# include # include # include # include # include using namespace std; int main ( ); void test01 ( ); double cpu_time ( ); int i4_power ( int i, int j ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // timer_clock() uses clock() as the timer. // // Discussion: // // CLOCK is a timing utility accessible to C++ codes. It returns the number of // "ticks" of processor time devoted to the user's job. Dividing this by // CLOCKS_PER_SEC (the number of clock ticks per second) gives a rough value for // the elapsed CPU time. // // In this program, we call a routine CPU_TIME, which conveniently converts // CLOCK's output to seconds for us. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 April 2009 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "TIMER_CLOCK\n"; cout << " C++ version\n"; cout << " Demonstrate the use of the CLOCK timer.\n"; cout << "\n"; cout << " CLOCK is a C++ library routine\n"; cout << " (defined in )\n"; cout << "\n"; cout << " It returns the processor time used by the program\n"; cout << " since the beginning of program execution.\n"; cout << " Divide this by CLOCKS_PER_SEC to convert to seconds.\n"; cout << "\n"; cout << " CLOCK is a crude timer, and results less than\n"; cout << " a tenth of a second are probably not reliable.\n"; cout << "\n"; cout << " The number of clock ticks per second is " << CLOCKS_PER_SEC << "\n"; test01 ( ); // // Terminate. // cout << "\n"; cout << "TIMER_CLOCK\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 times the RAND routine. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2006 // // Author: // // John Burkardt // { double cpu; double cpu_ave; double cpu_max; double cpu_min; int i; int n; int n_log; int n_log_min = 0; int n_log_max = 24; int n_max; int n_min; int rep; int rep_num = 5; int *x; n_min = i4_power ( 2, n_log_min ); n_max = i4_power ( 2, n_log_max ); cout << "\n"; cout << "TEST01\n"; cout << " Time the RAND function by computing N values.\n"; cout << " For a given N, repeat the computation 5 times.\n"; cout << "\n"; cout << " Data vectors will be of minimum size " << n_min << "\n"; cout << " Data vectors will be of maximum size " << n_max << "\n"; cout << "\n"; cout << " CPU times are in seconds.\n"; cout << "\n"; cout << " N Rep #1 Rep #2 Rep #2 Rep #4 Rep #5" << " Min Ave Max\n"; cout << "\n"; for ( n_log = n_log_min; n_log <= n_log_max; n_log++ ) { n = i4_power ( 2, n_log ); x = new int[n]; cout << " " << setw(8) << n; cpu_min = HUGE_VAL; cpu_max = 0.0; cpu_ave = 0.0; for ( rep = 1; rep <= rep_num; rep++ ) { cpu = cpu_time ( ); for ( i = 0; i < n; i++ ) { x[i] = rand ( ); } cpu = cpu_time ( ) - cpu; cpu_max = fmax ( cpu_max, cpu ); cpu_min = fmin ( cpu_min, cpu ); cpu_ave = cpu_ave + cpu; cout << " " << setw(10) << cpu; } cpu_ave = cpu_ave / ( double ) rep_num; cout << " " << setw(10) << cpu_min << " " << setw(10) << cpu_ave << " " << setw(10) << cpu_max << "\n"; delete [] x; } return; } //****************************************************************************80 double cpu_time ( ) //****************************************************************************80 // // Purpose: // // CPU_TIME reports the elapsed CPU time. // // Discussion: // // The data available to this routine through "CLOCK" is not very reliable, // and hence the values of CPU_TIME returned should not be taken too // seriously, especially when short intervals are being timed. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 September 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double CPU_TIME, the current total elapsed CPU time in second. // { double value; value = ( double ) clock ( ) / ( double ) CLOCKS_PER_SEC; return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cout << "\n"; cout << "I4_POWER - Fatal error!\n"; cout << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }