# include # include # include # include # include # include # include using namespace std; # include "toms655.hpp" //****************************************************************************80 double *cawiq ( int nt, double t[], int mlt[], int nwts, int ndx[], int key, int nst, double aj[], double bj[], int *jdf, double zemu ) //****************************************************************************80 // // Purpose: // // CAWIQ computes quadrature weights for a given set of knots. // // Discussion: // // This routine is given a set of distinct knots, T, their multiplicities MLT, // the Jacobi matrix associated with the polynomials orthogonal with respect // to the weight function W(X), and the zero-th moment of W(X). // // It computes the weights of the quadrature formula // // sum ( 1 <= J <= NT ) sum ( 0 <= I <= MLT(J) - 1 ) wts(j) d^i/dx^i f(t(j)) // // which is to approximate // // integral ( a < x < b ) f(t) w(t) dt // // The routine makes various checks, as indicated below, sets up // various vectors and, if necessary, calls for the diagonalization // of the Jacobi matrix that is associated with the polynomials // orthogonal with respect to W(X) on the interval A, B. // // Then for each knot, the weights of which are required, it calls the // routine CWIQD which to compute the weights. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int NWTS, the number of weights. // // Input/output, int NDX[NT], associates with each distinct // knot T(J), an integer NDX(J) which is such that the weight to the I-th // derivative value of F at the J-th knot, is stored in // WTS(abs(NDX(J))+I) for J = 1,2,...,NT, and I = 0,1,2,...,MLT(J)-1. // The sign of NDX includes the following information: // > 0, weights are wanted for this knot // < 0, weights not wanted for this knot but it is included in the quadrature // = 0. means ignore this knot completely. // // Input, int KEY, indicates structure of WTS and NDX. // KEY is an integer with absolute value between 1 and 4. // The sign of KEY choosed the form of WTS: // 0 < KEY, WTS in standard form. // 0 > KEY, J]WTS(J) required. // The absolute value has the following effect: // 1, set up pointers in NDX for all knots in T array (routine CAWIQ does // this). the contents of NDX are not tested on input and weights are // packed sequentially in WTS as indicated above. // 2, set up pointers only for knots which have nonzero NDX on input. All // knots which have a non-zero flag are allocated space in WTS. // 3, set up pointers only for knots which have NDX > 0 on input. Space in // WTS allocated only for knots with NDX > 0. // 4, NDX assumed to be preset as pointer array on input. // // Input, int NST, the dimension of the Jacobi matrix. // NST should be between (N+1)/2 and N. The usual choice will be (N+1)/2. // // Input/output, double AJ[NST], BJ[NST]. // If JDF = 0 then AJ contains the diagonal of the Jacobi matrix and // BJ(1:NST-1) contains the subdiagonal. // If JDF = 1, AJ contains the eigenvalues of the Jacobi matrix and // BJ contains the squares of the elements of the first row of U, the // orthogonal matrix which diagonalized the Jacobi matrix as U*D*U'. // // Input/output, int *JDF, indicates whether the Jacobi // matrix needs to be diagonalized. // 0, diagonalization required; // 1, diagonalization not required. // // Input, double ZEMU, the zero-th moment of the weight // function W(X). // // Output, double CAWIQ[NWTS], the weights. // { int i; int ip; int j; int jj; int jp; int k; int l; int m; int mnm; int n; double p; double prec; double *r; double tmp; double *xk; double *wtmp; double *wts; double *z; prec = DBL_EPSILON; if ( nt < 1 ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " NT < 1.\n"; exit ( 1 ); } // // Check for indistinct knots. // if ( 1 < nt ) { k = nt - 1; for ( i = 1; i <= k; i++ ) { tmp = t[i-1]; l = i + 1; for ( j = l; j <= nt; j++ ) { if ( fabs ( tmp - t[j-1] ) <= prec ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " Knots too close.\n"; exit ( 1 ); } } } } // // Check multiplicities, // Set up various useful parameters and // set up or check pointers to WTS array. // l = abs ( key ); if ( l < 1 || 4 < l ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " Magnitude of KEY not between 1 and 4.\n"; exit ( 1 ); } k = 1; if ( l == 1 ) { for ( i = 1; i <= nt; i++ ) { ndx[i-1] = k; if ( mlt[i-1] < 1 ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " MLT(I) < 1.\n"; exit ( 1 ); } k = k + mlt[i-1]; } n = k - 1; } else if ( l == 2 || l == 3 ) { n = 0; for ( i = 1; i <= nt; i++ ) { if ( ndx[i-1] == 0 ) { continue; } if ( mlt[i-1] < 1 ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " MLT(I) < 1.\n"; exit ( 1 ); } n = n + mlt[i-1]; if ( ndx[i-1] < 0 && l == 3 ) { continue; } ndx[i-1] = abs ( k ) * i4_sign ( ndx[i-1] ); k = k + mlt[i-1]; } if ( nwts + 1 < k ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " NWTS + 1 < K.\n"; exit ( 1 ); } } else if ( l == 4 ) { for ( i = 1; i <= nt; i++ ) { ip = abs ( ndx[i-1] ); if ( ip == 0 ) { continue; } if ( nwts < ip + mlt[i-1] ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " NWTS < IPM.\n"; exit ( 1 ); } if ( i == nt ) { break; } l = i + 1; for ( j = l; j <= nt; j ++ ) { jp = abs ( ndx[j-1] ); if ( jp != 0 ) { if ( jp <= ip + mlt[i-1] && ip <= jp + mlt[j-1] ) { break; } } } } } // // Test some parameters. // if ( nst < ( n + 1 ) / 2 ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " NST < ( N + 1 ) / 2.\n"; exit ( 1 ); } if ( zemu <= 0.0 ) { cerr << "\n"; cerr << "CAWIQ - Fatal error!\n"; cerr << " ZEMU <= 0.\n"; exit ( 1 ); } wts = new double[nwts]; // // Treat a quadrature formula with 1 simple knot first. // if ( n <= 1 ) { for ( i = 0; i < nt; i++ ) { if ( 0 < ndx[i] ) { wts[ abs ( ndx[i] ) - 1 ] = zemu; return wts; } } } // // Carry out diagonalization if not already done. // if ( *jdf == 0 ) { // // Set unit vector in work field to get back first row of Q. // z = new double[nst]; for ( i = 0; i < nst; i++ ) { z[i] = 0.0; } z[0] = 1.0; // // Diagonalize the Jacobi matrix. // imtqlx ( nst, aj, bj, z ); // // Signal Jacobi matrix now diagonalized successfully. // *jdf = 1; // // Save squares of first row of U in subdiagonal array. // for ( i = 0; i < nst; i++ ) { bj[i] = z[i] * z[i]; } delete [] z; } // // Find all the weights for each knot flagged. // for ( i = 1; i <= nt; i++ ) { if ( ndx[i-1] <= 0 ) { continue; } m = mlt[i-1]; mnm = i4_max ( n - m, 1 ); l = i4_min ( m, n - m + 1 ); // // Set up K-hat matrix for CWIQD with knots according to their multiplicities. // xk = new double[mnm]; k = 1; for ( j = 1; j <= nt; j++ ) { if ( ndx[j-1] != 0 ) { if ( j != i ) { for ( jj = 1; jj <= mlt[j-1]; jj++ ) { xk[k-1] = t[j-1]; k = k + 1; } } } } // // Set up the right principal vector. // r = new double[l]; r[0] = 1.0 / zemu; for ( j = 1; j < l; j++ ) { r[j] = 0.0; } // // Pick up pointer for the location of the weights to be output. // k = ndx[i-1]; // // Find all the weights for this knot. // wtmp = cwiqd ( m, mnm, l, t[i-1], xk, nst, aj, bj, r ); delete [] r; delete [] xk; for ( j = 0; j < m; j++ ) { wts[k-1+j] = wtmp[j]; } delete [] wtmp; if ( key < 0 ) { continue; } // // Divide by factorials for weights in standard form. // tmp = 1.0; for ( j = 1; j < m - 1; j++ ) { p = j; tmp = tmp * p; wts[k-1+j] = wts[k-1+j] / tmp; } } return wts; } //****************************************************************************80 void cdgqf ( int nt, int kind, double alpha, double beta, double t[], double wts[] ) //****************************************************************************80 // // Purpose: // // CDGQF computes a Gauss quadrature formula with default A, B and simple knots. // // Discussion: // // This routine computes all the knots and weights of a Gauss quadrature // formula with a classical weight function with default values for A and B, // and only simple knots. // // There are no moments checks and no printing is done. // // Use routine EIQFS to evaluate a quadrature computed by CGQFS. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Output, double T[NT], the knots. // // Output, double WTS[NT], the weights. // { double *aj; double *bj; double zemu; parchk ( kind, 2 * nt, alpha, beta ); // // Get the Jacobi matrix and zero-th moment. // aj = new double[nt]; bj = new double[nt]; zemu = class_matrix ( kind, nt, alpha, beta, aj, bj ); // // Compute the knots and weights. // sgqf ( nt, aj, bj, zemu, t, wts ); delete [] aj; delete [] bj; return; } //****************************************************************************80 double cegqf ( int nt, int kind, double alpha, double beta, double a, double b, double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // CEGQF computes a quadrature formula and applies it to a function. // // Discussion: // // The user chooses the quadrature formula to be used, as well as the // interval (A,B) in which it is applied. // // Note that the knots and weights of the quadrature formula are not // returned to the user. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The value I will always be 0. The value X will always be a knot. // // Output, double CEGQF, the value of the quadrature formula // applied to F. // { int lo; double qfsum; double *t; double *wts; lo = 0; t = new double[nt]; wts = new double[nt]; cgqf ( nt, kind, alpha, beta, a, b, lo, t, wts ); // // Evaluate the quadrature sum. // qfsum = eiqfs ( nt, t, wts, f ); delete [] t; delete [] wts; return qfsum; } //****************************************************************************80 double cegqfs ( int nt, int kind, double alpha, double beta, double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // CEGQFS estimates an integral using a standard quadrature formula. // // Discussion: // // The user chooses one of the standard quadrature rules // with the default values of A and B. This routine determines // the corresponding weights and evaluates the quadrature formula // on a given function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The value I will always be 0. The value X will always be a knot. // // Output, double CEGQFS, the value of the quadrature formula // applied to F. // { int lu; double qfsum; double *t; double *wts; lu = 0; t = new double[nt]; wts = new double[nt]; cgqfs ( nt, kind, alpha, beta, lu, t, wts ); // // Evaluate the quadrature sum. // qfsum = eiqfs ( nt, t, wts, f ); delete [] t; delete [] wts; return qfsum; } //****************************************************************************80 double ceiqf ( int nt, double t[], int mlt[], int kind, double alpha, double beta, double a, double b, double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // CEIQF constructs and applies a quadrature formula based on user knots. // // Discussion: // // The knots may have multiplicity. The quadrature interval is over // any valid A, B. A classical weight function is selected by the user. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The highest value of I will be the maximum value in MLT minus // one. The value X will always be a knot. // // Output, double CEIQF, the value of the quadrature formula // applied to F. // { int i; int key; int lu; int n; int *ndx; double qfsum; double *wts; lu = 0; n = 0; for ( i = 0; i < nt; i++ ) { n = n + mlt[i]; } key = 1; ndx = new int[nt]; wts = ciqf ( nt, t, mlt, n, ndx, key, kind, alpha, beta, a, b, lu ); qfsum = eiqf ( nt, t, mlt, wts, n, ndx, key, f ); delete [] ndx; delete [] wts; return qfsum; } //****************************************************************************80 double ceiqfs ( int nt, double t[], int mlt[], int kind, double alpha, double beta, double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // CEIQFS computes and applies a quadrature formula based on user knots. // // Discussion: // // The knots may have multiplicity. The quadrature interval is over // the standard interval A, B for the classical weight function selected // by the user. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The highest value of I will be the maximum value in MLT minus // one. The value X will always be a knot. // // Output, double CEIQFS, the value of the quadrature formula // applied to F. // { int i; int key; int lu; int n; int *ndx; double qfsum; double *wts; lu = 0; n = 0; for ( i = 0; i < nt; i++ ) { n = n + mlt[i]; } ndx = new int[nt]; key = 1; wts = ciqfs ( nt, t, mlt, n, ndx, key, kind, alpha, beta, lu ); qfsum = eiqf ( nt, t, mlt, wts, n, ndx, key, f ); delete [] ndx; delete [] wts; return qfsum; } //****************************************************************************80 void cgqf ( int nt, int kind, double alpha, double beta, double a, double b, int lo, double t[], double wts[] ) //****************************************************************************80 // // Purpose: // // CGQF computes knots and weights of a Gauss quadrature formula. // // Discussion: // // The user may specify the interval (A,B). // // Only simple knots are produced. // // Use routine EIQFS to evaluate this quadrature formula. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints, or // other parameters. // // Input, int LO, defines the actions: // < 0, compute knots and weights, and print. // = 0, compute knots and weights. // > 0, compute knots and weights, print, and do moment check. // // Output, double T[NT], the knots. // // Output, double WTS[NT], the weights. // { int i; int key; int m; int mex; int *mlt; int mmex; int mop; int *ndx; // // Check that there is enough workspace and assign it. // key = 1; mop = 2 * nt; m = mop + 1; mex = m + 2; mmex = i4_max ( mex, 1 ); if ( lo <= 0 ) { mex = 0; } // // Compute the Gauss quadrature formula for default values of A and B. // cdgqf ( nt, kind, alpha, beta, t, wts ); // // Prepare to scale the quadrature formula to other weight function with // valid A and B. // mlt = new int[nt]; for ( i = 0; i < nt; i++ ) { mlt[i] = 1; } ndx = new int[nt]; for ( i = 0; i < nt; i++ ) { ndx[i] = i + 1; } scqf ( nt, t, mlt, wts, nt, ndx, wts, t, kind, alpha, beta, a, b ); // // Exit if no print required. // if ( lo != 0 ) { chkqf ( t, wts, mlt, nt, nt, ndx, key, mop, mmex, kind, alpha, beta, lo, a, b ); } delete [] mlt; delete [] ndx; return; } //****************************************************************************80 void cgqfs ( int nt, int kind, double alpha, double beta, int lo, double t[], double wts[] ) //****************************************************************************80 // // Purpose: // // CGQFS computes knots and weights of a Gauss quadrature formula. // // Discussion: // // This routine computes the knots and weights of a Gauss quadrature // formula with: // // * a classical weight function with default values for A and B; // * only simple knots // * optionally print knots and weights and a check of the moments // // Use routine EIQFS to evaluate a quadrature formula computed by // this routine. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, int LO, selects the action. // > 0, compute and print knots and weights. Print moments check. // = 0, compute knots and weights. // < 0, compute and print knots and weights. // // Output, double T[NT], the knots. // // Output, double WTS[NT], the weights. // { int i; int key; int m; int mex; int *mlt; int mmex; int mop; int *ndx; double *w; // // Check there is enough workfield and assign workfield // key = 1; mop = 2 * nt; m = mop + 1; mex = m + 2; mmex = i4_max ( mex, 1 ); // // Compute the Gauss quadrature formula for default values of A and B. // cdgqf ( nt, kind, alpha, beta, t, wts ); // // Exit if no print required. // if ( lo != 0 ) { mlt = new int[nt]; for ( i = 0; i < nt; i++ ) { mlt[i] = 1; } ndx = new int[nt]; for ( i = 0; i < nt; i++ ) { ndx[i] = i + 1; } w = new double[mmex]; chkqfs ( t, wts, mlt, nt, nt, ndx, key, w, mop, mmex, kind, alpha, beta, lo ); delete [] mlt; delete [] ndx; delete [] w; } return; } //****************************************************************************80 void chkqf ( double t[], double wts[], int mlt[], int nt, int nwts, int ndx[], int key, int mop, int mex, int kind, double alpha, double beta, int lo, double a, double b ) //****************************************************************************80 // // Purpose: // // CHKQF computes and prints the moments of a quadrature formula. // // Discussion: // // The quadrature formula is based on a clasical weight function with // any valid A, B. // // No check can be made for non-classical weight functions. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, double T[NT], the knots. // // Input, double WTS[NWTS], the weights. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int NT, the number of knots. // // Input, int NWTS, the number of weights. // // Input, int NDX[NT], used to index the array WTS. // If KEY = 1, then NDX need not be preset. For more details see the // comments in CAWIQ. // // Input, int KEY, indicates the structure of the WTS // array. It will normally be set to 1. This will cause the weights to be // packed sequentially in array WTS. For more details see the comments // in CAWIQ. // // Input, int MOP, the expected order of precision of the // quadrature formula. // // Input, int MEX, the number of moments required to be // tested. Set MEX = 1 and LO < 0 for no moments check. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, int LO, selects the action to carry out. // > 0, print weights and moment tests. // = 0, print nothing. compute moment test. // < 0, print weights only. don't compute moment tests. // // Input, double A, B, the interval endpoints. // { int i; int izero; int neg; double *t2; double tmp; double *w; w = new double[mex]; parchk ( kind, mex, alpha, beta ); if ( lo != 0 ) { izero = 0; cout << "\n"; cout << " Interpolatory quadrature formula\n"; cout << "\n"; cout << " Type Interval Weight function Name\n"; cout << "\n"; if ( kind == 1 ) { cout << " 1 (a,b) 1.0 Legendre\n"; } else if ( kind == 2 ) { cout << " 2 (a,b) ((b-x)*(x-a))^(-0.5) Chebyshev Type 1\n"; } else if ( kind == 3 ) { cout << " 3 (a,b) ((b-x)*(x-a))^alpha Gegenbauer\n"; } else if ( kind == 4 ) { cout << " 4 (a,b) (b-x)^alpha*(x-a)^beta Jacobi\n"; } else if ( kind == 5 ) { cout << " 5 (a,+oo) (x-a)^alpha*exp(-b*(x-a)) Gen Laguerre\n"; } else if ( kind == 6 ) { cout << " 6 (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) Gen Hermite\n"; } else if ( kind == 7 ) { cout << " 7 (a,b) |x-(a+b)/2.0|^alpha Exponential\n"; } else if ( kind == 8 ) { cout << " 8 (a,+oo) (x-a)^alpha*(x+b)^beta Rational\n"; } else if ( kind == 9 ) { cout << " 9 (a,b) (b-x)*(x-a)^(+0.5) Chebyshev Type 2\n"; } cout << "\n"; cout << " Parameters A " << a << "\n"; cout << " B " << b << "\n"; if ( 3 <= kind && kind <= 8 ) { cout << " alpha " << alpha << "\n"; } if ( kind == 4 || kind == 8 ) { cout << " beta " << beta << "\n"; } chkqfs ( t, wts, mlt, nt, nwts, ndx, key, w, mop, mex, izero, alpha, beta, - abs ( lo ) ); } if ( 0 <= lo ) { // // Compute the moments in W. // w = scmm ( mex, kind, alpha, beta, a, b ); if ( kind == 1 || kind == 2 || kind == 3 || kind == 4 || kind == 7 || kind == 9 ) { tmp = ( b + a ) / 2.0; } else if ( kind == 5 || kind == 6 || kind == 8 ) { tmp = a; } t2 = new double[nt]; for ( i = 0; i < nt; i++ ) { t2[i] = t[i] - tmp; } neg = -1; // // Check moments. // chkqfs ( t2, wts, mlt, nt, nwts, ndx, key, w, mop, mex, neg, alpha, beta, lo ); delete [] t2; } delete [] w; return; } //****************************************************************************80 void chkqfs ( double t[], double wts[], int mlt[], int nt, int nwts, int ndx[], int key, double w[], int mop, int mex, int kind, double alpha, double beta, int lo ) //****************************************************************************80 // // Purpose: // // CHKQFS checks the polynomial accuracy of a quadrature formula. // // Discussion: // // This routine will optionally print weights, and results of a moments test. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, double T[NT], the knots. // // Input, double WTS[NWTS], the weights. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int NT, the number of knots. // // Input, int NWTS, the number of weights. // // Input, int NDX[NT], used to index the array WTS. // If KEY = 1, then NDX need not be preset. For more details see the // comments in CAWIQ. // // Input, int KEY, indicates the structure of the WTS // array. It will normally be set to 1. This will cause the weights to be // packed sequentially in array WTS. For more details see the comments // in CAWIQ. // // Input/output, double W[MEX], the moments array. // This is input only if KIND = 0. // // Input, int MOP, the expected order of precision of the // quadrature formula. // // Input, int MEX, the number of moments to be tested. // MEX must be at least 1. Set MEX = 1 and LO < 0 for no moment check. // // Input, int KIND, the rule. // 0, unknown weight function (the user must set the first MEX moments in // array W in this case.) // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, int LO, selects the action to carry out. // > 0, print weights and moment tests. // = 0, print nothing. Dompute moment test. // < 0, print weights only. Do not compute moment tests. // // Local Parameters: // // Local, double E[MEX], ER[MEX], the absolute and relative // errors of the quadrature formula applied to (X-DEL)^n. // // Local, double QM[MEX], the values of the quadrature formula // applied to (X-DEL)^N. // { double *e; double ek; double emn; double emx; double erest; double ern; double erx; double *er; int i; int j; int jl; int k; int kindp; int kjl; int l; int m; int mx; double px; double tmp; double tmpx; double prec; double *qm; // // KIND may be set to -1 to allow printing of moments only. // // This feature is only used internally, by CHKQF. // kindp = i4_max ( 0, kind ); if ( lo != 0 && kind != -1 ) { if ( kindp != 0 ) { cout << "\n"; cout << " Interpolatory quadrature formula\n"; cout << "\n"; cout << " Type Interval Weight function Name\n"; cout << "\n"; if ( kindp == 1 ) { cout << " 1 (-1,+1) 1.0 Legendre\n"; } else if ( kindp == 2 ) { cout << " 2 (-1,+1) ((b-x)*(x-a))^(-0.5) Chebyshev Type 1\n"; } else if ( kindp == 3 ) { cout << " 3 (-1,+1) ((b-x)*(x-a))^alpha Gegenbauer\n"; } else if ( kindp == 4 ) { cout << " 4 (-1,+1) (b-x)^alpha*(x-a)^beta Jacobi\n"; } else if ( kindp == 5 ) { cout << " 5 (a,+oo) (x-a)^alpha*exp(-b*(x-a)) Gen Laguerre\n"; } else if ( kindp == 6 ) { cout << " 6 (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) Gen Hermite\n"; } else if ( kindp == 7 ) { cout << " 7 (-1,+1) |x-(a+b)/2.0|^alpha Exponential\n"; } else if ( kindp == 8 ) { cout << " 8 (0,+oo) (x-a)^alpha*(x+b)^beta Rational\n"; } else if ( kindp == 9 ) { cout << " 9 (-1,+1) ((b-x)*(x-a))^(+0.5) Chebyshev Type 2\n"; } if ( 3 <= kindp && kindp <= 8 ) { cout << " alpha " << alpha << "\n"; } if ( kindp == 4 || kindp == 8 ) { cout << " beta " << beta << "\n"; } } if ( kind != -1 ) { prec = DBL_EPSILON; cout << "\n"; cout << " Machine precision = " << prec << "\n"; } cout << "\n"; cout << " Knots Mult Weights\n"; cout << "\n"; for ( i = 1; i <= nt; i++ ) { k = abs ( ndx[i-1] ); if ( k != 0 ) { cout << setw(4) << i << setw(26) << setprecision(17) << t[i-1] << setw(4) << mlt[i-1] << setw(26) << setprecision(17) << wts[k-1] << "\n"; for ( j = k + 1; j <= k + mlt[i-1] - 1; j++ ) { cout << " " << setw(26) << setprecision(17) << wts[j-1] << "\n"; } } } } if ( lo < 0 ) { return; } // // Compute the moments in W. // if ( kindp != 0 ) { w = wm ( mex, kindp, alpha, beta ); } e = new double[mex]; er = new double[mex]; qm = new double[mex]; for ( j = 0; j < mex; j++ ) { qm[j] = 0.0; } erest = 0.0; for ( k = 1; k <= nt; k++ ) { tmp = 1.0; l = abs ( ndx[k-1] ); if ( l == 0 ) { continue; } erest = erest + fabs ( wts[l-1] ); for ( j = 1; j <= mex; j++ ) { qm[j-1] = qm[j-1] + tmp * wts[l-1]; tmpx = tmp; px = 1.0; for( jl = 2; jl <= i4_min ( mlt[k-1], mex - j + 1 ); jl++ ) { kjl = j + jl - 1; tmpx = tmpx * ( kjl - 1 ); qm[kjl-1] = qm[kjl-1] + tmpx * wts[l+jl-2] / px; if ( key <= 0 ) { px = px * jl; } } tmp = tmp * t[k-1]; } } for ( j = 0; j < mex; j++ ) { e[j] = w[j] - qm[j]; er[j] = e[j] / ( fabs ( w[j] ) + 1.0 ); } // // For some strange weight functions W(1) may vanish. // erest = erest / ( fabs ( w[0] ) + 1.0 ); if ( 0 < lo ) { m = mop + 1; mx = i4_min ( mop, mex ); emx = fabs ( e[0] ); emn = emx; erx = fabs ( er[0] ); ern = erx; for ( k = 1; k < mx; k++ ) { emx = fmax ( fabs ( e[k] ), emx ); emn = fmin ( fabs ( e[k] ), emn ); erx = fmax ( fabs ( er[k] ), erx ); ern = fmin ( fabs ( er[k] ), ern ); } cout << "\n"; cout << " Comparison of moments\n"; cout << "\n"; cout << " Order of precision " << mop << "\n"; cout << " Errors : Absolute Relative\n"; cout << " ---------+-------------------------\n"; cout << " Minimum :" << setw(12) << setprecision(3) << emn << " " << setw(12) << setprecision(3) << ern << "\n"; cout << " Maximum :" << setw(12) << setprecision(3) << emx << " " << setw(12) << setprecision(3) << erx << "\n"; cout << "\n"; cout << " Weights ratio " << setw(12) << setprecision(3) << erest << "\n"; if ( m <= mex ) { ek = e[m-1]; for ( j = 1; j <= mop; j++ ) { ek = ek / ( double ) ( j ); } cout << " Error in " << mop << "th power " << setw(12) << setprecision(3) << e[m-1] << "\n"; cout << " Error constant " << setw(12) << setprecision(3) << ek << "\n"; } cout << "\n"; cout << " Moments:\n"; cout << "\n"; cout << " True from QF Error Relative\n"; cout << "\n"; for ( j = 1; j <= mx; j++ ) { cout << setw(4) << j << setw(19) << setprecision(10) << w[j-1] << setw(19) << setprecision(10) << qm[j-1] << setw(12) << setprecision(3) << e[j-1] << setw(12) << setprecision(3) << er[j-1] << "\n"; } cout << "\n"; for ( j = m; j <= mex; j++ ) { cout << setw(4) << j << setw(19) << setprecision(10) << w[j-1] << setw(19) << setprecision(10) << qm[j-1] << setw(12) << setprecision(3) << e[j-1] << setw(12) << setprecision(3) << er[j-1] << "\n"; } } delete [] e; delete [] er; delete [] qm; return; } //****************************************************************************80 double *ciqf ( int nt, double t[], int mlt[], int nwts, int ndx[], int key, int kind, double alpha, double beta, double a, double b, int lo ) //****************************************************************************80 // // Purpose: // // CIQF computes weights for a classical weight function and any interval. // // Discussion: // // This routine compute somes or all the weights of a quadrature formula // for a classical weight function with any valid A, B and a given set of // knots and multiplicities. // // The weights may be packed into the output array WTS according to a // user-defined pattern or sequentially. // // The routine will also optionally print knots and weights and a check // of the moments. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int NWTS, the number of weights. // // Input/output, int NDX[NT], used to index the output // array WTS. If KEY = 1, then NDX need not be preset. For more // details see the comments in CAWIQ. // // Input, int KEY, indicates the structure of the WTS // array. It will normally be set to 1. This will cause the weights to be // packed sequentially in array WTS. For more details see the comments // in CAWIQ. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // // Input, int LO, selects the actions to perform. // > 0, compute and print weights. Print moments check. // = 0, compute weights. // < 0, compute and print weights. // // Output, double CIQF[NWTS], the weights. // { int j; int l; int lu; int m; int mex; int mop; double *st; double *wts; m = 1; l = abs ( key ); for ( j = 0; j < nt; j++ ) { if ( l == 1 || abs ( ndx[j] ) != 0 ) { m = m + mlt[j]; } } if ( nwts + 1 < m ) { cerr << "\n"; cerr << "CIQF - Fatal error!\n"; cerr << " NWTS + 1 < M.\n"; exit ( 1 ); } mex = 2 + m; // // Scale the knots to default A, B. // st = sct ( nt, t, kind, a, b ); // // Compute the weights. // lu = 0; wts = ciqfs ( nt, st, mlt, nwts, ndx, key, kind, alpha, beta, lu ); // // Don't scale user's knots - only scale weights. // scqf ( nt, st, mlt, wts, nwts, ndx, wts, st, kind, alpha, beta, a, b ); if ( lo != 0 ) { mop = m - 1; chkqf ( t, wts, mlt, nt, nwts, ndx, key, mop, mex, kind, alpha, beta, lo, a, b ); } return wts; } //****************************************************************************80 double *ciqfs ( int nt, double t[], int mlt[], int nwts, int ndx[], int key, int kind, double alpha, double beta, int lo ) //****************************************************************************80 // // Purpose: // // CIQFS computes some weights of a quadrature formula in the default interval. // // Discussion: // // This routine computes some or all the weights of a quadrature formula // for a classical weight function with default values of A and B, // and a given set of knots and multiplicities. // // The weights may be packed into the output array WTS according to a // user-defined pattern or sequentially. // // The routine will also optionally print knots and weights and a check of // the moments. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, int NWTS, the number of weights. // // Input/output, int NDX[NT], used to index the output // array WTS. If KEY = 1, then NDX need not be preset. For more // details see the comments in CAWIQ. // // Input, int KEY, indicates the structure of the WTS // array. It will normally be set to 1. For more details see // the comments in CAWIQ. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, int LO, selects the actions to perform. // > 0, compute and print weights. Print moments check. // = 0, compute weights. // < 0, compute and print weights. // // Output, double CIQFS[NWTS], the weights. // { double *aj; double *bj; int j; int jdf; int l; int m; int mex; int mop; int n; int nst; double *w; double *wts; double zemu; jdf = 0; n = 0; l = abs ( key ); for ( j = 0; j < nt; j++ ) { if ( l == 1 || abs ( ndx[j] ) != 0 ) { n = n + mlt[j]; } } // // N knots when counted according to multiplicity. // if ( nwts < n ) { cerr << "\n"; cerr << "CIQFS - Fatal error!\n"; cerr << " NWTS < N.\n"; exit ( 1 ); } m = n + 1; mex = 2 + m; nst = m / 2; // // Get the Jacobi matrix. // aj = new double[nst]; bj = new double[nst]; zemu = class_matrix ( kind, nst, alpha, beta, aj, bj ); // // Call weights routine. // wts = cawiq ( nt, t, mlt, n, ndx, key, nst, aj, bj, &jdf, zemu ); delete [] aj; delete [] bj; // // // Call checking routine. // if ( lo != 0 ) { mop = m - 1; w = new double[mex]; chkqfs ( t, wts, mlt, nt, n, ndx, key, w, mop, mex, kind, alpha, beta, lo ); delete [] w; } return wts; } //****************************************************************************80 double class_matrix ( int kind, int m, double alpha, double beta, double aj[], double bj[] ) //****************************************************************************80 // // Purpose: // // CLASS_MATRIX computes the Jacobi matrix for a quadrature rule. // // Discussion: // // This routine computes the diagonal AJ and sub-diagonal BJ // elements of the order M tridiagonal symmetric Jacobi matrix // associated with the polynomials orthogonal with respect to // the weight function specified by KIND. // // For weight functions 1-7, M elements are defined in BJ even // though only M-1 are needed. For weight function 8, BJ(M) is // set to zero. // // The zero-th moment of the weight function is returned in ZEMU. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, int M, the order of the Jacobi matrix. // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Output, double AJ[M], BJ[M], the diagonal and subdiagonal // of the Jacobi matrix. // // Output, double CLASS_MATRIX, the zero-th moment. // { double a2b2; double ab; double aba; double abi; double abj; double abti; double apone; int i; double pi = 3.14159265358979323846264338327950; double temp; double temp2; double zemu; temp = DBL_EPSILON; parchk ( kind, 2 * m - 1, alpha, beta ); temp2 = 0.5; if ( 500.0 * temp < fabs ( pow ( tgamma ( temp2 ), 2 ) - pi ) ) { cerr << "\n"; cerr << "CLASS_MATRIX - Fatal error!\n"; cerr << " Gamma function does not match machine parameters.\n"; exit ( 1 ); } if ( kind == 1 ) { ab = 0.0; zemu = 2.0 / ( ab + 1.0 ); for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } for ( i = 1; i <= m; i++ ) { abi = i + ab * ( i % 2 ); abj = 2 * i + ab; bj[i-1] = sqrt ( abi * abi / ( abj * abj - 1.0 ) ); } } else if ( kind == 2 ) { zemu = pi; for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } bj[0] = sqrt ( 0.5 ); for ( i = 1; i < m; i++ ) { bj[i] = 0.5; } } else if ( kind == 3 ) { ab = alpha * 2.0; zemu = pow ( 2.0, ab + 1.0 ) * pow ( tgamma ( alpha + 1.0 ), 2 ) / tgamma ( ab + 2.0 ); for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } bj[0] = sqrt ( 1.0 / ( 2.0 * alpha + 3.0 ) ); for ( i = 2; i <= m; i++ ) { bj[i-1] = sqrt ( i * ( i + ab ) / ( 4.0 * pow ( i + alpha, 2 ) - 1.0 ) ); } } else if ( kind == 4 ) { ab = alpha + beta; abi = 2.0 + ab; zemu = pow ( 2.0, ab + 1.0 ) * tgamma ( alpha + 1.0 ) * tgamma ( beta + 1.0 ) / tgamma ( abi ); aj[0] = ( beta - alpha ) / abi; bj[0] = sqrt ( 4.0 * ( 1.0 + alpha ) * ( 1.0 + beta ) / ( ( abi + 1.0 ) * abi * abi ) ); a2b2 = beta * beta - alpha * alpha; for ( i = 2; i <= m; i++ ) { abi = 2.0 * i + ab; aj[i-1] = a2b2 / ( ( abi - 2.0 ) * abi ); abi = abi * abi; bj[i-1] = sqrt ( 4.0 * i * ( i + alpha ) * ( i + beta ) * ( i + ab ) / ( ( abi - 1.0 ) * abi ) ); } } else if ( kind == 5 ) { zemu = tgamma ( alpha + 1.0 ); for ( i = 1; i <= m; i++ ) { aj[i-1] = 2.0 * i - 1.0 + alpha; bj[i-1] = sqrt ( i * ( i + alpha ) ); } } else if ( kind == 6 ) { zemu = tgamma ( ( alpha + 1.0 ) / 2.0 ); for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } for ( i = 1; i <= m; i++ ) { bj[i-1] = sqrt ( ( i + alpha * ( i % 2 ) ) / 2.0 ); } } else if ( kind == 7 ) { ab = alpha; zemu = 2.0 / ( ab + 1.0 ); for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } for ( i = 1; i <= m; i++ ) { abi = i + ab * ( i % 2 ); abj = 2 * i + ab; bj[i-1] = sqrt ( abi * abi / ( abj * abj - 1.0 ) ); } } else if ( kind == 8 ) { ab = alpha + beta; zemu = tgamma ( alpha + 1.0 ) * tgamma ( - ( ab + 1.0 ) ) / tgamma ( - beta ); apone = alpha + 1.0; aba = ab * apone; aj[0] = - apone / ( ab + 2.0 ); bj[0] = - aj[0] * ( beta + 1.0 ) / ( ab + 2.0 ) / ( ab + 3.0 ); for ( i = 2; i <= m; i++ ) { abti = ab + 2.0 * i; aj[i-1] = aba + 2.0 * ( ab + i ) * ( i - 1 ); aj[i-1] = - aj[i-1] / abti / ( abti - 2.0 ); } for ( i = 2; i <= m - 1; i++ ) { abti = ab + 2.0 * i; bj[i-1] = i * ( alpha + i ) / ( abti - 1.0 ) * ( beta + i ) / ( abti * abti ) * ( ab + i ) / ( abti + 1.0 ); } bj[m-1] = 0.0; for ( i = 0; i < m; i++ ) { bj[i] = sqrt ( bj[i] ); } } else if ( kind == 9 ) { zemu = pi / 2.0; for ( i = 0; i < m; i++ ) { aj[i] = 0.0; } for ( i = 0; i < m; i++ ) { bj[i] = 0.5; } } return zemu; } //****************************************************************************80 double *cliqf ( int nt, double t[], int kind, double alpha, double beta, double a, double b, int lo ) //****************************************************************************80 // // Purpose: // // CLIQF computes a classical quadrature formula, with optional printing. // // Discussion: // // This routine computes all the weights of an interpolatory // quadrature formula with // 1. only simple knots and // 2. a classical weight function with any valid A and B, and // 3. optionally prints the knots and weights and a check of the moments. // // To evaluate this quadrature formula for a given function F, // call routine EIQFS. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // // Input, int LO, indicates what is to be done. // > 0, compute and print weights and moments check. // = 0, compute weights. // < 0, compute and print weights. // // Output, double CLIQF[NT], the weights. // { int i; int key; int *mlt; int *ndx; double *wts; key = 1; mlt = new int[nt]; for ( i = 0; i < nt; i++ ) { mlt[i] = 1; } ndx = new int[nt]; wts = ciqf ( nt, t, mlt, nt, ndx, key, kind, alpha, beta, a, b, lo ); delete [] mlt; delete [] ndx; return wts; } //****************************************************************************80 double *cliqfs ( int nt, double t[], int kind, double alpha, double beta, int lo ) //****************************************************************************80 // // Purpose: // // CLIQFS computes the weights of a quadrature formula in the default interval. // // Discussion: // // This routine computes the weights of an interpolatory quadrature formula // with a classical weight function, in the default interval A, B, // using only simple knots. // // It can optionally print knots and weights and a check of the moments. // // To evaluate a quadrature computed by CLIQFS, call EIQFS. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, int LO, chooses the printing option. // > 0, compute weights, print them, print the moment check results. // 0, compute weights. // < 0, compute weights and print them. // // Output, double CLIQFS[NT], the weights. // { int i; int key; int *mlt; int *ndx; double *wts; key = 1; mlt = new int[nt]; for ( i = 0; i < nt; i++ ) { mlt[i] = 1; } ndx = new int[nt]; wts = ciqfs ( nt, t, mlt, nt, ndx, key, kind, alpha, beta, lo ); delete [] mlt; delete [] ndx; return wts; } //****************************************************************************80 double *cwiqd ( int m, int nm, int l, double v, double xk[], int nstar, double phi[], double a[], double r[] ) //****************************************************************************80 // // Purpose: // // CWIQD computes all the weights for a given knot. // // Discussion: // // The variable names correspond to the 1982 reference, and explanations of // some of the terminology may be found there. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Jaroslav Kautsky, Sylvan Elhay, // Calculation of the Weights of Interpolatory Quadratures, // Numerische Mathematik, // Volume 40, 1982, pages 407-422. // // Parameters: // // Input, int M, the multiplicity of the knot in question. // // Input, int NM, is equal to max ( N - M, 1 ), where N is // the number of knots used, counted according to multiplicity. // // Input, int L, min ( M, N - M + 1), where N is the number // of knots used, counted according to multiplicity. // // Input, double V, the knot in question. // // Input, double XK[NM], all but the last M entries in the // diagonal of K-hat. // // Input, int NSTAR, the dimension of the Jacobi matrix. // // Input, double PHI[NSTAR], the eigenvalues of the Jacobi matrix. // // Input, double A[NSTAR], the square of the first row of the // orthogonal matrix that diagonalizes the Jacobi matrix. // // Input, double R[L], used to compute the right // principal vectors. // // Output, double CWIQD[M], the weights. // { double *d; int i; int j; int jr; int k; int last; int minil; double sum; double tmp; double *wf; double *y; double *z; d = new double[m]; wf = new double[nstar]; y = new double[m]; z = new double[m]; // // Compute products required for Y-hat. // for ( j = 0; j < nstar; j++ ) { wf[j] = a[j]; for (i = 0; i < nm; i++ ) { wf[j] = wf[j] * ( phi[j] - xk[i] ); } } // // Compute Y-hat. // for ( i = 0; i < m; i++ ) { sum = 0.0; for ( j = 0; j < nstar; j++ ) { sum = sum + wf[j]; wf[j] = wf[j] * ( phi[j] - v ); } y[i] = sum; } // // If N = 1 the right principal vector is already in R. // Otherwise compute the R-principal vector of grade M-1. // for ( i = 1; i <= nm; i++ ) { tmp = v - xk[i-1]; last = i4_min ( l, i + 1 ); for ( jr = 2; jr <= last; jr++ ) { j = last - jr + 2; r[j-1] = tmp * r[j-1] + r[j-2]; } r[0] = tmp * r[0]; } // // Compute left principal vector(s) and weight for highest derivative. // The following statement contains the only division in this // routine. Any test for overflow should be made after it. // d[m-1] = y[m-1] / r[0]; if ( m == 1 ) { delete [] wf; delete [] y; delete [] z; return d; } // // Compute left principal vector. // z[0] = 1.0 / r[0]; for ( i = 2; i <= m; i++ ) { sum = 0.0; minil = i4_min ( i, l ); for ( j = 2; j <= minil; j++ ) { k = i - j + 1; sum = sum + r[j-1] * z[k-1]; } z[i-1] = - sum * z[0]; } // // Accumulate weights. // for ( i = 2; i <= m; i++ ) { sum = 0.0; for ( j = 1; j <= i; j++ ) { k = m - i + j; sum = sum + z[j-1] * y[k-1]; } k = m - i + 1; d[k-1] = sum; } delete [] wf; delete [] y; delete [] z; return d; } //****************************************************************************80 double eiqf ( int nt, double t[], int mlt[], double wts[], int nwts, int ndx[], int key, double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // EIQF evaluates an interpolatory quadrature formula. // // Discussion: // // The knots, weights and integrand are supplied. // // All knots with nonzero NDX are used. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, double WTS[NWTS], the weights. // // Input, int NWTS, the number of weights. // // Input, int NDX[NT], used to index the array WTS. // If KEY = 1, then NDX need not be preset. For more details see the // comments in CAWIQ. // // Input, int KEY, indicates the structure of the WTS // array. It will normally be set to 1. This will cause the weights to be // packed sequentially in array WTS. For more details see the comments // in CAWIQ. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The highest value of I will be the maximum value in MLT minus // one. The value X will always be a knot. // // Output, double EIQF, the value of the quadrature formula // applied to F. // { int i; int j; int l; double p; double qfsum; l = abs ( key ); if ( l < 1 || 4 < l ) { cerr << "\n"; cerr << "EIQF - Fatal error!\n"; cerr << " Magnitude of KEY must be between 1 and 4.\n"; exit ( 1 ); } qfsum = 0.0; for ( j = 0; j < nt; j++ ) { l = abs ( ndx[j] ); if ( l != 0 ) { p = 1.0; for ( i = 0; i < mlt[j]; i++ ) { qfsum = qfsum + wts[l+i-1] * f ( t[j], i ) / p; if ( key <= 0 ) { p = p * ( i + 1 ); } } } } return qfsum; } //****************************************************************************80 double eiqfs ( int nt, double t[], double wts[], double f ( double x, int i ) ) //****************************************************************************80 // // Purpose: // // EIQFS evaluates a quadrature formula defined by CLIQF or CLIQFS. // // Discussion: // // This routine evaluates an interpolatory quadrature formula with all knots // simple and all knots included in the quadrature. This routine will be used // typically after CLIQF or CLIQFS has been called. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the knots. // // Input, double WTS[NT], the weights. // // Input, double F ( double X, int I ), the name of a routine which // evaluates the function and some of its derivatives. The routine // must return in F the value of the I-th derivative of the function // at X. The value of I will always be 0. The value X will always be a knot. // // Output, double EIQFS, the value of the quadrature formula // applied to F. // { int j; double qfsum; qfsum = 0.0; for ( j = 0; j < nt; j++ ) { qfsum = qfsum + wts[j] * f ( t[j], 0 ); } return qfsum; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // I4_SIGN returns the sign of an I4. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer whose sign is desired. // // Output, int I4_SIGN, the sign of I. { int value; if ( i < 0 ) { value = -1; } else { value = 1; } return value; } //****************************************************************************80 void imtqlx ( int n, double d[], double e[], double z[] ) //****************************************************************************80 // // Purpose: // // IMTQLX diagonalizes a symmetric tridiagonal matrix. // // Discussion: // // This routine is a slightly modified version of the EISPACK routine to // perform the implicit QL algorithm on a symmetric tridiagonal matrix. // // The authors thank the authors of EISPACK for permission to use this // routine. // // It has been modified to produce the product Q' * Z, where Z is an input // vector and Q is the orthogonal matrix diagonalizing the input matrix. // The changes consist (essentially) of applying the orthogonal transformations // directly to Z as they are generated. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Roger Martin, James Wilkinson, // The Implicit QL Algorithm, // Numerische Mathematik, // Volume 12, Number 5, December 1968, pages 377-383. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, double D(N), the diagonal entries of the matrix. // On output, the information in D has been overwritten. // // Input/output, double E(N), the subdiagonal entries of the // matrix, in entries E(1) through E(N-1). On output, the information in // E has been overwritten. // // Input/output, double Z(N). On input, a vector. On output, // the value of Q' * Z, where Q is the matrix that diagonalizes the // input symmetric tridiagonal matrix. // { double b; double c; double f; double g; int i; int ii; int itn = 30; int j; int k; int l; int m; int mml; double p; double prec; double r; double s; prec = DBL_EPSILON; if ( n == 1 ) { return; } e[n-1] = 0.0; for ( l = 1; l <= n; l++ ) { j = 0; for ( ; ; ) { for ( m = l; m <= n; m++ ) { if ( m == n ) { break; } if ( fabs ( e[m-1] ) <= prec * ( fabs ( d[m-1] ) + fabs ( d[m] ) ) ) { break; } } p = d[l-1]; if ( m == l ) { break; } if ( itn <= j ) { cerr << "\n"; cerr << "IMTQLX - Fatal error!\n"; cerr << " Iteration limit exceeded\n"; exit ( 1 ); } j = j + 1; g = ( d[l] - p ) / ( 2.0 * e[l-1] ); r = sqrt ( g * g + 1.0 ); g = d[m-1] - p + e[l-1] / ( g + fabs ( r ) * r8_sign ( g ) ); s = 1.0; c = 1.0; p = 0.0; mml = m - l; for ( ii = 1; ii <= mml; ii++ ) { i = m - ii; f = s * e[i-1]; b = c * e[i-1]; if ( fabs ( g ) <= fabs ( f ) ) { c = g / f; r = sqrt ( c * c + 1.0 ); e[i] = f * r; s = 1.0 / r; c = c * s; } else { s = f / g; r = sqrt ( s * s + 1.0 ); e[i] = g * r; c = 1.0 / r; s = s * c; } g = d[i] - p; r = ( d[i-1] - g ) * s + 2.0 * c * b; p = s * r; d[i] = g + p; g = c * r - b; f = z[i]; z[i] = s * z[i-1] + c * f; z[i-1] = c * z[i-1] - s * f; } d[l-1] = d[l-1] - p; e[l-1] = g; e[m-1] = 0.0; } } // // Sorting. // for ( ii = 2; ii <= m; ii++ ) { i = ii - 1; k = i; p = d[i-1]; for ( j = ii; j <= n; j++ ) { if ( d[j-1] < p ) { k = j; p = d[j-1]; } } if ( k != i ) { d[k-1] = d[i-1]; d[i-1] = p; p = z[i-1]; z[i-1] = z[k-1]; z[k-1] = p; } } return; } //****************************************************************************80 void parchk ( int kind, int m, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // PARCHK checks parameters ALPHA and BETA for classical weight functions. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, int M, the order of the highest moment to // be calculated. This value is only needed when KIND = 8. // // Input, double ALPHA, BETA, the parameters, if required // by the value of KIND. // { double tmp; if ( kind <= 0 ) { cerr << "\n"; cerr << "PARCHK - Fatal error!\n"; cerr << " KIND <= 0.\n"; exit ( 1 ); } // // Check ALPHA for Gegenbauer, Jacobi, Laguerre, Hermite, Exponential. // if ( 3 <= kind && kind <= 8 && alpha <= -1.0 ) { cerr << "\n"; cerr << "PARCHK - Fatal error!\n"; cerr << " 3 <= KIND and ALPHA <= -1.\n"; exit ( 1 ); } // // Check BETA for Jacobi. // if ( kind == 4 && beta <= -1.0 ) { cerr << "\n"; cerr << "PARCHK - Fatal error!\n"; cerr << " KIND == 4 and BETA <= -1.0.\n"; exit ( 1 ); } // // Check ALPHA and BETA for rational. // if ( kind == 8 ) { tmp = alpha + beta + m + 1.0; if ( 0.0 <= tmp || tmp <= beta ) { cerr << "\n"; cerr << "PARCHK - Fatal error!\n"; cerr << " KIND == 8 but condition on ALPHA and BETA fails.\n"; exit ( 1 ); } } return; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *scmm ( int m, int kind, double alpha, double beta, double a, double b ) //****************************************************************************80 // // Purpose: // // SCMM computes moments of a classical weight function scaled to [A,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int M, the number of moments. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // // Output, double W(M), the scaled moments. // { double al; double be; int i; double p; double q; double temp; double tmp; double *w; temp = DBL_EPSILON; if ( kind == 1 ) { al = 0.0; be = 0.0; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = pow ( q, al + be + 1.0 ); } else if ( kind == 2 ) { al = -0.5; be = -0.5; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = pow ( q, al + be + 1.0 ); } else if ( kind == 3 ) { al = alpha; be = alpha; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = pow ( q, al + be + 1.0 ); } else if ( kind == 4 ) { al = alpha; be = beta; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = pow ( q, al + be + 1.0 ); } else if ( kind == 5 ) { if ( b <= 0.0 ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B <= 0!\n"; exit ( 1 ); } q = 1.0 / b; p = pow ( q, alpha + 1.0 ); } else if ( kind == 6 ) { if ( b <= 0.0 ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B <= 0!\n"; exit ( 1 ); } q = 1.0 / sqrt ( b ); p = pow ( q, alpha + 1.0 ); } else if ( kind == 7 ) { al = alpha; be = 0.0; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = pow ( q, al + be + 1.0 ); } else if ( kind == 8 ) { if ( a + b <= 0.0 ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " A + B <= 0\n"; exit ( 1 ); } q = a + b; p = pow ( q, alpha + beta + 1.0 ); } else if ( kind == 9 ) { if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCMM - Fatal error!\n"; cerr << " B - A too small!\n"; exit ( 1 ); } q = ( b - a ) / 2.0; p = q * q; } // // Compute the moments in W. // w = wm ( m, kind, alpha, beta ); tmp = p; for ( i = 0; i < m; i++ ) { w[i] = w[i] * tmp; tmp = tmp * q; } return w; } //****************************************************************************80 void scqf ( int nt, double t[], int mlt[], double wts[], int nwts, int ndx[], double swts[], double st[], int kind, double alpha, double beta, double a, double b ) //****************************************************************************80 // // Purpose: // // SCQF scales a quadrature formula to a nonstandard interval. // // Discussion: // // The arrays WTS and SWTS may coincide. // // The arrays T and ST may coincide. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the original knots. // // Input, int MLT[NT], the multiplicity of the knots. // // Input, double WTS[NWTS], the weights. // // Input, int NWTS, the number of weights. // // Input, int NDX[NT], used to index the array WTS. // For more details see the comments in CAWIQ. // // Output, double SWTS[NWTS], the scaled weights. // // Output, double ST[NT], the scaled knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Input, double A, B, the interval endpoints. // { double al; double be; int i; int k; int l; double p; double shft; double slp; double temp; double tmp; temp = DBL_EPSILON; parchk ( kind, 1, alpha, beta ); if ( kind == 1 ) { al = 0.0; be = 0.0; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } else if ( kind == 2 ) { al = -0.5; be = -0.5; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } else if ( kind == 3 ) { al = alpha; be = alpha; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } else if ( kind == 4 ) { al = alpha; be = beta; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } else if ( kind == 5 ) { if ( b <= 0.0 ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " B <= 0\n"; exit ( 1 ); } shft = a; slp = 1.0 / b; al = alpha; be = 0.0; } else if ( kind == 6 ) { if ( b <= 0.0 ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " B <= 0.\n"; exit ( 1 ); } shft = a; slp = 1.0 / sqrt ( b ); al = alpha; be = 0.0; } else if ( kind == 7 ) { al = alpha; be = 0.0; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } else if ( kind == 8 ) { if ( a + b <= 0.0 ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " A + B <= 0.\n"; exit ( 1 ); } shft = a; slp = a + b; al = alpha; be = beta; } else if ( kind == 9 ) { al = 0.5; be = 0.5; if ( fabs ( b - a ) <= temp ) { cerr << "\n"; cerr << "SCQF - Fatal error!\n"; cerr << " |B - A| too small.\n"; exit ( 1 ); } shft = ( a + b ) / 2.0; slp = ( b - a ) / 2.0; } p = pow ( slp, al + be + 1.0 ); for ( k = 0; k < nt; k++ ) { st[k] = shft + slp * t[k]; l = abs ( ndx[k] ); if ( l != 0 ) { tmp = p; for ( i = l - 1; i <= l - 1 + mlt[k] - 1; i++ ) { swts[i] = wts[i] * tmp; tmp = tmp * slp; } } } return; } //****************************************************************************80 double *sct ( int nt, double t[], int kind, double a, double b ) //****************************************************************************80 // // Purpose: // // SCT rescales distinct knots to an interval [A,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double T[NT], the original knots. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double A, B, the interval endpoints for which the // knots ST should be scaled. // // Output, double SCT[NT], the scaled knots. // { double bma; int i; double shft; double slp; double *st; double tmp; if ( kind < 1 || 9 < kind ) { cerr << "\n"; cerr << "SCT - Fatal error!\n"; cerr << " KIND falls outside range of 1 to 8.\n"; exit ( 1 ); } if ( kind == 1 || kind == 2 || kind == 3 || kind == 4 || kind == 7 || kind == 9 ) { tmp = DBL_EPSILON; bma = b - a; if ( bma <= tmp ) { cerr << "\n"; cerr << "SCT - Fatal error!\n"; cerr << " B - A too small.\n"; exit ( 1 ); } slp = 2.0 / bma; shft = - ( a + b ) / bma; } else if ( kind == 5 ) { if ( b < 0.0 ) { cerr << "\n"; cerr << "SCT - Fatal error!\n"; cerr << " B < 0.\n"; exit ( 1 ); } slp = b; shft = - a * b; } else if ( kind == 6 ) { if ( b < 0.0 ) { cerr << "\n"; cerr << "SCT - Fatal error!\n"; cerr << " B < 0.\n"; exit ( 1 ); } slp = sqrt ( b ); shft = - a * slp; } else if ( kind == 8 ) { slp = 1.0 / ( a + b ); if ( slp <= 0.0 ) { cerr << "\n"; cerr << "SCT - Fatal error.\n"; cerr << " 1 / ( A + B ) <= 0.\n"; exit ( 1 ); } shft = - a * slp; } st = new double[nt]; for ( i = 0; i < nt; i++ ) { st[i] = shft + slp * t[i]; } return st; } //****************************************************************************80 void sgqf ( int nt, double aj[], double bj[], double zemu, double t[], double wts[] ) //****************************************************************************80 // // Purpose: // // SGQF computes knots and weights of a Gauss Quadrature formula. // // Discussion: // // This routine computes all the knots and weights of a Gauss quadrature // formula with simple knots from the Jacobi matrix and the zero-th // moment of the weight function, using the Golub-Welsch technique. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int NT, the number of knots. // // Input, double AJ[NT], the diagonal of the Jacobi matrix. // // Input/output, double BJ[NT], the subdiagonal of the Jacobi // matrix, in entries 1 through NT-1. On output, BJ has been overwritten. // // Input, double ZEMU, the zero-th moment of the weight function. // // Output, double T[NT], the knots. // // Output, double WTS[NT], the weights. // { int i; // // Exit if the zero-th moment is not positive. // if ( zemu <= 0.0 ) { cerr << "\n"; cerr << "SGQF - Fatal error!\n"; cerr << " ZEMU <= 0.\n"; exit ( 1 ); } // // Set up vectors for IMTQLX. // for ( i = 0; i < nt; i++ ) { t[i] = aj[i]; } wts[0] = sqrt ( zemu ); for ( i = 1; i < nt; i++ ) { wts[i] = 0.0; } // // Diagonalize the Jacobi matrix. // imtqlx ( nt, t, bj, wts ); for ( i = 0; i < nt; i++ ) { wts[i] = wts[i] * wts[i]; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *wm ( int m, int kind, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // WM evaluates the first M moments of classical weight functions. // // Discussion: // // W(K) = Integral ( A <= X <= B ) X**(K-1) * W(X) dx // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int M, the number of moments to evaluate. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Output, double WM[M], the first M moments. // { double als; int i; int ja; int jb; int k; double pi = 3.14159265358979323846264338327950; double rk; double sum; double tmpa; double tmpb; double trm; double *w; parchk ( kind, m, alpha, beta ); w = new double[m]; for ( k = 2; k <= m; k = k + 2 ) { w[k-1] = 0.0; } if ( kind == 1 ) { for ( k = 1; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = 2.0 / rk; } } else if ( kind == 2 ) { w[0] = pi; for ( k = 3; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = w[k-3] * ( rk - 2.0 ) / ( rk - 1.0 ); } } else if ( kind == 3 ) { w[0] = sqrt ( pi ) * tgamma ( alpha + 1.0 ) / tgamma ( alpha + 3.0 / 2.0 ); for ( k = 3; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = w[k-3] * ( rk - 2.0 ) / ( 2.0 * alpha + rk ); } } else if ( kind == 4 ) { als = alpha + beta + 1.0; w[0] = pow ( 2.0, als ) * tgamma ( alpha + 1.0 ) / tgamma ( als + 1.0 ) * tgamma ( beta + 1.0 ); for ( k = 2; k <= m; k++ ) { sum = 0.0; trm = 1.0; rk = ( double ) ( k ); for ( i = 0; i <= ( k - 2 ) / 2; i++ ) { tmpa = trm; for ( ja = 1; ja <= 2 * i; ja++ ) { tmpa = tmpa * ( alpha + ja ) / ( als + ja ); } for ( jb = 1; jb <= k - 2 * i - 1; jb++ ) { tmpa = tmpa * ( beta + jb ) / ( als + 2 * i + jb ); } tmpa = tmpa / ( 2 * i + 1.0 ) * ( 2 * i * ( beta + alpha ) + beta - ( rk - 1.0 ) * alpha ) / ( beta + rk - 2 * i - 1.0 ); sum = sum + tmpa; trm = trm * ( rk - 2 * i - 1.0 ) / ( 2 * i + 1.0 ) * ( rk - 2 * i - 2.0 ) / ( 2 * i + 2.0 ); } if ( ( k % 2 ) != 0 ) { tmpb = 1.0; for ( i = 1; i <= k - 1; i++ ) { tmpb = tmpb * ( alpha + i ) / ( als + i ); } sum = sum + tmpb; } w[k-1] = sum * w[0]; } } else if ( kind == 5 ) { w[0] = tgamma ( alpha + 1.0 ); for ( k = 2; k <= m; k++ ) { rk = ( double ) ( k ); w[k-1] = ( alpha + rk - 1.0 ) * w[k-2]; } } else if ( kind == 6 ) { w[0] = tgamma ( ( alpha + 1.0 ) / 2.0 ); for ( k = 3; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = w[k-3] * ( alpha + rk - 2.0 ) / 2.0; } } else if ( kind == 7 ) { als = alpha; for ( k = 1; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = 2.0 / ( rk + als ); } } else if ( kind == 8 ) { w[0] = tgamma ( alpha + 1.0 ) * tgamma ( - alpha - beta - 1.0 ) / tgamma ( - beta ); for ( k = 2; k <= m; k++ ) { rk = ( double ) ( k ); w[k-1] = - w[k-2] * ( alpha + rk - 1.0 ) / ( alpha + beta + rk ); } } else if ( kind == 9 ) { w[0] = pi / 2.0; for ( k = 3; k <= m; k = k + 2 ) { rk = ( double ) ( k ); w[k-1] = w[k-3] * ( rk - 2.0 ) / ( rk + 1.0 ); } } return w; } //****************************************************************************80 double *wtfn ( double t[], int nt, int kind, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // WTFN evaluates the classical weight functions at given points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, double T[NT], the points where the weight function // is to be evaluated. // // Input, int NT, the number of evaluation points. // // Input, int KIND, the rule. // 1, Legendre, (a,b) 1.0 // 2, Chebyshev Type 1, (a,b) ((b-x)*(x-a))^(-0.5) // 3, Gegenbauer, (a,b) ((b-x)*(x-a))^alpha // 4, Jacobi, (a,b) (b-x)^alpha*(x-a)^beta // 5, Generalized Laguerre, (a,+oo) (x-a)^alpha*exp(-b*(x-a)) // 6, Generalized Hermite, (-oo,+oo) |x-a|^alpha*exp(-b*(x-a)^2) // 7, Exponential, (a,b) |x-(a+b)/2.0|^alpha // 8, Rational, (a,+oo) (x-a)^alpha*(x+b)^beta // 9, Chebyshev Type 2, (a,b) ((b-x)*(x-a))^(+0.5) // // Input, double ALPHA, the value of Alpha, if needed. // // Input, double BETA, the value of Beta, if needed. // // Output, double WTFN[NT], the value of the weight function. // { int i; double *w; parchk ( kind, 1, alpha, beta ); w = new double[nt]; if ( kind == 1 ) { for ( i = 0; i < nt; i++ ) { w[i] = 1.0; } } else if ( kind == 2 ) { for ( i = 0; i < nt; i++ ) { w[i] = 1.0 / sqrt ( ( 1.0 - t[i] ) * ( 1.0 + t[i] ) ); } } else if ( kind == 3 ) { if ( alpha == 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = 1.0; } } else { for ( i = 0; i < nt; i++ ) { w[i] = pow ( ( 1.0 - t[i] ) * ( 1.0 + t[i] ), alpha ); } } } else if ( kind == 4 ) { if ( alpha == 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = 1.0; } } else { for ( i = 0; i < nt; i++ ) { w[i] = pow ( 1.0 - t[i], alpha ); } } if ( beta != 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = w[i] * pow ( 1.0 + t[i], beta ); } } } else if ( kind == 5 ) { if ( alpha == 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = exp ( - t[i] ); } } else { for ( i = 0; i < nt; i++ ) { w[i] = exp ( - t[i] ) * pow ( t[i], alpha ); } } } else if ( kind == 6 ) { if ( alpha == 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = exp ( - t[i] * t[i] ); } } else { for ( i = 0; i < nt; i++ ) { w[i] = exp ( - t[i] * t[i] ) * pow ( fabs ( t[i] ), alpha ); } } } else if ( kind == 7 ) { if ( alpha != 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = pow ( fabs ( t[i] ), alpha ); } } else { for ( i = 0; i < nt; i++ ) { w[i] = 1.0; } } } else if ( kind == 8 ) { if ( alpha == 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = 1.0; } } else { for ( i = 0; i < nt; i++ ) { w[i] = pow ( t[i], alpha ); } } if ( beta != 0.0 ) { for ( i = 0; i < nt; i++ ) { w[i] = w[i] * pow ( 1.0 + t[i], beta ); } } } else if ( kind == 9 ) { for ( i = 0; i < nt; i++ ) { w[i] = sqrt ( ( 1.0 - t[i] ) * ( 1.0 + t[i] ) ); } } return w; }