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A CURVILINEAR SEARCH USING TRIDIAGONAL SECANT
UPDATES FOR UNCONSTRAINED OPTIMIZATION

J. E. DENNIS, JR.t, N. ECHEBEST*, M. T. GUARDARUCCI$, J. M. MARTiNEZ,
H. D. SCOLNIK, AND C. VACCHINO*

Abstract. The idea of doing a curvilinear search along the Levenberg-Marquardt path s(tt)
-(H + ttI)-lg always hs been appealing, but the cost of solving a linear system for each trial value
of the parameter tt has discouraged its implementation. In this paper, an algorithm for searching
along a path which includes s(tt) is studied. The algorithm uses a special inexpensive QTcQT to
QT+QT Hessian update which trivializes the linear Mgebra required to compute s(tt). This update is
based on earlier work of Dennis and Marwil and Martlnez on least-change secant updates of matrix
factors. The new algorithm is shown to be local and q-superlinearly convergent to stationary points,
and to be globally q-superlinearly convergent for quasi-convex functions. Computational tests are
given that show the new algorithm to be robust and efficient.

Key words, unconstrained optimization, trust regions, curvilinear search, Levenberg-Mar-
quardt, factor updating, least change secant methods
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1. Introduction. In this paper, we consider iterative methods for solving the
smooth unconstrained minimization problem:

min f(x); f" - C ]Rn --+ JR; f e cl()x

for Ft open in IR. We denote g(x) Vf(x) for all x E f. We will use the t2 norm
whenever another norm is not indicated.

Our methods are based on the common notion of choosing a trial step from
the current iterate Xc to the next iterate x+ based on a local quadratic model of
f(xc + s) f(xc) of the form:

T 1
(1) qc(s) =-- g S -+- -STHcS, where gc Vf(x) and Hc HTc
Our methods belong to a class often called curvilinear search methods, and the curvi-
linear path we search along is the same one in IR from which the trust-region method
based on the same model would choose its step. The major difference from trust-region
methods is that, even if we eventually choose the same trial step, we do our search
based on the "Levenberg-Marquardt" parameter rather than on the length of the step.
Methods based on other curvilinear paths have been published, but since none are in
general use, we omit any comparative discussion. Most relevant is that Schramm and

Received by the editors January 11, 1990; accepted for publication (in revised form) January 4,
1991.

Mathematical Sciences Department, Rice University, Houston, Texas 77251-1892. This work
was begun under a Fulbright Fellowship to Argentina. This research was partially supported by Air
Force Office of Scientific Research grants AFOSR-89-0363, DOE/ER/25017-3, DAAL03-90-0093, and
National Science Foundation grant DMS-8903751.

Departamento de MatemAtica, Universidad de La Plata, La Plata, Buenos Aires, Argentina.
Universidade Estadual de Campinos, Campinos, Brasil. This work was done while the author

visited the Mathematical Sciences Department, Rice University, and was supported by a fellowship
from FAPESP, Brasil.

Departamento de ComputaciSn, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Argentina.

333

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

32
.2

06
.2

7.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



334 J.E. DENNIS, JR. ET AL.

Zowe [11] in their B-T algorithm for nonsmooth optimization search the analogous
curve.

The key to the practicality of the particular method we test is that we build the
local model (1) in a form that trivializes the linear algebra needed to compute any
trial step along the search path. For example, standard approaches would require a
Cholesky factorization at each trial step, but we need only solve a tridiagonal system
and do two matrix-vector products.

This paper is organized as follows: 2 contains a global convergence analysis in
which we assume that the sequence of model Hessians is bounded, but we do not
specify how the Hessians are to be chosen. We define the set from which a trial step
must be chosen that satisfies an Armijo criterion. We show that there are steps in the
set that satisfy the sufficient decrease criterion, but we do not specify how the step is
to be found.

In 3, we assume that 72f is Lipschitz continuous on f, and we present a new
least-change secant method for defining H+ from Hc and apply the results of 2 to
the resulting algorithm. This method is in the spirit of [2], [7], and [5] in that there is
never any need to form H+. Instead, Hc is held in the form QoTcQTo, Qo orthogonal,
T tridiagonal; and H+ QoT+Qff is defined by doing a sparse symmetric secant
update of T to get T+.

In 4, we validate the new update by giving a local convergence analysis of the
corresponding full step quasi-Newton method to stationary points of f. In 5, we
add a convexity assumption on f and prove that the particular method from 3
that always tries the Newton step first when Hc is positive definite is globally q-
superlinearly convergent. This order of convergence result is no better than we could
prove if we did not do the updates, but the updates cost a low multiple of n, and they
are certainly worthwhile computationally, as is shown in 7.3. Section 6 discusses an
implementation and 7 gives some numerical results for a particular method from 3.

2. The general algorithm: Global convergence. In this section we state a
general algorithm of the type studied here. We make the algorithm only as specific
as necessary to prove a global convergence result.

Given x E f, H a symmetric n n matrix, A1 A1 (H) the smallest eigenvalue
of H, V the corresponding eigenspace, we define a curve parameterized by mu:

Fl(x, H) {x- (H + #I)-g(x) 0 <_ # > --,’1 }.

If g(x) q Vx, or if )i ) 0, we define r(x,H) FI(X,H).
v E V1, v 0, and we define a curve parameterized by mu:

Otherwise, we choose

r(x, H) Fl(X, H) U F2(x, H),

where

r(x, H) {x- (H- ,lI)-fg(x) + #v ]_1, e

The following lemma, which follows from Gay [4] and Mor6 and Sorensen [8], gives
a geometrical meaning to F(x, H). It shows that if/k _< 0 and if g(x) e V1x, then
any v V gives the same result for the quadratic. In our implementation, we always
choose trial steps that stand in the same relation to the current iterate that z has
to x in the hypotheses of the lemma. However, we have no need to be so specific in
order to prove global convergence in the next section.
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 335

LEMMA 2.1. Let x E , z F(x, H). Then z is a minimizer of

q(w) l(w x)TH(w x) T g(x)T(w X) subject to lit x[I _< [Iz xll
and the direction from x to z is a descent direction for q. Furthermore, assume
z Fl(X,H); then z is the unique minimizer. If 0 < <_ IIz- xll, then there is a
unique w e F(x, H) such that ]lw xll . Also, w e F (x, H).

Proof. This is just a slight restatement of a standard result of Gay[4] and Sorensen.
For example, see Lemma 2.3 of Mor and Sorensen [8]. 0

The following algorithm describes the way of obtaining a new approximation x+
to the minimizer of f, starting from a current approximation xc such that gc 0
and using a current Hessian approximation H. A large positive number A is used
to bound the steplength, and Ac and A are constants needed in the convergence
proof. The algorithm parameters c e (0, 1/2),/ e (0, 1) are used to guarantee sufficient
decrease. We use 10-4 and macheps.

ALGORITHM 2.1.

Given H,
If l(Hc) _< 0; Then Ac Ac A;

Else SNc -H[g(x); A [X- min(A,
Set 2 xc;

While (2--x or f(2) > f(xc)+ g(x)T(2- x)) DO
Choose 2 F(x, Hc) such that/32A

ENDO;
Set x+ 2;

Remark. Obviously, the efficiency of Algorithm 2.1 depends on the way 2 is
selected. "Choose" is a very ambiguous word that we use deliberately to show that
many strategies are possible.

Let us now prove that, given xc, H, with g g(xc) O, Algorithm 2.1 is always
able to finish by finding a point 2 which satisfies the sufficient decrease condition

(2) f(2) <_ fc + Tc (2 Xc).

THEOREM 2.2. After a finite number of DO loop executions, Algorithm 2.1 ob-
tains a point 2 x+ that satisfies (2).

Proof. We only need to prove that, if 112- xll is small enough and 2 e F(xc, H),
then (2) is satisfied. Using Lemma 2.1, it is easy to see that

(3) lim 2-xc lim 2-x -g(Xc)

eF(xc,Hc) erl (xc,Hc)

since if ]12- xl] is small enough, then 2 e F(x, He). Therefore, using (3) and the
Mean Value Theorem, we have

f(2)- f(xc) + with e (0, 1).
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336 J.E. DENNIS, JR. ET AL.

Hence,

lim
f() f(x) g(x)T lira x -IIg(x)ll
II-xll II-xll

2eF(xc,Hc) 2eF1 (xc,H)

( x)-l(x)] + ]_ x]

for ny x, and the required result follows from this inequality.
We now give a result that we need to prove global convergence of Algorithm 2.1.
LEMMA 2.3. Assume that ]]Hk B for k O, 1, 2,... and limk Xk X, with

g(x,) O. Let {} be any sequence such that e F(x, H), lim k--x 0.
Then there exists a subsequence (2k Xk } such that, for this subsequence,

lim 2k xk --g(x,

Proof. Let {Hk}keK be a convergent subsequence of {nk }. Then for some H,

ii n- H, lInll .
kK

For k K let us write

(4) Hk QkDkQ

where D diag((H),.--,n(Hk)), l(Hk) n(Hk). By the continuity
property of eigenvalues (see Wilkinson [12, p. 63] or Ostrowski [9, p. 225]), we have:

lim Ai(Hk) Ai(H), 1,...,n,
kK

where Ai(H), 1,...,n are the eigenvalues of H in increasing order. Now, the
matrices (Qk}kg are contained in a compact set of x. Therefore, there exists
a convergent subsequence {Qk}keg:, K2 C K such that

lim Qk Q,
kK2

and Q is an orthogonal n n matrix. Hence, taking limits in (4) for k K2, we have"

H QDQT

where D diag(Al(H),... ,n(H)), Q (Vl,..., Vn). Now, g(x,) 0, so there exists
m {1,...,n} such that

() (.)% 0.

Therefore, there exists > - such that

+
min

1
Hence, taking limits for k K, we have, for large enough k K,

) >2
a() +. 4

D
ow

nl
oa

de
d 

01
/0

2/
13

 to
 1

32
.2

06
.2

7.
25

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 337

But,

and

Xk -(Hk + #I)-lg(xk) e Fl(xk,Hk),

II- (Hk + #I)-ig(xk)ll >_
Am(Hk)+#

Therefore, for large enough k e K2, by Lemma 2.1 and (7) there exists zk E F(xk, Hk)
such that

(8) IIk zkll -Hence, since lim--,oo 112k xkll 0, Lemma 2.1 and (8) imply that 2 E F(x, H)
for large enough k K2 (say, k K3).

We now want to prove that limk-oo #k OO. We proceed by contradiction.
Assume that #k _< #0 < oc for k K4 C K3. Then, 2k F(xk,Hk) for k E K4, so

kfor Qk (vk, v,),

(9)

I1 xll (H / mI)-g(x)ll Qk(Dk 21"- kI)-1Q g(x)II

!l(Dk + #kI)- Tg(x)ll

,’l(Hk) - Pk

--> l(gk) -/0

But the limit of the right-hand side of (9) when k oo is clearly a nonzero positive
number, therefore IIk Xkll 2 is bounded away from zero if k K4 is large enough,
contradicting the hypothesis. Hence, limkeg3/Zk OO. Therefore, we may write

k Xk --(Hk + II)-Ig(xk)
II- (U + kI)-lg(xk)[I

--(Uk/k "- I)-lg(xk)

and the thesis follows for the subsequence indexed by K3 using boundedness of {Hk }
and limeg3/z oo. El

Now we are able to prove the following global convergence theorem. Note that
we do not assume that V2f(xk) exists, much less that Hk approximates it well.

THEOREM 2.4. Assume that [[H[[ <_ B for k 0, 1, 2,..., xo f and xk+, k
0, 1, 2,... is obtained from Algorithm 2.1. Let x, be a limit point of {xk}. Then
(,) =o.

Proof. Assume that x, , x, limkegl Xk, and g(x,) O. We consider two
possibilities:

(a) Some subsequence of (llx+ xll}eK1 is bounded away from 0.
(b) limkegl [[Xk-I Xk 0.
Using Lemma 3.2 of Powell and Yuan [10], we see that

g(x)T(xa+ X) < IIg(x)IIUlIX+I XII <
211Hll IIx+l -xll / IIg(x)ll
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338 J.E. DENNIS, JR. ET AL.

Hence, if (a) holds, using (2) and the continuity of V: at x., we see that limk-o :(Xk)
--CX). This contradicts the assumption x. E f.

Therefore, it remains to analyze (b). Since, in Algorithm 2.1, Xk+l is set to
which is chosen such that 112- Xkll >_ /2Ak/2, it follows that limkegl Ak 0. We
consider two possibilities:

(i) For some K2 c K1, limkeg. /k 0.
(ii) For every K3 C K1, limkeg3 Ak : 0.
If (i) holds, then we can assume for k E K2 that A1 (Hk) > 0 since otherwise Ak

A. Thus /k is set in Algorithm 2.1 to be the minimum of A and
and it follows that limkeg2 ]l- H+kg(Xk)]l 0. But

Hence limkeK, g(xk) 0 and so, g(x,) 0, contradicting the initial assumption.
Now consider (ii). It means that the sequence {Ak}keK1 is bounded away from

zero. Therefore the first trial point of the algorithm failed to satisfy (2). This is
so because Ak /k, the first pass through the DO loop at each iteration, and our
working hypothesis at this point is limkeK Ak 0. Thus, for all iterations indexed
by K1, there is at least one failed trial point. Let us set the sequence of last failed
trials to {’,k}kK. We have that each 2k satisfies

It follows that

and

lim IIk Xkll 0
kK

Hence, using the Mean Value Theorem,

g(xk Xk))T Xk) > -- llg(Xk)ll

Now we are under the hypotheses of Lemma 2.3. So, taking limits on both sides
of (10) for a suitable subsequence, we obtain

g(x.)T (-g(x*) _> --a"g(x,)’]

But this inequality implies that a >_ 1, contradicting the initial hypothesis. Therefore
the theorem is proved. D

3. Updating Hk. In 2, we used a uniform bound on {llHkll} to obtain a global
convergence result for Algorithm 2.1. Algorithm 3.1 proposes a way of updating Hk
that under reasonable conditions preserves uniform boundedness of {[IHk[I} and, in
addition, incorporates second-order information using secant approximations.

ALGORITHM 3.1. Let 7-/ C IR’n be a family of symmetric matrices uniformly
bounded in norm by M. Let q be a positive integer, (0, ) be a small number,
and T c IR’n be the set of tridiagonal symmetric matrices. We now particularize
Algorithm 2.1 by specifying that if k / 1 0 (mod q), then we choose Hk+l
Otherwise, we assume that Hk QcTQ, Tk T, Qk orthogonal, and we obtain

Hk+l by the following steps:
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 339

Step 1. Let s sk Q(xk+ xk). If s does not satisfy

(11) V/ >ll,ll<v/4+8i t_ 8i_1

1,...,n- 1, replace s by any vector satisfying (11) with

Ilxk+l--xkll and xk+Qks e . We used s
in our implementation.

Step 2. Define y Yk Q[g(xk +Qks)--g(xk)]. (Observe that xk +Qks Xk+l
if s was not replaced at Step 1.)

Step 3. Obtain Tk+ as the solution of the problem

Ts--y
TET

TStep 4. Hk+l Qk+lTk+lQk+l with Qk+l Qk. (Of course, neither Hk nor

Hk+l need to be formed.)

The solution of (3) may be obtained using the least-change theory for updates by
an algorithm which will be described in 5. See, for example, Dennis and Schnabel [3,
Chap. 7]. The rest of this section is essentially to prove that the sequence of matrices
obtained using Algorithms 2.1 and 3.1 is bounded, and so, that the global convergence
Theorem 2.2 holds. Some auxiliary lemmas will be necessary.

2 2LEMMA 3.1. Let s be such that s + si+ > O; i- 1,-..,n- 1. Define E

IR’(2n-) as:

(12)
81

82 sa/
82/vr 83 84/x/

8n--1/x/ 8n

Then rank A n.

Proof. Form /T and note that it is symmetric and strictly diagonally dom-
inant. D

COROLLARY 3.1. Under condition (11), if s O, rank ft n.

Proof. The proof is trivial using Lemma 3.1. E]

Under condition (11) and s : 0, either Is1[ _> (O/x/)[Is[[ or [Sn[ >_ (O/x/)l[sll. Let
us suppose, without loss of generality, that ISnl >_ (O/x/)llsll (otherwise the following
lemma may be reformulated in an obvious way).

LEMMA 3.2. Let i be the angle between the row i + 1 of 4 and the subspace
ad th t o. An 0 ad (1). Thn sinZl -> (/),

i-- 1,...,n- 1.

Proof. Consider S, the subspace of IR(2n-1) formed by the vectors of the form"

(ZlZ2’’’Z2i0’’’0)T

Obviously, Si c S, i- 1,..., n- 1.
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340 J.E. DENNIS, JR. ET AL.

Then, sin flil> sin flil.Let/ be the angle between the row i + 1 of A and si.

Now if i _< n- 2, then

V/8 + 8-t_1/2

(8i_1/2) nc 8 q-

2 12 2,, + + 0

Si_ -t- 8 -t- Si+

If n- 1, then

ISnl _> OII*II/x/ Isin/’n-ll--
V/(82n_1/2)-it- 82n I1 11

so, sin Bil _>l sin ZI _> i- 1,..., n- 1. D
LEMMA 3.3. The product YI n--1Hi=I sin/il is invariant under permutations of

the rows of A.
Proof. Set (/) such that ft. is nonsingular. Suppose further that the rows

of H are orthogonal and span the orthogonal complement to the rows of .. Thus
(see [6])

(13) H=
det AI
W

where W is the product of the norms of the rows of A. But the right-hand side of
(13) is invariant under permutations of the rows of A (and hence, of A), so the same
happens with H. r?

LEMMA 3.4. Let 7i be the angle between the row i of ft and the subspace spanned
by the other rows of ft. Then lsin’Ti >_ I-[ >- on-12(1-n)/2"

Proof. Fix the row and permute the rows of . so that row becomes the last
one. So sinil sinfln_ll _> 1-I I-[ sinflil-> (0/%) n-1. [

LEMMA 3.5. Let s 0 and fit+ fiT (.T)-. Then fi+ IR(en-1)x. Let

/rl /(14) -+ (hi,..., hn), ft Then IIhll <_

rn

2(n-1)/2

Proof. Each column hi of .+ is a linear combination of rl,.’., rn. Moreover
hTiri 1 and hTirj 0 if j 7 i. Let S be the subspace spanned by {rl,..., rn} (and
hence, by {hi,..., hn}). Each ri may be expressed as

ri Vi -- Wiwhere vi is the projection of ri on the subspace spanned by {rj,j 7 i} and wi is the
projection of ri into the line spanned by hi. So

h/T hi hi(15) wi iihllr iihll- iihll 2
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 341

But

(16) sinTi= Ilwill Ilwill > (0)
n--1

Thus, by (15) and (16), 1/llhill Ilrill >_ (0/xfl) n-1 and hence,

But Ilrill >_ OIIsll, so

(0/) 1-n

2(n-1)/2
(17) Ilhl[ <

LEMMa 3.6. II s 0, then for any norm I" fized in IR(2n-1)xn, there exists a
constant K1 K1 (1" I, O, n) such that I +1 _< KI/IIII.

Pro@ The proof is a consequence of (17).
The results above are going to be used in a "vector formulation of the least-change

update." Let us write

(18) T

al
k blk

blk a2
k

an

(19) T

al bl
bl a2

The least-change update is the solution of

(0)

52

bn- an

F"
Ts--y
TT

By (18) and (19), (20) may be formulated as follows:

(21)

(22)

min (al--ak) -- 2(bl-blk)2 + (a2--a2k)2 +... H- 2(bn-l-bkn_l)2 + (an-akn)2

al 81 -t- bls2 yl

bs + a282 + b283 Y2s.t.

bn-18n-1 bnsn Yn

Let us now consider the isomorphism between T and ]R2n-1, which maps

al
al bl bl
bl a2 b2 a2

T= .. -t.

bn-1 an bn’-I
an
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342 J.E. DENNIS, JR. ET AL.

We write (T) t, (Tk) tk, and so on. Therefore, the problem (21) may be
written in IR2n-1 as"

min lit- tkll2 =_ (t- tk)TG(t- tk) with G

1

such that Akt- y,

81 82
81 82 83

(23) where Ak-- .. ".
and si=(sk)i.

8n--1 8n

By Lemma 3.1, the matrix Ak k(1/2 has full rank, so by straightforward calcula-
tions, the solution of (23) is

g---1/2-t- (Aktk y)(24) tk+l tk ’’k

where Ak is defined in (12) and

(25) .k+ "(AA k Ak )-

So

(26) tk+l tk G-1A(AkG-1A)-I(Aktk y)

Therefore

iit+lll a < i1(i a-1 T -1 )tklla m-1/2+Ak (AkG A)-IAk + Yllc;.

But (i- G-1A(AG-1A)-A)t is the solution of

min lit tklla s.t. Akt O,

so II(I -1 TG Ak (AkG-1A)-lAk)tklla <_ ]ltkllc;. Therefore

(27) Iltk+lllG _< IltkllG + Ila-1/22+-k lla.
NOW,

[[G-1/2 ~+ 1/2Ak Y[[a _< JIG-

II+kYllG Ilylhl nt-’’’ + ynhnllG <_ lYll IlhlllG +""-I-lYnl

But Ilhllla +"" / IIhlla defines a norm in IR(2,-l)x’, so by Lemma 3.6,

glllyll
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 343

and so

(28) I[G-I/2TkY[[G < K2

Now we are able to prove the main result of this section.
Let

THEOREM 3.7.

Lo {x f(x) <_ f(x0)}.

Assume that Lo is bounded and contained in , f E C2(Q), t
convex, and that for some L >_ O,

(29) [[V2f(x)- V2f(w)[[
_
L[[x- w[[

for all x, w .
Assume that the sequences {Xk} and {Hk} are generated using Algorithms 2.1 and

3.1. Then the sequence {Hk} is bounded by some constant B.
Proof. Since {xk} is generated by Algorithms 2.1 and 3.1,

and Lemma 2.1 implies that [Is[[ 0 only if {xk} converges to a stationary point in
finitely many steps. Using (29), we have

L
I1 - v f(x ) ll <  ll ll

Since [[V2f(x)[[ is bounded uniformly on L0 by continuity, and since {xk} contained
in no implies that []s[[ is uniformly bounded,

L

for a suitably defined constant K3. If k + 1 0 (mod q), then by (27) and (28),

(30)

Hence, by (30),

I[TiF + K2K3 [[T[[ + K2K3 lIH[I + K2K3
()qM + qK2K3.

COROLLARY 3.2. Under the hypothesis of Theorem 3.7, the sequence {xk} is well
defined by Algorithms 2.1 and 3.1, and there is at least one limit point of the sequence.
Every limit point is a stationary point for f.

Proof. The proof follows directly from Theorem 2.4, Theorem 3.7, and the com-
pactness of L0.

4. Local superlinear convergence. In 3, we proved that Algorithm 2.1, with
the approximate Hessian matrices {Hk} chosen by Algorithm 3.1, is globally conver-
gent in the sense that every limit point of the sequence {Xk } must satisfy the first-order
stationary condition. In this section, we will do two things at once by doing a local
analysis of the direct-prediction method associated with the tridiagonal factor update

N Unhappily, the good localmethod. This means that we will take Xk+l Xk + Sk
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344 J.E. DENNIS, JR. ET AL.

behavior of this iteration imposes that Hk =-- V2f(xk) if k 0 (mod q). First, we
will prove some strong bounded deterioration results for (Hk which will be crucial to
our global convergence result in 5. Then, almost as a sidelight to the main theme of
this paper, we will prove that the direct-prediction method is locally q-superlinearly
convergent to stationary points at which the Hessian is nonsingular. It will turn out
that this result is also useful in the global analysis of 5.

Let us define the algorithm under consideration in this section as an independent
algorithm.

ALGORITHM 4.1. Assume that x0 E IRn, H0 V2f(x0). Given xk IRn,
Hk ]ann, Hk QkTkQ, Qk orthogonal, Tk T, obtain xk+l, Hk+ as follows:

Step 1. xk+ xk H+k Vf(x).
Step 2. If k + 1 0 (mod q), set Hk+l V2f(xk+l). Else, obtain Hk+ using

Algorithm 3.1.

Let us state the assumptions on f which allow us to obtain a local superlinear
convergence result.

ASSUMPTION 4.1. Let f C2(t), t an open and convex set. We assume that
x, Ft is such that Vf(x,) is symmetric and nonsingular. Further, we assume that
(29) holds for all x, w E t.

Let PT denote the Frobenius norm projection operator onto the subspace of sym-
metric tridiagonal matrices T.

LEMMA 4.1. Assume that k =_ 0 (mod q) and that xk is well defined. Then,

IIPT(QkTV2f(x,)Qk) QkTV2f(x,)QkllF <_ 2x/- LIIxk x,

Proof.

IIPr(QrV:f(x,)Q) QVVf(x,)Q
< IIp(QVVf(x,)Q)
+ IIQVf()Q QVf(x,)Q].

But QkTV2f(xk)Qk T. Therefore,

Ip(QTV2f(x,)Q) QkTv2f(x)QlF
v(rvf(x,)q) pv(qrv(x)q)
[QkTV2f(x,)Q QTv2f(xk)Qk[F.

Hence, by (29),

pr(QVVf(x,)Q) Qrv:(x,)Q, eilQ(Vf(x) vf(x,))Qi
e]Qr(v(x) v:f(x,))Q]
e I[v(x) v:/(x.)l

nlx x..
om now on, let us use the notation e xt- x, ]], g 0, 1, 2,....
LEMMA 4.2. Assume that k 0 (mod q), 0 j q- 1, and that xk+j, Xk+y+l,

Xk+y + Sk+j are well defined and belong to . Then,

+ -[Pr(QV:f(x,)Q)]+ nl+l(+ +++ + )
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 345

Proof.

(31) IlYk+j [Pr(QkTv2f(x,)Qk)]sk+jll <--IlYk+Y- QkTv2f(x.)Qksk+ill
+ IIPT(QkTv2f(x,)Qk)- QkTV2f(x.)Qkll

But, by (29), and the definition of Yk+j,

(32) IIg(x+ + Qs+) g(x+) V:f(x,)Qs+]]
L

-2

Therefore, by (31), (32), and Lemma 4.1,

]]y+ -[P(QkTVef(x,)Q)]s+]
L

-2

Now, even if sk+y xk+j+ xk+, they are equal in norm, so

]x+ Q+ x,] + + ]+ + + x++
2ek+ + ek++

Therefore,

IlY+ -[P(QTVef(x.)Q)]s+ylI
L< --118k+jll(2ek+j -)F (k+j+l) -- 2V/- nllsk+jlle

--2

v ),

as we wanted to prove.
The following lemma states a Bounded Deterioration Principle (see [1) for the

matrices T.
LEMMA 4.3. Assume that k 0 (mod q), 0 j q-2, ad that ak+j, ak+j+l,

X+ + Qsa+j are well defined and belong to . Then,

IITk+j+l PT(QkTV2f(x.)Qk)IIF

Proof. For matrices T e T, remember that IITIIF II(I)(T)IIc, where (I) is the
isomorphism which maps T into ]a2n-1. The matrices

Tk+j+l PT(QkTv2f(x,)Qk)

and

T+j PT(QTVf(x,)Q)

belong to T. So, using the convention t (I)(T), we are going to prove the thesis in
2n--1 using I1" IIC-
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346 J.E. DENNIS, JR. ET AL.

By (26) we have, writing y Yk+j,

t, (PT(QkTV2f(x,)Qk)),
tk+j+l tk+j G-1A+j(Ak+j -1 TG Ak+j)- (Ak+tk+--y).

Ttk+j+l t, tk+j t G- Ak+j(Ak+jG-1 T -1Ak+y) (Ak+ytk+j y)
Ttk+j $, G- Ak+j(Ak+jG-1Ak+j -1

(A+itc+j Ak+t, + Ak+jt, y)
--1 T (Ak+j -1 T[I- G Ak+ G Ak+)-lAk+y](tk+j t,)

T -1+ G-Ak+T (A+iG- Ak+) (y Ak+t,).
Hence,

]ta++l Ak+
T+ IIG- Aa+i(Ak+jG-1 T -1Ak+j) (Y-- Ak+yt,)iv

A+ A+) (y-

Therefore, using the arguments which lead to (28), we have:

l]- A+,

But A+jt, P(QTV2f(x,)Qk)sk+j. Thus, the desired result follows using
Lemma 4.2.

LEMMA 4.4. Assume that k 0 (mod q), 0 j q-2, and that xk+j, Xk+j+,

Xk+j + QkSk+j are well defined and belong to . Then,

iiT++ QvV:f(x,)Qi.

Proof. By Lemmas 4.1 and 4.3, we have:_
]lTk+j+i PT(QkTV2f(x,)Qk)I]F

+ IIPT(QTVeI(x,)Q)
<_ IITa+y PT(QaTveI(x,)Qk)I]F

2x/-d 2Lek+ K2L(ek+j + -ek+j+l + ek)

and the desired result follows trivially from this inequality.
LEMMA 4.5. Assume the hypotheses of the previous lemmas. Then,

(33) IITk QkTV2f(x,)QklIF <_ /Lek
and for 0 <_ j <_ q- 2

[[Tk+j+l QTvef(x,)QIIF

)<_ x/ Lek + L K2ek+v + -ek+v+l + 2v (K2 + l)ek
’-0
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CURVILINEAR SEARCH USING TRIDIAGONAL SECANT UPDATES 347

Proof.

Thus the desired result follows straightforwardly from the previous inequality and
Lemma 4.4. B

LEMMA 4.6. Assume the hypotheses of the previous lemmas, and remember that

He QeTeQ for- 1, 2,....

Then, for some l >- 0

Ilnk-Fy/ V2f(x,)II r E ek+v
\-0

Proof. By Lemma 4.5,

IIHk-Fy-F V2f(x,)ll IIQk(Tk++X QkTv2f(x,)Qk)QkTII
<_ IITk+j+l QkTvef(x,)Qkll
_< IIT++I QTVef(x,)Q]]F

_< Lek + L Kek+, + -ek+,+l + 2/ (K + 1)ek
’--0

and the result follows directly. E]

THEOREM 4.7. There exists > 0 such that for any xo with Ilxo x, <- , the
sequence {xe} generated by Algorithm 4.1 converges q-superlinearly to x,. Further-
more, if eql[V2fjl[ <_ - < 1, then the sequence {IIH-IlI} is uniformly bounded by
the constant

IIV2f(x,)-X

independent of the particular choice of xo.
Proof. Algorithm 4.1 is locally linearly convergent and {IIH-II} is uniformly

bounded if the matrices Hk remain in a suitable neighborhood of V2f(x,). (See [3,
Chap. 7].) This condition is easily verified using Lemma 4.6 if x0 is close enough to
x,. The reason this condition and the bound on the inverses can be independent of
the particular x0 is that Algorithm 4.1 always takes H0 V2f(x0). In particular,

IIH- x7f(x,)ll _< eq

and so the bound BN follows from the Banach lemma (see [3]). Now, using linear
convergence and Lemma 4.6, we see that limk- Hk V2f(x,). This implies that
convergence is q-superlinear (see [1]). V1
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348 J.E. DENNIS, JR. ET AL.

5. Global superlinear convergence. In 3, we proved that Algorithm 2.1,
with the approximate Hessian matrices (Hk} chosen by Algorithm 3.1, is globally
convergent in the sense that every limit point of the sequence (xk} is a first-order
stationary point. In 4, we proved that if we require the Hessian update method to
always choose Hk V2f(xk) every q iterations, then the direct-prediction method is
locally q-superlinearly convergent to stationary points at which the Hessian is nonsin-
gular. In this section, we put all this together. We update the Hessian approximations
as in 4, and we modify Algorithm 2.1 to always try the full quasi-Newton step first
when Hk is positive definite. We then prove that if f is quasi-convex on L0 and
V2f(x,) V2f(x,) is positive definite for some stationary point x,, then from some
point on, the Newton steps satisfy the sufficient decrease condition (2).

ALGORITHM 5.1 Assume that x0 IRn, H0 V2f(x0). Given xk IRn, Hk
]an)<n, Hk QkTkQ, Qk orthogonal, Tk T, obtain {xk+}, {Hk+l} as follows-

Step 1. If Hk is positive definite, then in Algorithm 2.1, first try Xk+l Xk-
H[Vf(xk).

Step 2. If k / 1 0 (mod q), set Hk+l V2f(xk+). Else, obtain Hk+ using
Algorithm 3.1. Return to Step 1.

Now we give our main result. We assume that f is quasi-convex, i.e., that all level
sets of f are convex.

THEOREM 5.1. Let f E C2(), an open and convex set containing Lo, be a
quasi-convex function on Lo. Assume that Lo is bounded, and that some stationary
point x, is such that V2f(x,) is positive definite. Further, assume that the
Lipschitz condition on the Hessian given by (29) holds for all x, w . Then, there
exists some integer kN such that Algorithm 5.1 takes #k 0 for k >_ kN, and {xk}
converges q-superlinearly to x,, which is the global minimizer of f.

Proof. Since f is quasi-convex and has a stationary point x, at which V2f(x,) is
positive definite, x, must be the unique stationary point for f on Lo, and the global
minimizer of f.

Since Lo is bounded and V2f is continuous, we can take

7-l-- (V2f(x) x e Lo).

Thus from Corollary 3.2, we have that {xk } is well defined and that some subsequence
converges to a stationary point, which must then be x,. Furthermore, there is some
B >_ IIHkll uniformly in k. Since x, is the only possible limit point of {Xk}, the
compactness of L0 ensures that limk Xk x,. In particular, the subsequence of the
iterates indexed by k-0 (mod q) converges to x,.

The key to the proof will be to show below that eventually, starting at one of
the k 0(mod q) iterates, Algorithm 5.1 reduces to Algorithm 4.1, i.e., the step
N H[ gk eventually satisfies (2).8k

Let e be small enough that Algorithm 4.1 is locally q-linearly convergent to x,
from any x0

N with IIx- x, < . Now, let BN be as in Theorem 4.7. Choose e
even smaller, if necessary, to make 1 2 > (q + L)BNe. The standard approach to
proving Theorem 4.7 makes e be chosen so that if V2f(x,) is positive definite, then
so are allHv for IlXoN-x,II < . Choose kN-- 0 (modq) so that ifk >_ kN, then

There are still a couple of small points to deal with before we start to chain
Ninequalities. First, since Hk is positive definite, we have g[sk < 0, and

Hk -1 /2gk)TH gk--(gk gk
T HI /2gk <_ II(Hk) II(H-1 1/2
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N N NFurthermore, xk xk + sk are both within e of x,. Thus, any convex combination is
N Nalso, and so for any e (0, 1), Ilxk + sk x,

Now the proof that g{xk } {Xk} for k > kN is by Taylor’s theorem and all
these partial results. It can be done by induction, but we give only the main step
here. Assume that the sequences are identical from the kNth to the gth iterate. Then
Ht H_kN, and -T N

_
_I (sT)T[v2f(x

< + [n + q,] ll 7
1/2TNg S 1/2 [L + qrl]eBygs7

1 T N__ I(1__20 T N T_< g s g s g s
since H is positive definite and so gs < O.

6. Implementation.
6.1. Implementation of steps 4 and 5 of Algorithm 2.1. Considering

sk(#)----(Hk + #I)-lg(xk) with

# _> # max(0,-A +
where Al is the least eigenvalue of Hk and 10-5 in the computer implementation,
we choose

Xk-I Xk 2V 8k(,),
where #, is an approximate solution to the problem

(I) argmin f(xk + Sk(#)), #

_
#.

In order to solve this problem it is necessary to follow the curvilinear path Sk(#),
# _> #, and therefore to find the solution of the linear system of equations

(Hk + #I)sk(#) --g(Xk)

for several trial values of #. These computations are carried out in O(n) operations
because the decomposition Hk QkTkQkT is available. This is because we can write
the equivalent system

(T + pI),k(p) --t(Xk),
where k (#) QkTsk (#), (Xk) QkTg(xk).

The least eigenvalue of Tk is obtained by means of the IMSL routine EQRT1S,
and the solution of the tridiagonal systems by the LINPACK routine SGTSL.

For solving (I) we modified the routine GSRCH originally written by Powell for
MINPACK [10].

The new iterate xk+ is accepted (step 5 of Algorithm 2.1) only if the condition

f(xk+l)

_
f(xk) / ag(xk)T(xk+ Xk)

is satisfied with a 10-a. However, we may continue searching even if the Newton
step satisfies this criterion.

We decide that I2(xk, Hk) is not empty if the angle between gk and vk) is between
85 degrees and 95 degrees.
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350 J.E. DENNIS, JR. ET AL.

6.2. Choosing the sequence Bk. For those iterations in which Hk V2f(xk),
the decomposition is computed with the IMSL routines EHOUSS and EHOBS, except
when the Hessian itself is tridiagonal.

The stopping condition is (7.2.5) of Dennis and Schnabel [3, p. 160]

max {,Vf(xk),max(.x,,, 1)) < eps

(eps 10-15 in the computer implementation).

6.3. Efficiency. The computer program allows the user to compute the full de-
composition every q iterations (we use q 3) or to decide when to do so in between
automatically, depending upon the following notion of efficiency of an iteration. We
define efficiency of the kth iteration as

log rkEk

where

f. is an estimation of f(x.), fk+l f(xk+l), and tk is the CPU time required by the
kth iteration.

Assuming rk remains constant until convergence (denoted by r hereafter), the
required number of iterations NITER is approximately given by

rNITER eps.

Therefore, the total CPU time T will be

log epsT
log epstk
log r Ek

In order to decide what Hk+l will be (that is, gk/ V2f(Xk+l) or gk+
QkTk+IQkT), we use Ek as follows. Let k0 be the last iteration such that Bo

V2f(Xko). If k0 k (mod q) or if Eko > Ek, then Hk+l V2f(Xk+l). Otherwise
H+ QT+IQ.

7. Numerical experience. The class of algorithms described in the previous
sections form the theoretical basis of subroutine TRIDI.

The decision about when [’2 is not empty is taken according to a user-supplied
parameter defining a maximum deviation in degrees with respect to orthogonality.
This parameter was defined as five degrees for the numerical experiments.

7.1. Test problems. In order to demonstrate the effectiveness of the new

method, numerical results were obtained not only for well-known test examples ap-
pearing in the literature but also for some new functions. For brevity, the full details
of the test problems are not given here except for the following new ones:

TEST FUNCTION PRUEBA.

f(x) a(1)/x(1) + a(2)/x(2) + a(3)/x(3) + 0.5(x, Cx) + (b,x}

where b(i)=l, x 10-6,a(i)-(i+4),1. x 103 for i-1,...,3,aisasdefinedin
Table 1, and
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1/3 1/10 1/10
C= 1/10 1/4 1/10

/0 /0 /
The underlying idea is that if a starting point is close to the origin, the "wavy

behavior" of the function leads to a very small trust region, a phenomenon which
leads to a rather inefficient performance of the classical method. This shortcoming
does not exist for the new algorithm because of the curvilinear search, which can be
considered as a way of computing an optimal radius in each iteration.

TEST FUNCTION SNLLSQ I. Generate data (j, y(j)) for j 1,.-., 15 from

y(j) a(1) j**xopt(1) + a(2) j**xopt(2) + a(3) j**xopt(3)

with a(1)= 3, a(2)- 3.1, a(3)= 0.7, xopt(].)- 1.5, xopt(2)= 2.5, xopt(3)--2.5.
Now with the given a, recover x by a least-squares fit to this data.
TEST FUNCTION SNLLSQ II. Generate data (j, y(j)) for j 1,..-, 15 from

y(j) a(1) sin(j xopt(1)) + a(2) sin(j xopt(2)) + a(3) sin(j xopt(3))

with a(i), xopt(i), i= 1,..., 3 as in SNLLSQ I. Again, recover x by least squares.
TEST FUNCTION SNLLSQ III. Generate data (j, y(j)) for j 1,..-, 30 from

y(j) a(1) cos(j xopt(1)) + a(2) cos(j xopt(2)) + a(3) cos(j xopt(3))

with a(1)= 10, a(2)= 20, a(3)- 30, xopt(1)- 0.1, xopt(2)= 0.2, xopt(3)- o.3.
Recover x by least squares.
TEST FUNCTION SNLLSQ IV. Generate data (j, y(j)) for j 1,-.-, 45 from

y(j) a(1) exp(j xopt(1)) + a(2) exp(j xopt(2)) + a(3) exp(j xopt(3))

with a(1)= 1, a(2)= 2, a(3)= 3, xopt(1)=-0.1, xopt(2)=-0.2, xopt(3)=-0.3.
Now recover x by least squares.
From here on we use the notation tfn.n.cn.sp, where tfn is the test function

number, n the number of variables, cn the case number, and sp the identification of
the starting point.

Table 1 defines the problems.

TABLE

tfn Name n cn sp

1 Prueba
1

3 1: a(i)= 1.d- 1
3 2: a(1) 1.d3

a(2) a(3) 1.d0
3 3: a(1) a(2) a(3) 1.dl

1: (1.d- 3, 1.d- 3, 1.d- 3)
2: (0.25, 0.25, 0.25)

2 Penalty 4 1
8 1

1: x(j) j

Variable
Dimensioned
[]

4 1

5
8
12

1: x(j) 1 j/n
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tfn Name

TABLE 1
continued)

Rosenbrock
[]

ca

4
8
10
12

sp

Chained
Rosenbrock
[]

25

Powell
Extended
[]

1: x(2j- 1) -1.2, x(2j) 1

1: (j)=-1

8
240
400

Brown-Dennis

Gaussian
[]

1: x(4j 3) 3, x(4j 2) -1

(4j )= 0, (4j) 1

4 1 (25, 5,-5, )

Trigonometric 25
[] 0

100
2O0

3 1 1: (0.4, 1, O)

1: x(j)- 1

16 Pseudo Penalty 50 1 1: x(j) --0
[]

17 SNLLSQ 3 1 1: x(j) 3.50 xopt(j)

18 SNLLSQ II 3 1 1: x(j) 1.15 xopt(j)

19 SNLLSQ III 3 1 1: x(j) 1.50 xopt(j)

20 SNLLSQ IV 3 1 1: x(j) 3.00 xopt(j)

15 Dennis-Marwil II 5 1 1: x(j) -1
[e]

14 Dennis-Marwil 10 1: rl 1; r2 n 1: x(j) -1
[2] kl=k3=l; k2=5

2: rl---- 1;r2-----n
kl--4; k2--k3--1

100 2

13 Biggs Exp 6 6 1 1: (1.2, 1, 1, 1, 1, 1)
[]

12 Box 3 1 1: (0, 10, 20)
[]

11 Wood 4 1 1: (-3,-1,-3,-1)
[]

10 Watson 12 1 1: x(j) 0
[]
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TABLE 2

Problem NIT FE GE HE T FMIN

1.3.1.1 18 33 19 18 1.00 -.13e + 09
11 12 12 5 0.29 -.13e + 09
13 14 14 4 0.33 -.13e - 09

1.3.1.2 12 14 13 12 1.00 -.13e 09
5 6 6 2 0.24 -.13e + 09
5 6 6 2 0.22 -.13e + 09

1.3.2.1 error 6
23 24 24 9 0.09 -.13e -{- 09
22 23 23 8 0.06 -.13e + 09

1.3.2.2 13 26 14 13 1.00 -.13e + 09
8 9 9 3 0.26 13e 09
8 9 9 2 0.24 -.13e -t- 09

1.3.3.1 23 33 24 23 1.00 -.13e + 09
17 18 18 8 0.45 -.13e -+- 09
18 19 19 5 0.45 -.13e 09

1.3.3.2 12 20 13 12 1.00 -.13e + 09
5 6 6 2 0.20 -.13e -+- 09
5 6 6 2 0.19 -.13e -l- 09

2.4.1.1 34 48 35 34 1.00 0.23e 04
11 12 12 5 0.50 0.24e 04
12 13 13 4 0.33 0.24e 04

2.8.1.1 34 43 35 34 1.00 0.54e 04
15 16 16 5 0.88 0.57e 04
17 21 21 6 1.09 0.57e 04

3.4.1.1 10 11 11 10 1.00 0.24e- 27
12 13 13 5 1.10 0.21e- 30
12 13 13 4 1.88 0.78e- 12

3.5.1.1 11 12 12 11 1.00 0.13e- 28
14 15 15 6 3.79 0.27e- 19
14 34 34 4 3.74 0.61e- 17

7.2. Numerical results. Table 2 gives the obtained numerical results using the
notation:
NIT number of iterations
FE number of function evaluations
GE number of gradient evaluations
HE number of Hessian evaluations
T relative CPU time with respect to the IMSL routines
FMIN Computed minimum

For each problem three sets of results are given; the first row corresponds to the
routine DUMIAH (trust region algorithm), the second and third to the new method
with efficiency and without efficiency, respectively. For the last four test problems the
first row corresponds to the results obtained with the routine DUMIDH. Error 6 in
DUMIAH means that five consecutive steps have been taken with the maximum step
length.

The computational tests were carried out in double precision on a Hewlett-
Packard 9000 825S computer using software written in Fortran 77 under the HP-UX
operating system and on an IBM 4361. The reason for using two different computers
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TABLE 2
(continued)

Problem NIT FE GE HE T FMIN

3.8.1.1 13 14 14 13 1.00 0.53e- 26
17 18 18 5 4.75 0.22e- 24
16 18 18 6 4.75 0.19e- 16

3.10.1.1 14 15 15 14 1.00 0.18e- 25
18 21 21 5 7.07 0.15e- 14
18 19 19 6 6.13 0.46e- 19

4.4.1.1 23 34 24 23 1.00 0.55e- 20
31 50 49 14 1.16 0.39e- 31
39 72 71 10 1.45 0.77e- 21

4.8.1.1 23 34 24 23 1.00 0.11e- 19
35 63 61 16 1.85 0.29e- 27
42 91 88 11 2.21 0.34e- 23

4.10.1.1 23 34 24 23 1.00 0.14e- 19
36 75 73 12 1.68 0.28e 11
36 75 73 12 1.46 0.23e 11

4.12.1.1 23 34 24 23 1.00 0.16e- 19
38 87 84 13 1.80 0.18e- 15
38 87 84 13 1.78 0.18e- 15

5.25.1.1 15 19 16 15 1.00 0.14e- 13
19 51 49 7 0.62 0.13e- 15
19 51 49 7 0.56 0.13e- 15

6.4.1.1 15 17 16 15 1.00 0.46e 08
19 20 20 7 1.10 0.46e 08
19 20 20 7 1.00 0.47e 08

6.8.1.1 15 17 16 15 1.00 0.92e 08
22 27 27 8 1.58 0.63e 08
22 27 27 8 1.68 0.63e 08

6.240.1.1 15 17 16 15 1.00 0.27e 06
23 38 39 6 0.39 0.93e 06
20 39 40 7 0.47 0.19e 05

6.400.1.1 15 17 16 15 1.00 0.45e 06
23 36 37 6 0.33 0.16e 05

was mainly that the efficiency idea is quite sensitive to the precision with which the
CPU time is measured. Due to the fact that timing routines like the one provided
in the IMSL Library or others available for UNIX systems do not fulfill the accuracy
requirements in the sense that different runs of the same problem may give unaccept-
able differences for our purposes, some of the small-size problems were run on an IBM
computer for which the staff of the University of LaPlata Computer Center wrote a
very precise assembler routine for measuring CPU time. For several reasons, it was
not feasible to run all examples on that computer, so most of the results are from
the HP machine. In order to normalize comparisons, all results are given relative to
the CPU time required by the IMSL optimization routines except in the examples
in which they failed to converge properly. All comparisons of the new method have
been made against the trust regions algorithm as implemented in subroutine DU-
MIAH of the IMSL Library (version 1.0, April 1987), with the only exception being
the separable nonlinear least squares problems for which subroutine DUMIDH was
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TABLE 2
(continued)

Problem NIT FE GE HE T FMIN

7.4.1.1 8 10 9 8 1.00 0.86e + 05
9 16 16 5 1.26 0.86e + 05
13 19 19 4 1.39 0.86e + 05

8.3.1.1 1 4 2 1 1.00 O.lle 07
2 3 3 1 0.41 0.11e 07
2 3 3 1 0.47 0.11e 07

9.25.1.1 6 20 7 6 1.00 --0.75e 04
9 22 22 3 0.94 --0.75e -{- 04
9 22 22 3 0.94 --0.75e + 04

9.50.1.1 8 26 9 8 1.00 -0.31e + (5
13 16 15 6 0.90 -0.31e + 05
17 28 27 5 0.91 -0.31e T 05

9.100.1.1 17 39 18 17 1.00 -0.12e -}- 06
20 45 45 7 0.68 --0.12e T 06
20 45 45 7 0.58 --0.12e -t- 06

9.200.1.1 23 43 64 35 1.00 -0.50e T 06
22 43 43 8 0.70 -0.50e T 06
22 43 43 8 0.72 --0.50e - 06

10.12.1.1 12 26 13 12 1.00 0.22e 07
22 52 48 8 0.97 0.23e 07
22 52 48 8 0.85 0.22e 07

11.4.1.1 12 26 13 12 1.00 0.47e 09
12 59 56 7 0.76 0.49e 07
12 61 57 8 1.03 0.15e 07

12.3.1.1 7 14 8 7 1.00 0.54e- 16
10 14 14 4 1.00 0.14e- 11
10 14 14 4 0.94 0.14e- 11

13.6.1.1 29 60 30 29 1.00 0.11e- 11
33 52 46 13 0.77 0.13e- 12
53 85 77 14 1.19 0.36e- 12

14.10.1.1 12 23 13 12 1.00 0.29e- 15
1 7 6 1 0.76 0.23e- 21
1 7 6 1 0.76 0.23e 21

14.100.2.1 17 37 18 17 1.00 0.81e- 15
1 6 6 1 0.16 0.71e- 25
1 6 6 1 0.16 0.71e- 25

15.10.2.1 12 23 13 12 0.52 0.17e- 15
1 10 10 1 0.19 0.38e- 22
1 10 10 1 0.15 0.38e- 22

15.5.1.1 4 6 5 4 1.00 0.24e- 13
5 6 6 2 1.00 0.67e- 12
5 6 6 2 1.01 0.67e- 12

16.50.1.1 100 111 101 100 1.00 0.23e 03
27 73 70 8 0.20 0.23e 03
35 87 86 9 0.20 0.23e 03
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TABLE 2
(continued)

Problem

17.3.1.1

18.3.1.1

19.3.1.1

20.3.1.1

NIT FE GE HE T

7 78 29 0 1.73
64 182 237 0 5.91
56 140 194 0 4.45

divergence

FMIN

0.70e + 02
0.33e- 18
0.35e- 12

13 35 46 0 0.72 0.15e- 21
16 36 54 0 0.87 0.92e 25

26 84 105 0 2.97 0.42e- 18
31 37 64 0 1.61 0.33e- 18
31 39 72 0 1.54 0.42e- 22

4 19 17 0 0.92 0.17e 01
31 59 90 0 3.08 0.33e 09
29 59 88 0 2.93 0.93e 07

used because a finite-difference Hessian was required.
In the following nonlinear least squares problems the absolute CPU time is given

because of the poor performance of the trust-region algorithm, which led to divergence
in one example, a large number of function evaluations in another, and to a very high
functional value in the third.

The test examples show the new algorithm to be more robust (in fact, no example
of divergence has been found) than the trust-region method, and that its efficiency
tends to increase with the number of variables. This is so because of the savings in
Hessian evaluations, and in spite of the CPU time spent on the computation of the
least eigenvalue of the tridiagonal factor, which is relatively more important in small
size problems.

7.3. Comparisons with not updating. In Table 3 are some examples to show
that our update is better than if we kept the Hessian constant for q iterations. In
particular, we compare not updating (we will call this method HC) against the method
obtained updating the Hessian but without the test of 6.3 (WE without efficiency).

The results of these tests convince us that our updating scheme is worthwhile.
This is true despite the fact that no stronger convergence result holds for our updating
scheme than for not updating.

Acknowledgments. The authors wish to thank Ms. Laura Carcione for pro-
gramming help and for generating the test results.D
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TABLE 3

Problem NIT FE GE HE T FMIN q Method
1.3.2.1 22 23 23 8 1.00 -0.13e + 9 4 WE

40 41 41 14 1.39 -0.13e + 9 4 HC
21 22 22 4 1.00 -0.13e + 9 6 WE
63 64 64 11 1.73 -0.13e + 9 6 HC
31 32 32 4 1.00 -0.13e + 9 10 WE
91 92 92 10 1.62 -0.13e + 9 10 HC

2.8.1.1 17 21 21 6 1.00 +0.57e 4 4 WE
21 22 21 7 1.20 +0.57e 4 4 HC
15 33 32 3 1.00 +0.57e 4 6 WE
31 35 34 6 1.40 +0.57e 4 6 HC
16 33 32 2 1.00 +0.57e 4 10 WE
41 43 42 5 1.51 +0.57e 4 10 HC

10.12.1.1 22 52 48 8 1.00 +0.22e- 7 4 WE
51 61 58 17 2.31 +0.43e- 7 4 HC
37 98 92 7 1.00 +0.24e- 7 6 WE
72 177 159 12 1.66 +0.42e 7 6 HC
51 108 102 6 1.00 +0.43e- 7 10 WE
96 260 232 10 1.69 +0.43e- 7 10 HC

16.50.1.1 35 87 86 9 1.00 +0.23e + 3 4 WE
30 127 124 8 0.88 +0.23e + 3 4 HC
31 66 63 6 1.00 +0.23e + 3 6 WE
51 184 183 9 1.47 +0.23e + 3 6 HC
25 52 49 3 1.00 +0.23e + 3 10 HC
49 162 161 5 1.47 +0.23e + 3 10 HC
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