
FMMLIB2D

Version 1.2

FORTRAN 90/95, MATLAB

April, 2012

User’s guide

Copyright c©Leslie Greengard and Zydrunas Gimbutas.

CONTENTS 1

Contents

1 Introduction 2
1.1 Subroutine LFMM2DPARTSELF . 4
1.2 Subroutine LFMM2DPARTTARG . 6
1.3 Subroutine L2DPARTDIRECT . 9
1.4 Subroutine HFMM2DPARTSELF . 12
1.5 Subroutine HFMM2DPARTTARG . 14
1.6 Subroutine H2DPARTDIRECT . 17
1.7 Subroutine ZFMM2DPARTSELF . 20
1.8 Subroutine ZFMM2DPARTTARG . 22
1.9 Subroutine Z2DPARTDIRECT . 24
1.10 Subroutine CFMM2DPARTSELF . 26
1.11 Subroutine CFMM2DPARTTARG . 28
1.12 Subroutine C2DPARTDIRECT . 30

2 Sample drivers for FMMLIB2D 32

3 Acknowledgments 33

1 INTRODUCTION 2

1 Introduction

This manual describes the use of the FMMLIB2D suite for the evaluation of potential fields,
governed by either the Laplace or Helmholtz equation in free space. The codes are easy to
use and reasonably well optimized for performance on either single core processors, or small
multi-core systems using OpenMP. FMMLIB2D is being released under the terms of the
GNU General Public License (version 2), as published by the Free Software Foundation.

The fast multipole method (FMM) computes N-body interactions in approximately
linear time for non-pathological particle distributions, assuming in the case of the Helmholtz
equation that the entire computational domain is a modest number of wavelengths in size.
This is the “low frequency” regime from the point of view of either scattering theory or
FMM implementations. (The high-frequency version of the FMM requires a more complex
algorithm, and has not been incorporated into this software.) More precisely, FMMLIB2D
computes sums of the form:

φ(yi) =
N∑
j=1

qj Gk(yi − xj) + pjnj · ∇xjGk(yi − xj) (1)

for i = 1, . . . , N , where

Gk(x) =
i

4
H

(1)
0 (k‖x‖)

qj is referred to as the charge strength and pj as the dipole strength. n = (n1, n2) is a
vector whose direction determines the dipole orientation (if present). For k 6= 0, we assume
that k is in the upper half of the complex plane. It is designed for scattering calculations,
and there are scaling issues that need to be incorporated to handle the modified Helmholtz
(Yukawa) regime where k is both large and near the imaginary axis. This will be fixed in
a forthcoming code release. When k = 0, we use G0(x) = log(‖x‖). (The true Green’s
function requires a scaling by the factor − 1

2π). There are several different routines available
when k = 0. Subroutines with the prefix lfmm2d compute complex-valued sums of the form:

φ(yi) =

N∑
j=1

qj log(‖yi − xj‖) + pjnj · ∇xj (log(‖yi − xj‖)) . (2)

Subroutines with the prefix zfmm2d compute complex-valued sums of the form:

φ(ξi) =

N∑
j=1

pj
1

ξi − zj
. (3)

Subroutines with the prefix cfmm2d compute complex-valued sums of the form:

φ(ξi) =
N∑
j=1

qj log(ξi − zj) + pj
1

ξi − zj
. (4)

The cfmm2d routines are not intended for novice users, since the complex valued logarithm
is a multi-valued function. As a result, the sums (4) have to be interpreted carefully and
the routines are intended for advanced users only.

1 INTRODUCTION 3

Important note: The charge and dipole strengths are assumed to be complex double
precision numbers for both the Laplace and Helmholtz libraries. If you pass a real array,
the code will not execute correctly.

This package provides a fully adaptive version of the FMM for the research community.
It is not the most highly optimized version possible, intended rather to be accessible and
modifiable with only modest effort. For a fully optimized code, far field and plane wave-
based operators should be used [1]. This, however, would add significant complexity to the
code, and would make the algorithm less transparent to the user and harder to modify. The
internal documentation of lower level routines is mixed, but this is a work in progress. The
higher level routines (we hope) should be clear.

In the next sections, we describe the calling sequences for the Fortran routines. The
corresponding MATLAB routines are described in Contents.m in the matlab subdirectory.

1 INTRODUCTION 4

1.1 Subroutine LFMM2DPARTSELF

subroutine lfmm2dpartself(ier, iprec, nsource, source, ifcharge, charge, ifdipole, dipstr, dipvec,
ifpot, pot, ifgrad, grad, ifhess, hess)

computes sums of the form

φ(xi) =
N∑
j=1
j 6=i

qj log(‖xi − xj‖) + pjnj · ∇xj (log(‖xi − xj‖)) (5)

for i = 1, . . . , N , as well as first and second derivatives of φ.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−14.

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (5)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (5)).

1 INTRODUCTION 5

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (5)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the gradient of the potential at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

Note that the charge, dipstr, pot, grad, hess arrays must be declared and passed
as complex arrays (even if the charge and dipole strengths are real).

1 INTRODUCTION 6

1.2 Subroutine LFMM2DPARTTARG

subroutine lfmm2dparttarg(ier, iprec, nsource, source, ifcharge, charge, ifdipole, dipstr, dipvec,
ifpot, pot, ifgrad, grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg,
ifhesstarg, hesstarg)

compute sums of the form

φ(yi) =

N∑
j=1

qj log(‖yi − xj‖) + pjnj · ∇xj (log(‖yi − xj‖))

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (5) if desired.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−15.

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (5)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (5)).

1 INTRODUCTION 7

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (5)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

ntarget integer :
number of targets

target(2,ntarget) real *8 :
target(k,j) is the kth component of the jth target in R2.

ifpottarg integer :
target potential flag. If ifpottarg = 1, the potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target gradient flag. If ifgradtarg = 1 the gradient of the potential is computed.
Otherwise, it is not.

ifhesstarg integer :
target hessian flag. If ifhesstarg = 1 the hessian of the potential is computed.
Otherwise, it is not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

1 INTRODUCTION 8

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the field (-gradient of the potential) at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(2,ntarget) complex *16 :
gradtarg(k,i) is the kth component of the field (-gradient of the potential) at the ith
target

hesstarg(3,ntarget) complex *16 :
hesstarg(1,i), hesstarg(2,i), and hesstarg(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the
potential at the ith target

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 9

1.3 Subroutine L2DPARTDIRECT

subroutine l2dpartdirect(nsource, source, ifcharge, charge, ifdipole, dipstr, dipvec, ifpot, pot,
ifgrad, grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg,
hesstarg)

compute sums of the form

φ(yi) =

N∑
j=1

qj log(‖yi − xj‖) + pjnj · ∇xj (log(‖yi − xj‖))

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (5) if desired. It implements the summation formula directly and is not fast.

Input Parameters:

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (5)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (5)).

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (5)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

1 INTRODUCTION 10

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

ntarget integer :
number of targets

target(2,ntarget) real *8 :
target(k,j) is the kth component of the jth target in R2.

ifpottarg integer :
target potential flag. If ifpottarg = 1, the potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target gradient flag. If ifgradtarg = 1 the gradient of the potential is computed.
Otherwise, it is not.

ifhesstarg integer :
target hessian flag. If ifhesstarg = 1 the hessian of the potential is computed.
Otherwise, it is not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the field (-gradient of the potential) at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(2,ntarget) complex *16 :
gradtarg(k,i) is the kth component of the field (-gradient of the potential) at the ith
target

hesstarg(3,ntarget) complex *16 :
hesstarg(1,i), hesstarg(2,i), and hesstarg(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the
potential at the ith target

1 INTRODUCTION 11

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 12

1.4 Subroutine HFMM2DPARTSELF

subroutine hfmm2dpartself(ier, iprec, zk, nsource, source, ifcharge, charge, ifdipole, dipstr,
dipvec, ifpot, pot, ifgrad, grad, ifhess, hess)

computes sums of the form

φ(xi) =
i

4

N∑
j=1
j 6=i

qj H
(1)
0 (k‖xi − xj‖) + pjnj · ∇xj

(
H

(1)
0 (k‖xi − xj‖)

)
(6)

for i = 1, . . . , N , as well as first and second derivatives of φ.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−14.

zk complex *16 :
Helmholtz parameter

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (6)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (6)).

1 INTRODUCTION 13

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (6)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the gradient of the potential at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

Note that the charge, dipstr, pot, grad, hess arrays must be declared and passed
as complex arrays (even if the charge and dipole strengths are real).

1 INTRODUCTION 14

1.5 Subroutine HFMM2DPARTTARG

subroutine hfmm2dparttarg(ier, iprec, zk, nsource, source, ifcharge, charge, ifdipole, dipstr,
dipvec, ifpot, pot, ifgrad, grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg,
gradtarg, ifhesstarg, hesstarg)

compute sums of the form

φ(yi) =
i

4

N∑
j=1

qj H
(1)
0 (k‖yi − xj‖) + pjnj · ∇xj

(
H

(1)
0 (k‖yi − xj‖)

)
for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (6) if desired.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−15.

zk complex *16 :
Helmholtz parameter

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (6)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

1 INTRODUCTION 15

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (6)).

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (6)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

ntarget integer :
number of targets

target(2,ntarget) real *8 :
target(k,j) is the kth component of the jth target in R2.

ifpottarg integer :
target potential flag. If ifpottarg = 1, the potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target gradient flag. If ifgradtarg = 1 the gradient of the potential is computed.
Otherwise, it is not.

ifhesstarg integer :
target hessian flag. If ifhesstarg = 1 the hessian of the potential is computed.
Otherwise, it is not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

1 INTRODUCTION 16

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the field (-gradient of the potential) at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(2,ntarget) complex *16 :
gradtarg(k,i) is the kth component of the field (-gradient of the potential) at the ith
target

hesstarg(3,ntarget) complex *16 :
hesstarg(1,i), hesstarg(2,i), and hesstarg(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the
potential at the ith target

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 17

1.6 Subroutine H2DPARTDIRECT

subroutine h2dpartdirect(zk, nsource, source, ifcharge, charge, ifdipole, dipstr, dipvec, ifpot,
pot, ifgrad, grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg,
hesstarg)

compute sums of the form

φ(yi) =
i

4

N∑
j=1

qj H
(1)
0 (k‖yi − xj‖) + pjnj · ∇xj

(
H

(1)
0 (k‖yi − xj‖)

)
for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (6) if desired. It implements the summation formula directly and is not fast.

Input Parameters:

zk complex *16 :
Helmholtz parameter

nsource integer :
number of sources

source(2,nsource) real *8 :
sources(k,j) is the kth component of the jth source in R2.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (6)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (6)).

dipvec(2,nsource) real *8 :
dipvec(k,j) is the kth component of the orientation vector of the jth dipole (nj in the
formula (6)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the gradient of the potential is computed. Otherwise, it
is not.

1 INTRODUCTION 18

ifhess integer :
hessian flag. If ifhess = 1 the hessian of the potential is computed. Otherwise, it is
not.

ntarget integer :
number of targets

target(2,ntarget) real *8 :
target(k,j) is the kth component of the jth target in R2.

ifpottarg integer :
target potential flag. If ifpottarg = 1, the potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target gradient flag. If ifgradtarg = 1 the gradient of the potential is computed.
Otherwise, it is not.

ifhesstarg integer :
target hessian flag. If ifhesstarg = 1 the hessian of the potential is computed.
Otherwise, it is not.

Unused arrays do not need to be allocated in full. Thus, if ifcharge = 0, charge
can be dimensioned as a (complex) scalar. If ifdipole = 0, dipstr can be di-
mensioned as a complex scalar and dipvec can be dimensioned in the calling
program as dipvec(2) - BUT NOT dipvec(1).

Output Parameters:

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(2,nsource) complex *16 :
grad(k,i) is the kth component of the field (-gradient of the potential) at the ith source

hess(3,nsource) complex *16 :
hess(1,i), hess(2,i), and hess(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the potential at
the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(2,ntarget) complex *16 :
gradtarg(k,i) is the kth component of the field (-gradient of the potential) at the ith
target

hesstarg(3,ntarget) complex *16 :
hesstarg(1,i), hesstarg(2,i), and hesstarg(3,i) are ∂xx, ∂xy, and ∂yy derivatives of the
potential at the ith target

1 INTRODUCTION 19

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 20

1.7 Subroutine ZFMM2DPARTSELF

subroutine zfmm2dpartself(ier, iprec, nsource, source, dipstr, ifpot, pot, ifgrad, grad, ifhess,
hess)

computes sums of the form

φ(zi) =
N∑
j=1
j 6=i

pj
1

zi − zj
(7)

for i = 1, . . . , N , as well as first and second derivatives of φ.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−14.

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (7)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the first derivative of the potential is computed. Other-
wise, it is not.

ifhess integer :
hessian flag. If ifhess = 1 the second derivative of the potential is computed. Oth-
erwise, it is not.

Output Parameters:

1 INTRODUCTION 21

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

Note that the dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays must
be declared and passed as complex arrays (even if the dipole strengths are real).

1 INTRODUCTION 22

1.8 Subroutine ZFMM2DPARTTARG

subroutine zfmm2dparttarg(ier, iprec, nsource, source, dipstr, ifpot, pot, ifgrad, grad, ifhess,
hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg, hesstarg)

compute sums of the form

φ(ξi) =

N∑
j=1

pj
1

ξi − zj

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (7) if desired.

Input Parameters:

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (7)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the first derivative of the potential is computed. Other-
wise, it is not.

ifhess integer :
hessian flag. If ifhess = 1 the second derivative of the potential is computed. Oth-
erwise, it is not.

target(ntarget) complex *16 :
target(j) is the location of the jth target in the complex plane.

ifpottarg integer :
target potential flag. If ifpot = 1, the target potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target derivative flag. If ifgrad = 1 the first derivative of the target potential is
computed. Otherwise, it is not.

ifhesstarg integer :
target second derivative flag. If ifhess = 1 the second derivative of the target poten-
tial is computed. Otherwise, it is not.

1 INTRODUCTION 23

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(ntarget) complex *16 :
gradtarg(i) is the first derivative of the potential at the ith target

hesstarg(ntarget) complex *16 :
hesstarg(i) is the second derivative of the potential at the ith target

Note that the dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays must
be declared and passed as complex arrays (even if the dipole strengths are real).

1 INTRODUCTION 24

1.9 Subroutine Z2DPARTDIRECT

subroutine z2dpartdirect(nsource, source, dipstr, ifpot, pot, ifgrad, grad, ifhess, hess, ntarget,
target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg, hesstarg)

compute sums of the form

φ(ξi) =

N∑
j=1

pj
1

ξi − zj

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the
form (7) if desired. It implements the summation formula directly and is not fast.

Input Parameters:

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (7)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
derivative flag. If ifgrad = 1 the first derivative of the potential is computed. Oth-
erwise, it is not.

ifhess integer :
second derivative flag. If ifhess = 1 the second derivative of the potential is com-
puted. Otherwise, it is not.

target(ntarget) complex *16 :
target(j) is the location of the jth target in the complex plane.

ifpottarg integer :
target potential flag. If ifpot = 1, the target potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target derivative flag. If ifgrad = 1 the first derivative of the target potential is
computed. Otherwise, it is not.

ifhesstarg integer :
target second derivative flag. If ifhess = 1 the second derivative of the target poten-
tial is computed. Otherwise, it is not.

1 INTRODUCTION 25

Output Parameters:

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(ntarget) complex *16 :
gradtarg(i) is the first derivative of the potential at the ith target

hesstarg(ntarget) complex *16 :
hesstarg(i) is the second derivative of the potential at the ith target

Note that the dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays must
be declared and passed as complex arrays (even if the dipole strengths are real).

1 INTRODUCTION 26

1.10 Subroutine CFMM2DPARTSELF

subroutine cfmm2dpartself(ier, iprec, nsource, source, ifcharge, charge, ifdipole, dipstr, ifpot,
pot, ifgrad, grad, ifhess, hess)

computes sums of the form

φ(zi) =
N∑
j=1
j 6=i

qj log(zi − zj) + pj
1

zi − zj
(8)

for i = 1, . . . , N , as well as first and second derivatives of φ. Note, that this is a highly
specialized low level routine, which should be used only by advanced users. The complex
valued logarithm is a multivalued function, therefore, the potential values returned by
cfmm2d have to be interpreted carefully, if charges are specified. For example, only the
real part of the potential is meaningful for the real valued charges. The derivatives are
single-valued and are valid for arbitrary valued complex charges and dipoles.

Input Parameters:

iprec integer :
precision flag. Allowed values are

iprec = −2 for least squares errors < 0.5 100,
iprec = −1 for least squares errors < 0.5 10−1,
iprec = 0 for least squares errors < 0.5 10−2,
iprec = 1 for least squares errors < 0.5 10−3.
iprec = 2 for least squares errors < 0.5 10−6.
iprec = 3 for least squares errors < 0.5 10−9.
iprec = 4 for least squares errors < 0.5 10−12.
iprec = 5 for least squares errors < 0.5 10−14.

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (8)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

1 INTRODUCTION 27

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (8)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the first derivative of the potential is computed. Other-
wise, it is not.

ifhess integer :
hessian flag. If ifhess = 1 the second derivative of the potential is computed. Oth-
erwise, it is not.

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 28

1.11 Subroutine CFMM2DPARTTARG

subroutine cfmm2dparttarg(ier, iprec, nsource, source, ifcharge, charge, ifdipole, dipstr, ifpot,
pot, ifgrad, grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg,
hesstarg)

compute sums of the form

φ(ξi) =

N∑
j=1

qj log(ξi − zj) + pj
1

ξi − zj

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the form
(8) if desired. Note, that this is a highly specialized low level routine, which should be used
only by advanced users. The complex valued logarithm is a multivalued function, therefore,
the potential values returned by cfmm2d have to be interpreted carefully, if charges are
specified. For example, only the real part of the potential is meaningful for the real valued
charges. The derivatives are single-valued and are valid for arbitrary valued complex charges
and dipoles.

Input Parameters:

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (8)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (8)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
gradient flag. If ifgrad = 1 the first derivative of the potential is computed. Other-
wise, it is not.

1 INTRODUCTION 29

ifhess integer :
hessian flag. If ifhess = 1 the second derivative of the potential is computed. Oth-
erwise, it is not.

target(ntarget) complex *16 :
target(j) is the location of the jth target in the complex plane.

ifpottarg integer :
target potential flag. If ifpot = 1, the target potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target derivative flag. If ifgrad = 1 the first derivative of the target potential is
computed. Otherwise, it is not.

ifhesstarg integer :
target second derivative flag. If ifhess = 1 the second derivative of the target poten-
tial is computed. Otherwise, it is not.

Output Parameters:

ier integer :
Error return codes.
ier = 0: Successful completion of code.
ier = 4: failure to allocate memory for oct-tree
ier = 8: failure to allocate memory for FMM workspaces
ier = 16: failure to allocate meory for multipole/local expansions

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(ntarget) complex *16 :
gradtarg(i) is the first derivative of the potential at the ith target

hesstarg(ntarget) complex *16 :
hesstarg(i) is the second derivative of the potential at the ith target

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

1 INTRODUCTION 30

1.12 Subroutine C2DPARTDIRECT

subroutine c2dpartdirect(nsource, source, ifcharge, charge, ifdipole, dipstr, ifpot, pot, ifgrad,
grad, ifhess, hess, ntarget, target, ifpottarg, pottarg, ifgradtarg, gradtarg, ifhesstarg, hesstarg)

compute sums of the form

φ(ξi) =

N∑
j=1

qj log(ξi − zj) + pj
1

ξi − zj

for i = 1, . . . , Nt, as well as first and second derivatives of φ. It also returns sums of the form
(8) if desired. It implements the summation formula directly and is not fast. Note,
that this is a highly specialized low level routine, which should be used only by advanced
users. The complex valued logarithm is a multivalued function, therefore, the potential
values returned by cfmm2d have to be interpreted carefully, if charges are specified. For
example, only the real part of the potential is meaningful for the real valued charges. The
derivatives are single-valued and are valid for arbitrary valued complex charges and dipoles.

Input Parameters:

nsource integer :
number of sources

source(nsource) complex *16 :
sources(j) is the location of the jth source in the complex plane.

ifcharge integer :
charge flag. If icharge = 1, then include the effect of the charge sources. Otherwise,
omit.

charge(nsource) complex *16 :
charge(j) is the strength of the jth charge (qj in the formula (8)).

ifdipole integer :
dipole flag. If idipole = 1, then include the effect of the dipole sources. Otherwise,
omit.

dipstr(nsource) complex *16 :
dipstr(j) is the strength of the jth dipole (pj in the formula (8)).

ifpot integer :
potential flag. If ifpot = 1, the potential is computed. Otherwise, it is not.

ifgrad integer :
derivative flag. If ifgrad = 1 the first derivative of the potential is computed. Oth-
erwise, it is not.

1 INTRODUCTION 31

ifhess integer :
second derivative flag. If ifhess = 1 the second derivative of the potential is com-
puted. Otherwise, it is not.

target(ntarget) complex *16 :
target(j) is the location of the jth target in the complex plane.

ifpottarg integer :
target potential flag. If ifpot = 1, the target potential is computed. Otherwise, it is
not.

ifgradtarg integer :
target derivative flag. If ifgrad = 1 the first derivative of the target potential is
computed. Otherwise, it is not.

ifhesstarg integer :
target second derivative flag. If ifhess = 1 the second derivative of the target poten-
tial is computed. Otherwise, it is not.

Output Parameters:

pot(nsource) complex *16 :
pot(i) is the potential at the ith source

grad(nsource) complex *16 :
grad(i) is the first derivative of the potential at the ith source

hess(nsource) complex *16 :
hess(i) is the second derivative of the potential at the ith source

pottarg(ntarget) complex *16 :
pottarg(i) is the potential at the ith target

gradtarg(ntarget) complex *16 :
gradtarg(i) is the first derivative of the potential at the ith target

hesstarg(ntarget) complex *16 :
hesstarg(i) is the second derivative of the potential at the ith target

Note that the charge, dipstr, pot, grad, hess, pottarg, gradtarg, hesstarg, arrays
must be declared and passed as complex arrays (even if the charge and dipole
strengths are real).

2 SAMPLE DRIVERS FOR FMMLIB2D 32

2 Sample drivers for FMMLIB2D

In the FMM2D/examples directory, the file lfmm2dpart driver.f contains a sample driver
for lfmm2dparttarg. It creates a random distribution of source points on the unit circle
centered at the origin a random distribution of target points on a separated unit circle,
centered at (3, 0). The code then computes the potential and field at all source and target
points. On a single core, with 100,000 sources, 100,000 targets, and iprec=4, the execution
time should be one or two seconds.

The file hfmm2dpart driver.f contains a sample driver for hfmm2dparttarg. It creates
the same distribution of sources and targets, and sets the Helmholtz parameter to k = 20.
On a single core, with 100,000 sources, 100,000 targets, and iprec=4, the execution time
should be about four seconds.

Sample drivers for the MATLAB routines can be found in the matlab directory in files
test lfmm2dpart direct.m, test hfmm2dpart direct.m.

3 ACKNOWLEDGMENTS 33

3 Acknowledgments

This work was supported by the Department of Energy under contract DE-FGO288-ER-
25053, by the Air Force Office of Scientific Research under MURI grant FA9550-06-1-0337
and NSSEFF Program Award FA9550-10-1-0180, by the National Science Foundation under
grant DMS09-34733, and by a research grant from Meyer Sound Laboratories, Inc.

References

[1] W. Crutchfield, Z. Gimbutas, L. Greengard, J. Huang, V. Rokhlin, N. Yarvin, and
J. Zhao, “Remarks on the implementation of the wideband FMM for the Helmholtz
equation in two dimensions,” Contemporary Mathematics 408, pp. 99-110 (2006).

[2] J. Carrier, L. Greengard, and V. Rokhlin, “A Fast Adaptive Multipole Algorithm for
Particle Simulations,” SIAM J. Sci. and Stat. Comput. 9, pp. 669–686 (1988).

