7 October 2025 1:17:56.521 PM satisfy_openmp(): Fortran77/OpenMP version We have a logical function of N logical arguments. We do an exhaustive search of all 2^N possibilities, seeking those inputs that make the function TRUE. The number of processors = 8 The number of threads = 1 The number of logical variables is N = 23 The number of input vectors to check is 8388608 # Processor Index ---------Input Values------------------------ Processor 0 iterates from 0 <= I < 8388608 0 0 3656933 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 3656941 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 3656957 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 3661029 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 3661037 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 3661053 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 3665125 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 5754104 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 5754109 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 5758200 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 5758205 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 7851229 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 7851261 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 7855325 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 7855357 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 Number of solutions found was 15 Elapsed wall clock time (seconds) 0.692383 satisfy_openmp(): Normal end of execution. 7 October 2025 1:17:57.213 PM 7 October 2025 1:17:57.215 PM satisfy_openmp(): Fortran77/OpenMP version We have a logical function of N logical arguments. We do an exhaustive search of all 2^N possibilities, seeking those inputs that make the function TRUE. The number of processors = 8 The number of threads = 2 The number of logical variables is N = 23 The number of input vectors to check is 8388608 # Processor Index ---------Input Values------------------------ Processor 1 iterates from 4194304 <= I < 8388608 Processor 1 iterates from 0 <= I < 4194304 0 1 5754104 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 5754109 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 5758200 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 5758205 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 7851229 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 7851261 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 3656933 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 3656941 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 3656957 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 7855325 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 7855357 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 3661029 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 3661037 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 3661053 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 3665125 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 Number of solutions found was 15 Elapsed wall clock time (seconds) 0.360113 satisfy_openmp(): Normal end of execution. 7 October 2025 1:17:57.575 PM 7 October 2025 1:17:57.576 PM satisfy_openmp(): Fortran77/OpenMP version We have a logical function of N logical arguments. We do an exhaustive search of all 2^N possibilities, seeking those inputs that make the function TRUE. The number of processors = 8 The number of threads = 4 The number of logical variables is N = 23 The number of input vectors to check is 8388608 # Processor Index ---------Input Values------------------------ Processor 3 iterates from 0 <= I < 6291456 Processor 3 iterates from 4194304 <= I < 6291456 Processor 3 iterates from 2097152 <= I < 4194304 Processor 3 iterates from 6291456 <= I < 8388608 0 3 5754104 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 3 5754109 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 3 7851229 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 3 7851261 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 3 3656933 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 3 3656941 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 3 3656957 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 3 5758200 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 3 5758205 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 3 7855325 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 3 7855357 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 3 3661029 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 3 3661037 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 3 3661053 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 3 3665125 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 3 3656933 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 3 3656941 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 3 3656957 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 3 3661029 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 3 3661037 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 3 3661053 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 3 3665125 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 3 5754104 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 3 5754109 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 3 5758200 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 3 5758205 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 Number of solutions found was 26 Elapsed wall clock time (seconds) 0.524323 satisfy_openmp(): Normal end of execution. 7 October 2025 1:17:58.100 PM