# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); int file_column_count ( string input_filename ); bool file_exist ( string filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); void i4mat_write ( string output_filename, int m, int n, int table[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); int s_word_count ( string s ); void tet_mesh_order10_to_order4_compute ( int tetra_num1, int tetra_node1[], int tetra_num2, int tetra_node2[] ); void tet_mesh_order10_to_order4_size ( int node_num1, int tetra_num1, int *node_num2, int *tetra_num2 ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TET_MESH_Q2L. // // Discussion: // // TET_MESH_Q2L makes a linear tet mesh from a quadratic one. // // A quadratic tet mesh is assumed to consist of 10-node // tetrahedrons. This routine rearranges information so as to // define a 4-node tet mesh. // // Usage: // // tet_mesh_q2l prefix // // where prefix is the common file prefix: // // * prefix_nodes.txt, the node coordinates (not needed by this program); // * prefix_elements.txt, the linear element definitions. // * prefix_q2l_elements.txt, the quadratic element definitions, // created by the program. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 October 2009 // // Author: // // John Burkardt // { string input_element_filename; int node_num1; int node_num2; string output_element_filename; string prefix; int *tetra_node1; int *tetra_node2; int tetra_num1; int tetra_num2; int tetra_order1; int tetra_order2 = 4; cout << "\n"; timestamp ( ); cout << "\n"; cout << "TET_MESH_Q2L\n"; cout << " C++ version\n"; cout << " Read a \"quadratic\" tet mesh and\n"; cout << " write out a \"linear\" one.\n"; cout << "\n"; cout << " Read a tet mesh of TETRA_NUM1 tetrahedrons\n"; cout << " using 10 nodes.\n"; cout << "\n"; cout << " Create a 4 node tet mesh by breaking\n"; cout << " every 10 node tetrahedron into 8 smaller ones.\n"; cout << " Write the new linear tet mesh to a file.\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; // // Get the filename prefix. // if ( argc <= 1 ) { cout << "\n"; cout << "TET_MESH_Q2L:\n"; cout << " Please enter the filename prefix.\n"; cin >> prefix; } else { prefix = argv[1]; } // // Create the filenames. // input_element_filename = prefix + "_elements.txt"; output_element_filename = prefix + "_q2l_elements.txt"; // // Read the tet mesh data. // i4mat_header_read ( input_element_filename, &tetra_order1, &tetra_num1 ); if ( tetra_order1 != 10 ) { cout << "\n"; cout << "TET_MESH_Q2L - Fatal error!\n"; cout << " The tet mesh must have order 10.\n"; return 1; } cout << "\n"; cout << " Read the header of \"" << input_element_filename << "\".\n"; cout << "\n"; cout << " Tetrahedron order = " << tetra_order1 << "\n"; cout << " Number of tetras = " << tetra_num1 << "\n"; tetra_node1 = i4mat_data_read ( input_element_filename, tetra_order1, tetra_num1 ); cout << "\n"; cout << " Read the data in \"" << input_element_filename << "\".\n"; i4mat_transpose_print_some ( tetra_order1, tetra_num1, tetra_node1, 1, 1, tetra_order1, 5, " First 5 tetrahedrons:" ); // // Set the number of linear tetrahedrons: // We didn't read in the node data, so set that count to 0. // node_num1 = 0; tet_mesh_order10_to_order4_size ( node_num1, tetra_num1, &node_num2, &tetra_num2 ); cout << " Number of linear tetrahedrons = " << tetra_num2 << "\n"; // // Allocate space. // tetra_node2 = new int[tetra_order2*tetra_num2]; // // Convert the data. // tet_mesh_order10_to_order4_compute ( tetra_num1, tetra_node1, tetra_num2, tetra_node2 ); i4mat_transpose_print_some ( tetra_order2, tetra_num2, tetra_node2, 1, 1, tetra_order2, 5, " First 5 linear tetras" ); // // Write out the tetrahedron data for the quadratic mesh // i4mat_write ( output_element_filename, tetra_order2, tetra_num2, tetra_node2 ); cout << "\n"; cout << " Created the file \"" << output_element_filename << "\".\n"; // // Deallocate memory. // delete [] tetra_node1; delete [] tetra_node2; cout << "\n"; cout << "TET_MESH_Q2L:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 bool file_exist ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_EXIST reports whether a file exists. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, bool FILE_EXIST, is TRUE if the file exists. // { ifstream file; bool value; file.open ( filename.c_str ( ), ios::in ); if ( !file ) { value = false; } else { value = true; } return value; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4mat_write ( string output_filename, int m, int n, int table[] ) //****************************************************************************80 // // Purpose: // // I4MAT_WRITE writes an I4MAT file with no header. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, int TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "I4MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void tet_mesh_order10_to_order4_compute ( int tetra_num1, int tetra_node1[], int tetra_num2, int tetra_node2[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_TO_ORDER4_COMPUTE linearizes a quadratic tet mesh. // // Discussion: // // A quadratic tet mesh is assumed to consist of 10-node // tetrahedrons. // // This routine rearranges the information so as to define a 4-node // tet mesh. // // The same nodes are used, but there are s8 times as many // tetrahedrons. // // The node ordering for the quadratic tetrahedron is somewhat // arbitrary. In the current scheme, the vertices are listed // first, followed by the 6 midside nodes. Each midside node // may be identified by the two vertices that bracket it. Thus, // the node ordering may be suggested by: // // 1 2 3 4 (1+2) (1+3) (1+4) (2+3) (2+4) (3+4) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 January 2007 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int TETRA_NUM1, the number of tetrahedrons in the quadratic // tet mesh. // // Input, int TETRA_NODE1[10*TETRA_NUM1], the indices of the nodes // that made up the quadratic mesh. // // Input, int TETRA_NUM2, the number of tetrahedrons in the linear // tet mesh. TETRA_NUM2 = 8 * TETRA_NUM1. // // Output, int TETRA_NODE2[4*TETRA_NUM2], the indices of the nodes // that make up the linear mesh. // { int n1; int n2; int n3; int n4; int n5; int n6; int n7; int n8; int n9; int nx; int tetra1; int tetra2; tetra2 = 0; for ( tetra1 = 0; tetra1 < tetra_num1; tetra1++ ) { n1 = tetra_node1[0+tetra1*10]; n2 = tetra_node1[1+tetra1*10]; n3 = tetra_node1[2+tetra1*10]; n4 = tetra_node1[3+tetra1*10]; n5 = tetra_node1[4+tetra1*10]; n6 = tetra_node1[5+tetra1*10]; n7 = tetra_node1[6+tetra1*10]; n8 = tetra_node1[7+tetra1*10]; n9 = tetra_node1[8+tetra1*10]; nx = tetra_node1[9+tetra1*10]; tetra_node2[0+tetra2*4] = n1; tetra_node2[1+tetra2*4] = n5; tetra_node2[2+tetra2*4] = n6; tetra_node2[3+tetra2*4] = n7; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n2; tetra_node2[1+tetra2*4] = n5; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n3; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n4; tetra_node2[1+tetra2*4] = n7; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n5; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n7; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n5; tetra_node2[1+tetra2*4] = n6; tetra_node2[2+tetra2*4] = n8; tetra_node2[3+tetra2*4] = n9; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n6; tetra_node2[1+tetra2*4] = n7; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; tetra_node2[0+tetra2*4] = n6; tetra_node2[1+tetra2*4] = n8; tetra_node2[2+tetra2*4] = n9; tetra_node2[3+tetra2*4] = nx; tetra2 = tetra2 + 1; } return; } //****************************************************************************80 void tet_mesh_order10_to_order4_size ( int node_num1, int tetra_num1, int *node_num2, int *tetra_num2 ) //****************************************************************************80 // // Purpose: // // TET_MESH_ORDER10_TO_ORDER4_SIZE sizes a linear tet mesh from a quadratic one. // // Discussion: // // A linear (4 node) tet mesh can be derived from a quadratic // (10 node) tet mesh using the same set of nodes, but reassigning // the nodes of each quadratic tet among 8 linear subtets. // // This routine returns the number of nodes and tetrahedra in the // linear mesh. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 December 2006 // // Author: // // John Burkardt // // Reference: // // Anwei Liu, Barry Joe, // Quality Local Refinement of Tetrahedral Meshes Based // on 8-Subtetrahedron Subdivision, // Mathematics of Computation, // Volume 65, Number 215, July 1996, pages 1183-1200. // // Parameters: // // Input, int NODE_NUM1, the number of nodes in the quadratic mesh. // // Input, int TETRA_NUM1, the number of tetrahedrons in the // quadratic mesh. // // Output, int *NODE_NUM2, the number of nodes for the linear mesh. // // Output, int *TETRA_NUM2, the number of tetrahedrons in the // linear mesh. // { *node_num2 = node_num1; *tetra_num2 = 8 * tetra_num1; return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }