=2,nlat n = np1-1 m = 0 call dnlfk(m,n,work) do 105 i=1,late call dnlft(m,n,dtheta(i),work,pb) p0n(np1,i) = pb 105 continue c compute m=1 legendre polynomials for all n and theta(i) m = 1 call dnlfk(m,n,work) do 106 i=1,late call dnlft(m,n,dtheta(i),work,pb) p1n(np1,i) = pb 106 continue 104 continue c c compute and store swarztrauber recursion coefficients c for 2.le.m.le.n and 2.le.n.le.nlat in abel,bbel,cbel do 107 n=2,nlat mlim = min0(n,l) do 107 m=2,mlim imn = indx(m,n) if (n.ge.l) imn = imndx(m,n) abel(imn)=sqrt(float((2*n+1)*(m+n-2)*(m+n-3))/ 1 float(((2*n-3)*(m+n-1)*(m+n)))) bbel(imn)=sqrt(float((2*n+1)*(n-m-1)*(n-m))/ 1 float(((2*n-3)*(m+n-1)*(m+n)))) cbel(imn)=sqrt(float((n-m+1)*(n-m+2))/ 1 float(((n+m-1)*(n+m)))) 107 continue return end