7 October 2025 1:03:04.219 PM feynman_kac_1d(): Fortran77 version. Program parameters: The calculation takes place inside an interval. The solution will be estimated at NG points on a regular spaced grid within the interval. Each solution will be estimated by computing 10000 trajectories from the point to the boundary. (X/A)^2 = 1 The interval parameter A is: A = 2.00000 Path stepsize H = 0.100000E-03 X coordinate discretized by 23 points I K X W exact W Approx Error Ave Steps Test 0 1 -2.200 1.000 1.000 0.000 0 -0.8400 1 2 -2.000 1.000 0.9947 0.5322E-02 236 0.0000 2 3 -1.800 0.8270 0.8278 0.8825E-03 7366 0.7600 3 4 -1.600 0.6977 0.6974 0.3215E-03 14331 1.4400 4 5 -1.400 0.6005 0.6000 0.5350E-03 20604 2.0400 5 6 -1.200 0.5273 0.5332 0.5881E-02 25161 2.5600 6 7 -1.000 0.4724 0.4762 0.3807E-02 29651 3.0000 7 8 -0.8000 0.4317 0.4279 0.3849E-02 33928 3.3600 8 9 -0.6000 0.4025 0.4011 0.1436E-02 36380 3.6400 9 10 -0.4000 0.3829 0.3846 0.1665E-02 38065 3.8400 10 11 -0.2000 0.3716 0.3687 0.2903E-02 39970 3.9600 11 12 0.000 0.3679 0.3692 0.1344E-02 40059 4.0000 12 13 0.2000 0.3716 0.3744 0.2778E-02 39282 3.9600 13 14 0.4000 0.3829 0.3805 0.2360E-02 38493 3.8400 14 15 0.6000 0.4025 0.3995 0.3027E-02 36367 3.6400 15 16 0.8000 0.4317 0.4344 0.2647E-02 33293 3.3600 16 17 1.000 0.4724 0.4732 0.8195E-03 29995 3.0000 17 18 1.200 0.5273 0.5293 0.1998E-02 25376 2.5600 18 19 1.400 0.6005 0.5950 0.5531E-02 20821 2.0400 19 20 1.600 0.6977 0.6993 0.1609E-02 14131 1.4400 20 21 1.800 0.8270 0.8257 0.1299E-02 7578 0.7600 21 22 2.000 1.000 0.9946 0.5367E-02 248 0.0000 22 23 2.200 1.000 1.000 0.000 0 -0.8400 RMS absolute error in solution = 0.313384E-02 feynman_kac_1d(): Normal end of execution. 7 October 2025 1:04:55.547 PM