function alngam ( xvalue, ifault ) c*********************************************************************72 c cc alngam() computes the logarithm of the gamma function. c c Modified: c c 30 March 1999 c c Author: c c Original Fortran77 version by Allan Macleod. c This version by John Burkardt. c c Reference: c c Allan Macleod, c Algorithm AS 245, c A Robust and Reliable Algorithm for the Logarithm of the Gamma Function, c Applied Statistics, c Volume 38, Number 2, 1989, pages 397-402. c c Parameters: c c Input, double precision XVALUE, the argument of the Gamma function. c c Output, integer IFAULT, error flag. c 0, no error occurred. c 1, XVALUE is less than or equal to 0. c 2, XVALUE is too big. c c Output, double precision ALNGAM, the logarithm of the gamma function of X. c implicit none double precision alngam double precision alr2pi parameter ( alr2pi = 0.918938533204673D+00 ) integer ifault double precision r1(9) double precision r2(9) double precision r3(9) double precision r4(5) double precision x double precision x1 double precision x2 double precision xlge parameter ( xlge = 5.10D+06 ) double precision xlgst parameter ( xlgst = 1.0D+30 ) double precision xvalue double precision y data r1 / & -2.66685511495D+00, & -24.4387534237D+00, & -21.9698958928D+00, & 11.1667541262D+00, & 3.13060547623D+00, & 0.607771387771D+00, & 11.9400905721D+00, & 31.4690115749D+00, & 15.2346874070D+00 / data r2 / & -78.3359299449D+00, & -142.046296688D+00, & 137.519416416D+00, & 78.6994924154D+00, & 4.16438922228D+00, & 47.0668766060D+00, & 313.399215894D+00, & 263.505074721D+00, & 43.3400022514D+00 / data r3 / & -2.12159572323D+05, & 2.30661510616D+05, & 2.74647644705D+04, & -4.02621119975D+04, & -2.29660729780D+03, & -1.16328495004D+05, & -1.46025937511D+05, & -2.42357409629D+04, & -5.70691009324D+02 / data r4 / & 0.279195317918525D+00, & 0.4917317610505968D+00, & 0.0692910599291889D+00, & 3.350343815022304D+00, & 6.012459259764103D+00 / x = xvalue alngam = 0.0D+00 c c Check the input. c if ( xlgst .le. x ) then ifault = 2 return end if if ( x .le. 0.0D+00 ) then ifault = 1 return end if ifault = 0 c c Calculation for 0 < X < 0.5 and 0.5 <= X < 1.5 combined. c if ( x .lt. 1.5D+00 ) then if ( x .lt. 0.5D+00 ) then alngam = - dlog ( x ) y = x + 1.0D+00 c c Test whether X < machine epsilon. c if ( y .eq. 1.0D+00 ) then return end if else alngam = 0.0D+00 y = x x = ( x - 0.5D+00 ) - 0.5D+00 end if alngam = alngam + x * (((( & r1(5) * y & + r1(4) ) * y & + r1(3) ) * y & + r1(2) ) * y & + r1(1) ) / (((( & y & + r1(9) ) * y & + r1(8) ) * y & + r1(7) ) * y & + r1(6) ) return end if c c Calculation for 1.5 <= X < 4.0. c if ( x .lt. 4.0D+00 ) then y = ( x - 1.0D+00 ) - 1.0D+00 alngam = y * (((( & r2(5) * x & + r2(4) ) * x & + r2(3) ) * x & + r2(2) ) * x & + r2(1) ) / (((( & x & + r2(9) ) * x & + r2(8) ) * x & + r2(7) ) * x & + r2(6) ) c c Calculation for 4.0 <= X < 12.0. c else if ( x .lt. 12.0D+00 ) then alngam = (((( & r3(5) * x & + r3(4) ) * x & + r3(3) ) * x & + r3(2) ) * x & + r3(1) ) / (((( & x & + r3(9) ) * x & + r3(8) ) * x & + r3(7) ) * x & + r3(6) ) c c Calculation for X >= 12.0. c else y = dlog ( x ) alngam = x * ( y - 1.0D+00 ) - 0.5D+00 * y + alr2pi if ( x .le. xlge ) then x1 = 1.0D+00 / x x2 = x1 * x1 alngam = alngam + x1 * ( ( & r4(3) * & x2 + r4(2) ) * & x2 + r4(1) ) / ( ( & x2 + r4(5) ) * & x2 + r4(4) ) end if end if return end function alnorm ( x, upper ) c*********************************************************************72 c cc ALNORM computes the cumulative density of the standard normal distribution. c c Modified: c c 28 March 1999 c c Author: c c David Hill c Modifications by John Burkardt c c Reference: c c David Hill, c Algorithm AS 66: c The Normal Integral, c Applied Statistics, c Volume 22, Number 3, 1973, pages 424-427. c c Parameters: c c Input, double precision X, is one endpoint of the semi-infinite interval c over which the integration takes place. c c Input, logical UPPER, determines whether the upper or lower c interval is to be integrated: c .TRUE. => integrate from X to + Infinity; c .FALSE. => integrate from - Infinity to X. c c Output, double precision ALNORM, the integral of the standard normal c distribution over the desired interval. c implicit none double precision a1 parameter ( a1 = 5.75885480458D+00 ) double precision a2 parameter ( a2 = 2.62433121679D+00 ) double precision a3 parameter ( a3 = 5.92885724438D+00 ) double precision alnorm double precision b1 parameter ( b1 = -29.8213557807D+00 ) double precision b2 parameter ( b2 = 48.6959930692D+00 ) double precision c1 parameter ( c1 = -0.000000038052D+00 ) double precision c2 parameter ( c2 = 0.000398064794D+00 ) double precision c3 parameter ( c3 = -0.151679116635D+00 ) double precision c4 parameter ( c4 = 4.8385912808D+00 ) double precision c5 parameter ( c5 = 0.742380924027D+00 ) double precision c6 parameter ( c6 = 3.99019417011D+00 ) double precision con parameter ( con = 1.28D+00 ) double precision d1 parameter ( d1 = 1.00000615302D+00 ) double precision d2 parameter ( d2 = 1.98615381364D+00 ) double precision d3 parameter ( d3 = 5.29330324926D+00 ) double precision d4 parameter ( d4 = -15.1508972451D+00 ) double precision d5 parameter ( d5 = 30.789933034D+00 ) double precision ltone parameter ( ltone = 7.0D+00 ) double precision p parameter ( p = 0.398942280444D+00 ) double precision q parameter ( q = 0.39990348504D+00 ) double precision r parameter ( r = 0.398942280385D+00 ) logical up logical upper double precision utzero parameter ( utzero = 18.66D+00 ) double precision x double precision y double precision z up = upper z = x if ( z .lt. 0.0D+00 ) then up = .not. up z = - z end if if ( z .gt. ltone .and. & ( ( .not. up ) .or. utzero .lt. z ) ) then if ( up ) then alnorm = 0.0D+00 else alnorm = 1.0D+00 end if return end if y = 0.5D+00 * z * z if ( z .le. con ) then alnorm = 0.5D+00 - z * ( p - q * y & / ( y + a1 + b1 & / ( y + a2 + b2 & / ( y + a3 )))) else alnorm = r * dexp ( - y ) & / ( z + c1 + d1 & / ( z + c2 + d2 & / ( z + c3 + d3 & / ( z + c4 + d4 & / ( z + c5 + d5 & / ( z + c6 )))))) end if if ( .not. up ) then alnorm = 1.0D+00 - alnorm end if return end function betain ( x, p, q, beta, ifault ) c*********************************************************************72 c cc BETAIN computes the incomplete Beta function ratio. c c Modified: c c 06 January 2008 c c Author: c c KL Majumder, GP Bhattacharjee, c Modifications by John Burkardt c c Reference: c c KL Majumder, GP Bhattacharjee, c Algorithm AS 63: c The incomplete Beta Integral, c Applied Statistics, c Volume 22, Number 3, 1973, pages 409-411. c c Parameters: c c Input, double precision X, the argument, between 0 and 1. c c Input, double precision P, Q, the parameters, which c must be positive. c c Input, double precision BETA, the logarithm of the complete c beta function. c c Output, integer IFAULT, error flag. c 0, no error. c nonzero, an error occurred. c c Output, double precision BETAIN, the value of the incomplete c Beta function ratio. c implicit none double precision acu parameter ( acu = 0.1D-14 ) double precision ai double precision beta double precision betain double precision cx integer ifault logical indx integer ns double precision p double precision pp double precision psq double precision q double precision qq double precision rx double precision temp double precision term double precision x double precision xx betain = x ifault = 0 c c Check the input arguments. c if ( p .le. 0.0D+00 .or. q .le. 0.0D+00 ) then ifault = 1 return end if if ( x .lt. 0.0D+00 .or. 1.0D+00 .lt. x ) then ifault = 2 return end if c c Special cases. c if ( x .eq. 0.0D+00 .or. x .eq. 1.0D+00 ) then return end if c c Change tail if necessary and determine S. c psq = p + q cx = 1.0D+00 - x if ( p .lt. psq * x ) then xx = cx cx = x pp = q qq = p indx = .true. else xx = x pp = p qq = q indx = .false. end if term = 1.0D+00 ai = 1.0D+00 betain = 1.0D+00 ns = int ( qq + cx * psq ) c c Use the Soper reduction formula. c rx = xx / cx temp = qq - ai if ( ns .eq. 0 ) then rx = xx end if 10 continue term = term * temp * rx / ( pp + ai ) betain = betain + term temp = dabs ( term ) if ( temp .le. acu .and. temp .le. acu * betain ) then betain = betain * dexp ( pp * dlog ( xx ) & + ( qq - 1.0D+00 ) * dlog ( cx ) - beta ) / pp if ( indx ) then betain = 1.0D+00 - betain end if return end if ai = ai + 1.0D+00 ns = ns - 1 if ( ns .ge. 0 ) then temp = qq - ai if ( ns .eq. 0 ) then rx = xx end if else temp = psq psq = psq + 1.0D+00 end if go to 10 return end subroutine student_noncentral_cdf_values ( n_data, df, lambda, & x, fx ) c*********************************************************************72 c cc STUDENT_NONCENTRAL_CDF_VALUES returns values of the noncentral Student CDF. c c Discussion: c c In Mathematica, the function can be evaluated by: c c Needs["Statistics`ContinuousDistributions`"] c dist = NoncentralStudentTDistribution [ df, lambda ] c CDF [ dist, x ] c c Mathematica seems to have some difficulty computing this function c to the desired number of digits. c c Modified: c c 25 March 2007 c c Author: c c John Burkardt c c Reference: c c Milton Abramowitz, Irene Stegun, c Handbook of Mathematical Functions, c National Bureau of Standards, 1964, c ISBN: 0-486-61272-4, c LC: QA47.A34. c c Stephen Wolfram, c The Mathematica Book, c Fourth Edition, c Cambridge University Press, 1999, c ISBN: 0-521-64314-7, c LC: QA76.95.W65. c c Parameters: c c Input/output, integer N_DATA. The user sets N_DATA to 0 before the c first call. On each call, the routine increments N_DATA by 1, and c returns the corresponding data; when there is no more data, the c output value of N_DATA will be 0 again. c c Output, integer DF, double precision LAMBDA, the parameters of the c function. c c Output, double precision X, the argument of the function. c c Output, double precision FX, the value of the function. c implicit none integer n_max parameter ( n_max = 30 ) integer df integer df_vec(n_max) double precision fx double precision fx_vec(n_max) double precision lambda double precision lambda_vec(n_max) integer n_data double precision x double precision x_vec(n_max) save df_vec save fx_vec save lambda_vec save x_vec data df_vec / & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 1, 2, 3, & 15, 20, 25, & 1, 2, 3, & 10, 10, 10, & 10, 10, 10, & 10, 10, 10 / data fx_vec / & 0.8975836176504333D+00, & 0.9522670169D+00, & 0.9711655571887813D+00, & 0.8231218864D+00, & 0.9049021510D+00, & 0.9363471834D+00, & 0.7301025986D+00, & 0.8335594263D+00, & 0.8774010255D+00, & 0.5248571617D+00, & 0.6293856597D+00, & 0.6800271741D+00, & 0.20590131975D+00, & 0.2112148916D+00, & 0.2074730718D+00, & 0.9981130072D+00, & 0.9994873850D+00, & 0.9998391562D+00, & 0.168610566972D+00, & 0.16967950985D+00, & 0.1701041003D+00, & 0.9247683363D+00, & 0.7483139269D+00, & 0.4659802096D+00, & 0.9761872541D+00, & 0.8979689357D+00, & 0.7181904627D+00, & 0.9923658945D+00, & 0.9610341649D+00, & 0.8688007350D+00 / data lambda_vec / & 0.0D+00, & 0.0D+00, & 0.0D+00, & 0.5D+00, & 0.5D+00, & 0.5D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 2.0D+00, & 2.0D+00, & 4.0D+00, & 4.0D+00, & 4.0D+00, & 7.0D+00, & 7.0D+00, & 7.0D+00, & 1.0D+00, & 1.0D+00, & 1.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00, & 2.0D+00, & 3.0D+00, & 4.0D+00 / data x_vec / & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 3.00D+00, & 15.00D+00, & 15.00D+00, & 15.00D+00, & 0.05D+00, & 0.05D+00, & 0.05D+00, & 4.00D+00, & 4.00D+00, & 4.00D+00, & 5.00D+00, & 5.00D+00, & 5.00D+00, & 6.00D+00, & 6.00D+00, & 6.00D+00 / if ( n_data .lt. 0 ) then n_data = 0 end if n_data = n_data + 1 if ( n_max .lt. n_data ) then n_data = 0 df = 0 lambda = 0.0D+00 x = 0.0D+00 fx = 0.0D+00 else df = df_vec(n_data) lambda = lambda_vec(n_data) x = x_vec(n_data) fx = fx_vec(n_data) end if return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Discussion: c c This FORTRAN77 version is made available for cases where the c FORTRAN90 version cannot be used. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end function tnc ( t, df, delta, ifault ) c*********************************************************************72 c cc TNC computes the tail of the noncentral T distribution. c c Discussion: c c This routine computes the cumulative probability at T of the c non-central T-distribution with DF degrees of freedom (which may c be fractional) and non-centrality parameter DELTA. c c Modified: c c 09 January 2008 c c Author: c c Russell Lenth c Modifications by John Burkardt c c Reference: c c Russell Lenth, c Algorithm AS 243: c Cumulative Distribution Function of the Non-Central T Distribution, c Applied Statistics, c Volume 38, Number 1, 1989, pages 185-189. c c William Guenther, c Evaluation of probabilities for the noncentral distributions and c difference of two T-variables with a desk calculator, c Journal of Statistical Computation and Simulation, c Volume 6, Number 3-4, 1978, pages 199-206. c c Parameters: c c Input, double precision T, the value whose cumulative density c is desired. c c Input, double precision DF, the number of degrees of freedom. c c Input, double precision DELTA, the noncentrality parameter. c c Output, integer IFAULT, error flag. c 0, no error. c nonzero, an error occcurred. c c Output, double precision TNC, the tail of the noncentral c T distribution. c implicit none double precision a double precision albeta double precision alngam double precision alnorm double precision alnrpi parameter ( alnrpi = 0.57236494292470008707D+00 ) double precision b double precision betain double precision del double precision delta double precision df double precision en double precision errbd double precision errmax parameter ( errmax = 1.0D-10 ) double precision geven double precision godd integer ifault integer itrmax parameter ( itrmax = 100 ) double precision lambda logical negdel double precision p double precision q double precision r2pi parameter ( r2pi = 0.79788456080286535588D+00 ) double precision rxb double precision s double precision t double precision tnc double precision tt double precision x double precision xeven double precision xodd tnc = 0.0D+00 if ( df .le. 0.0D+00 ) then ifault = 2 return end if ifault = 0 tt = t del = delta negdel = .false. if ( t .lt. 0.0D+00 ) then negdel = .true. tt = - tt del = - del end if c c Initialize twin series. c en = 1.0D+00 x = t * t / ( t * t + df ) if ( x .le. 0.0D+00 ) then go to 20 end if lambda = del * del p = 0.5D+00 * dexp ( - 0.5D+00 * lambda ) q = r2pi * p * del s = 0.5D+00 - p a = 0.5D+00 b = 0.5D+00 * df rxb = ( 1.0D+00 - x )**b albeta = alnrpi + alngam ( b, ifault ) - alngam ( a + b, ifault ) xodd = betain ( x, a, b, albeta, ifault ) godd = 2.0D+00 * rxb * dexp ( a * dlog ( x ) - albeta ) xeven = 1.0D+00 - rxb geven = b * x * rxb tnc = p * xodd + q * xeven c c Repeat until convergence. c 10 continue a = a + 1.0D+00 xodd = xodd - godd xeven = xeven - geven godd = godd * x * ( a + b - 1.0D+00 ) / a geven = geven * x * ( a + b - 0.5D+00 ) / ( a + 0.5D+00 ) p = p * lambda / ( 2.0D+00 * en ) q = q * lambda / ( 2.0D+00 * en + 1.0D+00 ) s = s - p en = en + 1.0D+00 tnc = tnc + p * xodd + q * xeven errbd = 2.0D+00 * s * ( xodd - godd ) if ( errmax .lt. errbd .and. en .le. itrmax ) then go to 10 end if 20 continue if ( itrmax .lt. en ) then ifault = 1 return end if ifault = 0 tnc = tnc + alnorm ( del, .true. ) if ( negdel ) then tnc = 1.0D+00 - tnc end if return end