# include # include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); void display ( ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ); void mouse ( int btn, int state, int x, int y ); void myinit ( ); void myReshape ( int w, int h ); double *node_normal_set ( );; double r8_max ( double x, double y ); double *r83vec_max ( int n, double a[] ); double *r83vec_min ( int n, double a[] ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void spinSurface ( ); void timestamp ( ); // // Global data. // static GLint axis = 2; static GLfloat theta[3] = { 0.0, 0.0, 0.0 }; int dim_num = 0; int *element_node = NULL; int element_num = 0; int element_order = 0; int node_num = 0; double *node_normal = NULL; double *node_xyz = NULL; double *node_xyz_max = NULL; double *node_xyz_min = NULL; double node_xyz_range[3]; int pixel_height = 0; int pixel_width = 0; bool spinning = true; double theta_speed = 0.20; //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // tri_surface_display_opengl() displays a triangulated surface using OpenGL. // // Discussion: // // This program reads two files defining the nodes and the faces // of a triangulated surface in 3D. // // It displays the surface using OpenGL. // // Since rotation is about the point (0,0,0), I have to compute // the centroid and subtract it from the node coordinates. // // Usage: // // tri_surface_display_opengl prefix // // where 'prefix' is the common prefix for the files: // // * prefix_nodes.txt, the node coordinates; // * prefix_elements.txt, the nodes that make up each element. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2010 // // Author: // // John Burkardt // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { double *centroid; string element_filename; int i; int j; string node_filename; string prefix; cout << "\n"; cout << "tri_surface_display_opengl():\n"; cout << " C++ version:\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << " This program reads files defining the nodes and elements\n"; cout << " of a triangular mesh that forms a surface in 3D. \n"; cout << "\n"; cout << " An image of the surface is displayed using OpenGL.\n"; cout << "\n"; cout << " The image rotates slowly around the X, Y or Z axis.\n"; cout << " Click the mouse to change the axis.\n"; // // Get the common filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL:\n"; cout << " Please enter the common filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; // // Read the node data. // r8mat_header_read ( node_filename, &dim_num, &node_num ); cout << "\n"; cout << " The node file has been examined.\n"; cout << "\n"; cout << " The spatial dimension DIM_NUM = " << dim_num << "\n"; cout << " The number of nodes NODE_NUM = " << node_num << "\n"; if ( dim_num != 3 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL - Fatal error!\n"; cout << " The spatial dimension of the data should be 3.\n"; exit ( 1 ); } node_xyz = r8mat_data_read ( node_filename, dim_num, node_num ); node_xyz_min = r83vec_min ( node_num, node_xyz ); node_xyz_max = r83vec_max ( node_num, node_xyz ); node_xyz_range[0] = node_xyz_max[0] - node_xyz_min[0]; node_xyz_range[1] = node_xyz_max[1] - node_xyz_min[1]; node_xyz_range[2] = node_xyz_max[2] - node_xyz_min[2]; cout << "\n"; cout << " Minimum: " << node_xyz_min[0] << " " << node_xyz_min[1] << " " << node_xyz_min[2] << "\n"; cout << " Maximum: " << node_xyz_max[0] << " " << node_xyz_max[1] << " " << node_xyz_max[2] << "\n"; cout << " Range: " << node_xyz_range[0] << " " << node_xyz_range[1] << " " << node_xyz_range[2] << "\n"; if ( node_xyz_range[0] == 0.0 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL - Fatal error!\n"; cout << " The X data range is 0.\n"; exit ( 1 ); } if ( node_xyz_range[1] == 0.0 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL - Fatal error!\n"; cout << " The Y data range is 0.\n"; exit ( 1 ); } if ( node_xyz_range[2] == 0.0 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL - Fatal error!\n"; cout << " The Z data range is 0.\n"; exit ( 1 ); } r8mat_transpose_print_some ( dim_num, node_num, node_xyz, 1, 1, 3, 5, " First five nodes:" ); // // Read the element data. // i4mat_header_read ( element_filename, &element_order, &element_num ); cout << "\n"; cout << " The element file has been examined.\n"; cout << "\n"; cout << " The element order = " << element_order << "\n"; cout << " The number of elements = " << element_num << "\n"; if ( element_order < 3 ) { cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL - Fatal error!\n"; cout << " The element order must be at least 3!\n"; exit ( 1 ); } element_node = i4mat_data_read ( element_filename, element_order, element_num ); i4mat_transpose_print_some ( element_order, element_num, element_node, 1, 1, element_order, 5, " First five elements:" ); // // Detect and correct 1-based node indexing. // mesh_base_zero ( node_num, element_order, element_num, element_node ); // // Since the spin function works around (0,0,0), we have to compute the // centroid and subtract it. // centroid = new double[3]; for ( i = 0; i < 3; i++ ) { centroid[i] = 0.0; } for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < 3; i++ ) { centroid[i] = centroid[i] + node_xyz[i+j*3]; } } for ( i = 0; i < 3; i++ ) { centroid[i] = centroid[i] / ( double ) node_num; } for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < 3; i++ ) { node_xyz[i+j*3] = node_xyz[i+j*3] - centroid[i]; } } // // Compute the node normals. // node_normal = node_normal_set ( ); glutInit ( &argc, argv ); glutInitDisplayMode ( GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH ); // // What is appropriate here? What are the projection axes // for a 3D plot? // if ( node_xyz_range[1] < node_xyz_range[0] ) { pixel_width = 500; pixel_height = ( int ) ( ( double ) ( 500 ) * node_xyz_range[1] / node_xyz_range[0] ); } else { pixel_width = ( int ) ( ( double ) ( 500 ) * node_xyz_range[0] / node_xyz_range[1] ); pixel_height = 500; } cout << " Pixels: " << pixel_width << " " << pixel_height << "\n"; glutInitWindowSize ( pixel_width, pixel_height ); glutInitWindowPosition ( 0, 0 ); glutCreateWindow ( "Rotating Triangulated Surface" ); glutReshapeFunc ( myReshape ); glutDisplayFunc ( display ); glutIdleFunc ( spinSurface ); glutMouseFunc ( mouse ); // // Enable hidden surface removal. // glEnable ( GL_DEPTH_TEST ); // // Do "my" initializations. // myinit ( ); glutMainLoop ( ); // // Free memory. // delete [] centroid; delete [] node_xyz; delete [] element_node; // // Terminate. // cout << "\n"; cout << "TRI_SURFACE_DISPLAY_OPENGL:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding value. If the character was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 void display ( ) //****************************************************************************80 // // Purpose: // // DISPLAY generates the graphics output. // // Discussion; // // Display a tetrahedral mesh as a collection of lines and nodes. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 December 2008 // // Author: // // John Burkardt // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { double color[3] = { 0.0, 1.0, 0.0 }; int element; int node; double norm[3]; int order; double p[3]; // // Clear the window. // glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ); // // ? // glLoadIdentity ( ); glRotatef ( theta[0], 1.0, 0.0, 0.0 ); glRotatef ( theta[1], 0.0, 1.0, 0.0 ); glRotatef ( theta[2], 0.0, 0.0, 1.0 ); // // Specify that elements facing the front are to be filled. // glPolygonMode ( GL_FRONT, GL_FILL ); // // Draw the elements, in GREEN. // glColor3f ( 0.0, 1.0, 0.0 ); for ( element = 0; element < element_num; element++ ) { glBegin ( GL_POLYGON ); for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; glColor3dv ( color ); norm[0] = node_normal[0+node*3]; norm[1] = node_normal[1+node*3]; norm[2] = node_normal[2+node*3]; glNormal3dv ( norm ); p[0] = node_xyz[0+node*3]; p[1] = node_xyz[1+node*3]; p[2] = node_xyz[2+node*3]; glVertex3dv ( p ); } glEnd ( ); } // // Draw lines delimiting the elements, in RED. // glColor3f ( 1.0, 0.0, 0.0 ); for ( element = 0; element < element_num; element++ ) { glBegin ( GL_LINE_LOOP ); for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; p[0] = node_xyz[0+node*3]; p[1] = node_xyz[1+node*3]; p[2] = node_xyz[2+node*3]; glVertex3dv ( p ); } glEnd ( ); } // // Draw the nodes in BLUE. // Draw them AFTER the lines, so they are more likely to show up! // glColor3f ( 0.0, 0.0, 1.0 ); for ( node = 0; node < node_num; node++ ) { glBegin ( GL_POINTS ); p[0] = node_xyz[0+node*3]; p[1] = node_xyz[1+node*3]; p[2] = node_xyz[2+node*3]; glVertex3dv ( p ); glEnd ( ); } // // Clear all the buffers. // glFlush ( ); // // Switch between the two buffers for fast animation. // glutSwapBuffers ( ); return; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void mesh_base_zero ( int node_num, int element_order, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // MESH_BASE_ZERO ensures that the element definition is zero-based. // // Discussion: // // The ELEMENT_NODE array contains nodes indices that form elements. // The convention for node indexing might start at 0 or at 1. // Since a C++ program will naturally assume a 0-based indexing, it is // necessary to check a given element definition and, if it is actually // 1-based, to convert it. // // This function attempts to detect 1-based node indexing and correct it. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input/output, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM], the element // definitions. // { int element; int node; int node_max; int node_min; int order; node_min = node_num + 1; node_max = -1; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { node = element_node[order+element*element_order]; node_min = i4_min ( node_min, node ); node_max = i4_max ( node_max, node ); } } if ( node_min == 1 && node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " This will be converted to 0-based.\n"; for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } } else if ( node_min == 0 && node_max == node_num - 1 ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else if ( ( 1 == node_min && node_max < node_num ) || ( 1 < node_min && node_max == node_num ) ) { for ( element = 0; element < element_num; element++ ) { for ( order = 0; order < element_order; order++ ) { element_node[order+element*element_order] = element_node[order+element*element_order] - 1; } } cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 1-based!\n"; cout << " Node indices will be decremented.\n"; } else if ( ( 0 == node_min && node_max < node_num - 1 ) || ( 0 < node_min && node_max == node_num - 1 ) ) { cout << "\n"; cout << "MESH_BASE_ZERO:\n"; cout << " The element indexing appears to be 0-based!\n"; cout << " No conversion is necessary.\n"; } else if ( node_max == node_num ) { cout << "\n"; cout << "MESH_BASE_ZERO - Warning!\n"; cout << " The element indexing is not of a recognized type.\n"; cout << " Node indices will be used without change.\n"; } return; } //****************************************************************************80 void mouse ( int btn, int state, int x, int y ) //****************************************************************************80 // // Purpose: // // MOUSE determines the response to mouse input. // // Discussion: // // The original routine assumed the user had a three button mouse, and // dedicated one axis to each. Since Apple prefers the esthetics of a // one button mouse, this routine simply increments the axis by 1, // no matter which button is pushed. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 December 2008 // // Author: // // Edward Angel // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { if ( btn == GLUT_LEFT_BUTTON && state == GLUT_DOWN ) { if ( spinning ) { spinning = false; theta_speed = 0.0; } else { spinning = true; axis = axis + 1; theta_speed = 0.20; } } if ( btn == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN ) { if ( spinning ) { spinning = false; theta_speed = 0.0; } else { spinning = true; axis = axis + 1; theta_speed = 0.20; } } if ( btn == GLUT_RIGHT_BUTTON && state == GLUT_DOWN ) { if ( spinning ) { spinning = false; theta_speed = 0.0; } else { spinning = true; axis = axis + 1; theta_speed = 0.20; } } axis = axis % 3; return; } //****************************************************************************80 void myinit ( ) //****************************************************************************80 // // Purpose: // // MYINIT initializes OpenGL state variables. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2006 // // Author: // // John Burkardt // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { double margin; double x_max; double x_min; double y_max; double y_min; double z_max; double z_min; // // Set the background to WHITE. // glClearColor ( 1.0, 1.0, 1.0, 1.0 ); // // Make vertices bigger than the default size of 1.0. // glPointSize ( 5.0 ); // // Set up the viewing window with origin at the lower left. // glMatrixMode ( GL_PROJECTION ); glLoadIdentity ( ); // // Determine an amount MARGIN by which it would be appropriate to spread the // data range, so that all the data is comfortably inside the picture. // margin = node_xyz_max[0] - node_xyz_min[0]; margin = r8_max ( margin, node_xyz_max[1] - node_xyz_min[1] ); margin = r8_max ( margin, node_xyz_max[2] - node_xyz_min[2] ); margin = 0.025 * margin; x_min = ( double ) ( node_xyz_min[0] - margin ); x_max = ( double ) ( node_xyz_max[0] + margin ); y_min = ( double ) ( node_xyz_min[1] - margin ); y_max = ( double ) ( node_xyz_max[1] + margin ); z_min = ( double ) ( node_xyz_min[2] - margin ); z_max = ( double ) ( node_xyz_max[2] + margin ); // // Specify the clipping volume. // glOrtho ( x_min, x_max, y_min, y_max, z_min, z_max ); glMatrixMode ( GL_MODELVIEW ); return; } //****************************************************************************80 void myReshape ( int w, int h ) //****************************************************************************80 // // Purpose: // // MYRESHAPE determines the window mapping. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 December 2008 // // Author: // // Edward Angel // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { glViewport ( 0, 0, w, h ); glMatrixMode ( GL_PROJECTION ); glLoadIdentity ( ); if ( w <= h ) { glOrtho ( -2.0, 2.0, -2.0 * ( GLfloat ) h / ( GLfloat ) w, 2.0 * ( GLfloat ) h / ( GLfloat ) w, -10.0, 10.0 ); } else { glOrtho ( -2.0 * ( GLfloat ) h / ( GLfloat ) w, 2.0 * ( GLfloat ) h / ( GLfloat ) w, -2.0, 2.0, -10.0, 10.0 ); } glMatrixMode ( GL_MODELVIEW ); return; } //****************************************************************************80 double *node_normal_set ( ) //****************************************************************************80 // // Purpose: // // NODE_NORMAL_SET computes node normal vectors. // // Discussion: // // We assume we are given no normal vector information to start with. // We then consider each face of the surface. We take every // set of three consecutive vertices, and construct the normal vector // to the triangle that they define. We add this normal vector to the // normal vector information for the node associated with the middle of // the three vertices. // // Once we have processed all the vertices on a face, and all the faces, // we average the node normal information. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 December 2008 // // Author: // // John Burkardt // { int element; int i; int n0; int n1; int n2; int node; double *node_normal; double triangle_normal[3]; double norm; double v1[3]; double v2[3]; int vert0; int vert1; int vert2; // // Make space. // node_normal = new double[3*node_num]; // // Zero out the space. // for ( node = 0; node < node_num; node++ ) { for ( i = 0; i < 3; i++ ) { node_normal[i+node*3] = 0.0; } } // // For each element: // Start with the last, first and second vertex. // for ( element = 0; element < element_num; element++ ) { vert0 = element_order - 2; vert1 = element_order - 1; for ( vert2 = 0; vert2 < element_order; vert2++ ) { n0 = element_node[vert0+element*element_order]; n1 = element_node[vert1+element*element_order]; n2 = element_node[vert2+element*element_order]; // // Determine a unit normal vector associated with the plane of the triangle. // for ( i = 0; i < 3; i++ ) { v1[i] = node_xyz[i+n1*3] - node_xyz[i+n0*3]; } for ( i = 0; i < 3; i++ ) { v2[i] = node_xyz[i+n2*3] - node_xyz[i+n0*3]; } triangle_normal[0] = v1[1] * v2[2] - v1[2] * v2[1]; triangle_normal[1] = v1[2] * v2[0] - v1[0] * v2[2]; triangle_normal[2] = v1[0] * v2[1] - v1[1] * v2[0]; norm = 0.0; for ( i = 0; i < 3; i++ ) { norm = norm + pow ( triangle_normal[i], 2 ); } norm = sqrt ( norm ); for ( i = 0; i < 3; i++ ) { triangle_normal[i] = triangle_normal[i] / norm; } for ( i = 0; i < 3; i++ ) { node_normal[i+n1*3] = node_normal[i+n1*3] + triangle_normal[i]; } vert0 = vert1; vert1 = vert2; } } // // Renormalize. // for ( node = 0; node < node_num; node++ ) { norm = 0.0; for ( i = 0; i < 3; i++ ) { norm = norm + pow ( node_normal[i+node*3], 2 ); } if ( norm == 0.0 ) { norm = 3.0; for ( i = 0; i < 3; i++ ) { node_normal[i+node*3] = 1.0; } } norm = ( double ) sqrt ( norm ); for ( i = 0; i < 3; i++ ) { node_normal[i+node*3] = node_normal[i+node*3] / norm; } } return node_normal; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double *r83vec_max ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R83VEC_MAX returns the maximum value in an R83VEC. // // Discussion: // // An R83VEC is an array of triples of double precision real values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[3*N], the array. // // Output, double R83VEC_MAX[3]; the largest entries in each row. // { # define DIM_NUM 3 double *amax = NULL; int i; int j; if ( n <= 0 ) { return NULL; } amax = new double[DIM_NUM]; for ( i = 0; i < DIM_NUM; i++ ) { amax[i] = a[i+0*DIM_NUM]; for ( j = 1; j < n; j++ ) { if ( amax[i] < a[0+j*DIM_NUM] ) { amax[i] = a[0+j*DIM_NUM]; } } } return amax; # undef DIM_NUM } //****************************************************************************80 double *r83vec_min ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R83VEC_MIN returns the minimum value in an R83VEC. // // Discussion: // // An R83VEC is an array of triples of double precision real values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[3*N], the array. // // Output, double R83VEC_MIN[3]; the smallest entries in each row. // { # define DIM_NUM 3 double *amin = NULL; int i; int j; if ( n <= 0 ) { return NULL; } amin = new double[DIM_NUM]; for ( i = 0; i < DIM_NUM; i++ ) { amin[i] = a[i+0*DIM_NUM]; for ( j = 1; j < n; j++ ) { if ( a[0+j*DIM_NUM] < amin[i] ) { amin[i] = a[0+j*DIM_NUM]; } } } return amin; # undef DIM_NUM } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void spinSurface ( ) //****************************************************************************80 // // Purpose: // // SPINSURFACE adjusts the angle of rotation and redisplays the picture. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 December 2008 // // Author: // // Edward Angel // // Reference: // // Edward Angel, // Interactive Computer Graphics: // A Top-Down Approach with OpenGL, // Second Edition, // Addison Wesley, 2000. // { theta[axis] = theta[axis] + theta_speed; if ( 360.0 < theta[axis] ) { theta[axis] = theta[axis] - 360.0; } glutPostRedisplay ( ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }