# include # include # include # include # include # include using namespace std; # include "test_values.hpp" //****************************************************************************80 void abram0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // abram0_values() returns some values of the Abramowitz0 function. // // Discussion: // // The function is defined by: // // ABRAM0(X) = integral ( 0 <= T < +oo ) exp ( -T * T - X / T ) dT // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.87377726306985360531E+00, 0.84721859650456925922E+00, 0.77288934483988301615E+00, 0.59684345853450151603E+00, 0.29871735283675888392E+00, 0.15004596450516388138E+00, 0.11114662419157955096E+00, 0.83909567153151897766E-01, 0.56552321717943417515E-01, 0.49876496603033790206E-01, 0.44100889219762791328E-01, 0.19738535180254062496E-01, 0.86193088287161479900E-02, 0.40224788162540127227E-02, 0.19718658458164884826E-02, 0.10045868340133538505E-02, 0.15726917263304498649E-03, 0.10352666912350263437E-04, 0.91229759190956745069E-06, 0.25628287737952698742E-09 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.2500000000E+00, 1.5000000000E+00, 1.8750000000E+00, 2.0000000000E+00, 2.1250000000E+00, 3.0000000000E+00, 4.0000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 7.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 40.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void abram1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // abram1_values() returns some values of the Abramowitz1 function. // // Discussion: // // The function is defined by: // // ABRAM1(x) = integral ( 0 <= t < oo ) t * exp ( -t^2 - x / t ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.49828219848799921792E+00, 0.49324391773047288556E+00, 0.47431612784691234649E+00, 0.41095983258760410149E+00, 0.25317617388227035867E+00, 0.14656338138597777543E+00, 0.11421547056018366587E+00, 0.90026307383483764795E-01, 0.64088214170742303375E-01, 0.57446614314166191085E-01, 0.51581624564800730959E-01, 0.25263719555776416016E-01, 0.11930803330196594536E-01, 0.59270542280915272465E-02, 0.30609215358017829567E-02, 0.16307382136979552833E-02, 0.28371851916959455295E-03, 0.21122150121323238154E-04, 0.20344578892601627337E-05, 0.71116517236209642290E-09 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.2500000000E+00, 1.5000000000E+00, 1.8750000000E+00, 2.0000000000E+00, 2.1250000000E+00, 3.0000000000E+00, 4.0000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 7.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 40.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void abram2_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // abram2_values() returns some values of the Abramowitz2 function. // // Discussion: // // The function is defined by: // // ABRAM2(x) = Integral ( 0 <= t < +oo ) t^2 * exp( -t^2 - x / t ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.44213858162107913430E+00, 0.43923379545684026308E+00, 0.42789857297092602234E+00, 0.38652825661854504406E+00, 0.26538204413231368110E+00, 0.16848734838334595000E+00, 0.13609200032513227112E+00, 0.11070330027727917352E+00, 0.82126019995530382267E-01, 0.74538781999594581763E-01, 0.67732034377612811390E-01, 0.35641808698811851022E-01, 0.17956589956618269083E-01, 0.94058737143575370625E-02, 0.50809356204299213556E-02, 0.28149565414209719359E-02, 0.53808696422559303431E-03, 0.44821756380146327259E-04, 0.46890678427324100410E-05, 0.20161544850996420504E-08 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.2500000000E+00, 1.5000000000E+00, 1.8750000000E+00, 2.0000000000E+00, 2.1250000000E+00, 3.0000000000E+00, 4.0000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 7.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 40.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void agm_values ( int &n_data, double &a, double &b, double &fx ) //****************************************************************************80 // // Purpose: // // agm_values() returns some values of the AGM. // // Discussion: // // The AGM is defined for nonnegative A and B. // // The AGM of numbers A and B is defined by setting // // A(0) = A, // B(0) = B // // A(N+1) = ( A(N) + B(N) ) / 2 // B(N+1) = sqrt ( A(N) * B(N) ) // // The two sequences both converge to AGM(A,B). // // In Mathematica, the AGM can be evaluated by // // ArithmeticGeometricMean [ a, b ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2008 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, the argument ofs the function. // // Output, double &FX, the value of the function. // { # define N_MAX 15 static double a_vec[N_MAX] = { 22.0, 83.0, 42.0, 26.0, 4.0, 6.0, 40.0, 80.0, 90.0, 9.0, 53.0, 1.0, 1.0, 1.0, 1.5 }; static double b_vec[N_MAX] = { 96.0, 56.0, 7.0, 11.0, 63.0, 45.0, 75.0, 0.0, 35.0, 1.0, 53.0, 2.0, 4.0, 8.0, 8.0 }; static double fx_vec[N_MAX] = { 52.274641198704240049, 68.836530059858524345, 20.659301196734009322, 17.696854873743648823, 23.867049721753300163, 20.717015982805991662, 56.127842255616681863, 0.000000000000000000, 59.269565081229636528, 3.9362355036495554780, 53.000000000000000000, 1.4567910310469068692, 2.2430285802876025701, 3.6157561775973627487, 4.0816924080221632670 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_ai_values ( int &n_data, double &x, double &ai ) //****************************************************************************80 // // Purpose: // // airy_ai_values() returns some values of the Airy Ai(x) function. // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryAi[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &AI, the value of the Airy AI function. // { # define N_MAX 11 static double ai_vec[N_MAX] = { 0.3550280538878172E+00, 0.3292031299435381E+00, 0.3037031542863820E+00, 0.2788064819550049E+00, 0.2547423542956763E+00, 0.2316936064808335E+00, 0.2098000616663795E+00, 0.1891624003981501E+00, 0.1698463174443649E+00, 0.1518868036405444E+00, 0.1352924163128814E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; ai = 0.0; } else { x = x_vec[n_data-1]; ai = ai_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_ai_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // airy_ai_int_values() returns some values of the integral of the Airy function. // // Discussion: // // The function is defined by: // // AIRY_AI_INT(x) = Integral ( 0 <= t <= x ) Ai(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -0.75228838916610124300E+00, -0.57348350185854889466E+00, -0.76569840313421291743E+00, -0.65181015505382467421E+00, -0.55881974894471876922E+00, -0.56902352870716815309E+00, -0.47800749642926168100E+00, -0.46567398346706861416E+00, -0.96783140945618013679E-01, -0.34683049857035607494E-03, 0.34658366917927930790E-03, 0.27657581846051227124E-02, 0.14595330491185717833E+00, 0.23631734191710977960E+00, 0.33289264538612212697E+00, 0.33318759129779422976E+00, 0.33332945170523851439E+00, 0.33333331724248357420E+00, 0.33333333329916901594E+00, 0.33333333333329380187E+00 }; static double x_vec[N_MAX] = { -12.0000000000E+00, -11.0000000000E+00, -10.0000000000E+00, -9.5000000000E+00, -9.0000000000E+00, -6.5000000000E+00, -4.0000000000E+00, -1.0000000000E+00, -0.2500000000E+00, -0.0009765625E+00, 0.0009765625E+00, 0.0078125000E+00, 0.5000000000E+00, 1.0000000000E+00, 4.0000000000E+00, 4.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_ai_prime_values ( int &n_data, double &x, double &aip ) //****************************************************************************80 // // Purpose: // // airy_ai_prime_values() returns some values of the Airy function Ai'(x). // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryAiPrime[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &AIP, the derivative of the Airy AI function. // { # define N_MAX 11 static double aip_vec[N_MAX] = { -0.2588194037928068E+00, -0.2571304219075862E+00, -0.2524054702856195E+00, -0.2451463642190548E+00, -0.2358320344192082E+00, -0.2249105326646839E+00, -0.2127932593891585E+00, -0.1998511915822805E+00, -0.1864128638072717E+00, -0.1727638434616347E+00, -0.1591474412967932E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; aip = 0.0; } else { x = x_vec[n_data-1]; aip = aip_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_bi_values ( int &n_data, double &x, double &bi ) //****************************************************************************80 // // Purpose: // // airy_bi_values() returns some values of the Airy Bi(x) function. // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryBi[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &BI, the value of the Airy BI function. // { # define N_MAX 11 static double bi_vec[N_MAX] = { 0.6149266274460007E+00, 0.6598616901941892E+00, 0.7054642029186612E+00, 0.7524855850873156E+00, 0.8017730000135972E+00, 0.8542770431031555E+00, 0.9110633416949405E+00, 0.9733286558781659E+00, 0.1042422171231561E+01, 0.1119872813134447E+01, 0.1207423594952871E+01 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; bi = 0.0; } else { x = x_vec[n_data-1]; bi = bi_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_bi_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // airy_bi_int_values() returns some values of the integral of the Airy function. // // Discussion: // // The function is defined by: // // AIRY_BI_INT(x) = Integral ( 0 <= t <= x ) Bi(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.17660819031554631869E-01, -0.15040424806140020451E-01, 0.14756446293227661920E-01, -0.11847304264848446271E+00, -0.64916741266165856037E-01, 0.97260832464381044540E-01, 0.50760058495287539119E-01, -0.37300500963429492179E+00, -0.13962988442666578531E+00, -0.12001735266723296160E-02, 0.12018836117890354598E-02, 0.36533846550952011043E+00, 0.87276911673800812196E+00, 0.48219475263803429675E+02, 0.44006525804904178439E+06, 0.17608153976228301458E+07, 0.73779211705220007228E+07, 0.14780980310740671617E+09, 0.97037614223613433849E+11, 0.11632737638809878460E+15 }; static double x_vec[N_MAX] = { -12.0000000000E+00, -10.0000000000E+00, -8.0000000000E+00, -7.5000000000E+00, -7.0000000000E+00, -6.5000000000E+00, -4.0000000000E+00, -1.0000000000E+00, -0.2500000000E+00, -0.0019531250E+00, 0.0019531250E+00, 0.5000000000E+00, 1.0000000000E+00, 4.0000000000E+00, 8.0000000000E+00, 8.5000000000E+00, 9.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00, 14.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_bi_prime_values ( int &n_data, double &x, double &bip ) //****************************************************************************80 // // Purpose: // // airy_bi_prime_values() returns some values of the Airy function Bi'(x). // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryBiPrime[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &BIP, the derivative of the Airy BI function. // { # define N_MAX 11 static double bip_vec[N_MAX] = { 0.4482883573538264E+00, 0.4515126311496465E+00, 0.4617892843621509E+00, 0.4800490287524480E+00, 0.5072816760506224E+00, 0.5445725641405923E+00, 0.5931444786342857E+00, 0.6544059191721400E+00, 0.7300069016152518E+00, 0.8219038903072090E+00, 0.9324359333927756E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; bip = 0.0; } else { x = x_vec[n_data-1]; bip = bip_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_cai_values ( int &n_data, complex &x, complex &cai ) //****************************************************************************80 // // Purpose: // // airy_cai_values() returns some values of the Airy Ai(x) for complex argument. // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryAi[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 April 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, complex &X, the argument of the function. // // Output, complex &CAI, the value of the Airy AI function. // { # define N_MAX 10 static complex cai_vec[N_MAX] = { complex ( 0.1352924163128814, + 0.0000000000000000 ), complex ( 0.1433824486882056, - 0.1092193342707378 ), complex ( 0.2215404472324631, - 0.2588711788891803 ), complex ( 0.4763929771766866, - 0.3036484220291284 ), complex ( 0.5983692170633874, - 0.08154602160771214 ), complex ( 0.5355608832923521, + 0.00000000000000000 ), complex ( 0.5983692170633874, + 0.08154602160771214 ), complex ( 0.4763929771766866, + 0.3036484220291284 ), complex ( 0.2215404472324631, + 0.2588711788891803 ), complex ( 0.1433824486882056, + 0.1092193342707378 ) }; static complex x_vec[N_MAX] = { complex ( 1.0000000000000000, + 0.0000000000000000 ), complex ( 0.8090169943749474, + 0.5877852522924731 ), complex ( 0.3090169943749474, + 0.9510565162951536 ), complex ( -0.3090169943749474, + 0.9510565162951536 ), complex ( -0.8090169943749474, + 0.5877852522924731 ), complex ( -1.0000000000000000, + 0.0000000000000000 ), complex ( -0.8090169943749474, - 0.5877852522924731 ), complex ( -0.3090169943749474, - 0.9510565162951536 ), complex ( 0.3090169943749474, - 0.9510565162951536 ), complex ( 0.8090169943749474, - 0.5877852522924731 ) }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; cai = 0.0; } else { x = x_vec[n_data-1]; cai = cai_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_cbi_values ( int &n_data, complex &x, complex &cbi ) //****************************************************************************80 // // Purpose: // // airy_cbi_values() returns some values of the Airy Bi(x) for complex argument. // // Discussion: // // The Airy functions Ai(X) and Bi(X) are a pair of linearly independent // solutions of the differential equation: // // W'' - X * W = 0; // // In Mathematica, the function can be evaluated by: // // AiryAi[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 April 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, complex &X, the argument of the function. // // Output, complex &CBI, the value of the Airy BI function. // { # define N_MAX 10 static complex cbi_vec[N_MAX] = { complex ( 1.207423594952871, + 0.0000000000000000 ), complex ( 0.9127160108293936, + 0.3800456133135556 ), complex ( 0.6824453575635721, + 0.3343047153635002 ), complex ( 0.5726265660086474, + 0.3988641086982559 ), complex ( 0.2511841251049547, + 0.3401447690712719 ), complex ( 0.1039973894969446, + 0.0000000000000000 ), complex ( 0.2511841251049547, - 0.3401447690712719 ), complex ( 0.5726265660086474, - 0.3988641086982559 ), complex ( 0.6824453575635721, - 0.3343047153635002 ), complex ( 0.9127160108293936, - 0.3800456133135556 ) }; static complex x_vec[N_MAX] = { complex ( 1.0000000000000000, + 0.0000000000000000 ), complex ( 0.8090169943749474, + 0.5877852522924731 ), complex ( 0.3090169943749474, + 0.9510565162951536 ), complex ( -0.3090169943749474, + 0.9510565162951536 ), complex ( -0.8090169943749474, + 0.5877852522924731 ), complex ( -1.0000000000000000, + 0.0000000000000000 ), complex ( -0.8090169943749474, - 0.5877852522924731 ), complex ( -0.3090169943749474, - 0.9510565162951536 ), complex ( 0.3090169943749474, - 0.9510565162951536 ), complex ( 0.8090169943749474, - 0.5877852522924731 ) }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; cbi = 0.0; } else { x = x_vec[n_data-1]; cbi = cbi_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_gi_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // airy_gi_values() returns some values of the Airy Gi function. // // Discussion: // // The function is defined by: // // AIRY_GI(x) = Integral ( 0 <= t < +oo ) sin ( x*t+t^3/3) dt / pi // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.20468308070040542435E+00, 0.18374662832557904078E+00, -0.11667221729601528265E+00, 0.31466934902729557596E+00, -0.37089040722426257729E+00, -0.25293059772424019694E+00, 0.28967410658692701936E+00, -0.34644836492634090590E+00, 0.28076035913873049496E+00, 0.21814994508094865815E+00, 0.20526679000810503329E+00, 0.22123695363784773258E+00, 0.23521843981043793760E+00, 0.82834303363768729338E-01, 0.45757385490989281893E-01, 0.44150012014605159922E-01, 0.39951133719508907541E-01, 0.35467706833949671483E-01, 0.31896005100679587981E-01, 0.26556892713512410405E-01 }; static double x_vec[N_MAX] = { -0.0019531250E+00, -0.1250000000E+00, -1.0000000000E+00, -4.0000000000E+00, -8.0000000000E+00, -8.2500000000E+00, -9.0000000000E+00, -10.0000000000E+00, -11.0000000000E+00, -13.0000000000E+00, 0.0019531250E+00, 0.1250000000E+00, 1.0000000000E+00, 4.0000000000E+00, 7.0000000000E+00, 7.2500000000E+00, 8.0000000000E+00, 9.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void airy_hi_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // airy_hi_values() returns some values of the Airy Hi function. // // Discussion: // // The function is defined by: // // AIRY_HI(x) = Integral ( 0 <= t < +oo ) exp(x*t-t^3/3) dt / pi // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.40936798278458884024E+00, 0.37495291608048868619E+00, 0.22066960679295989454E+00, 0.77565356679703713590E-01, 0.39638826473124717315E-01, 0.38450072575004151871E-01, 0.35273216868317898556E-01, 0.31768535282502272742E-01, 0.28894408288051391369E-01, 0.24463284011678541180E-01, 0.41053540139998941517E+00, 0.44993502381204990817E+00, 0.97220515514243332184E+00, 0.83764237105104371193E+02, 0.80327744952044756016E+05, 0.15514138847749108298E+06, 0.11995859641733262114E+07, 0.21472868855967642259E+08, 0.45564115351632913590E+09, 0.32980722582904761929E+12 }; static double x_vec[N_MAX] = { -0.0019531250E+00, -0.1250000000E+00, -1.0000000000E+00, -4.0000000000E+00, -8.0000000000E+00, -8.2500000000E+00, -9.0000000000E+00, -10.0000000000E+00, -11.0000000000E+00, -13.0000000000E+00, 0.0019531250E+00, 0.1250000000E+00, 1.0000000000E+00, 4.0000000000E+00, 7.0000000000E+00, 7.2500000000E+00, 8.0000000000E+00, 9.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arccos_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arccos_values() returns some values of the arc cosine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcCos[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 1.6709637479564564156, 1.5707963267948966192, 1.4706289056333368229, 1.3694384060045658278, 1.2661036727794991113, 1.1592794807274085998, 1.0471975511965977462, 0.92729521800161223243, 0.79539883018414355549, 0.64350110879328438680, 0.45102681179626243254, 0.00000000000000000000 }; static double x_vec[N_MAX] = { -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arccosh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arccosh_values() returns some values of the hyperbolic arc cosine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcCosh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 15 static double fx_vec[N_MAX] = { 0.0000000000000000000, 0.14130376948564857735, 0.44356825438511518913, 0.62236250371477866781, 0.75643291085695958624, 0.86701472649056510395, 0.96242365011920689500, 1.3169578969248167086, 1.7627471740390860505, 1.8115262724608531070, 2.0634370688955605467, 2.2924316695611776878, 2.9932228461263808979, 5.2982923656104845907, 7.6009022095419886114 }; static double x_vec[N_MAX] = { 1.0, 1.01, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0, 3.0, 3.1415926535897932385, 4.0, 5.0, 10.0, 100.0, 1000.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arcsin_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arcsin_values() returns some values of the arc sine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcSin[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { -0.10016742116155979635, 0.00000000000000000000, 0.10016742116155979635, 0.20135792079033079146, 0.30469265401539750797, 0.41151684606748801938, 0.52359877559829887308, 0.64350110879328438680, 0.77539749661075306374, 0.92729521800161223243, 1.1197695149986341867, 1.5707963267948966192 }; static double x_vec[N_MAX] = { -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arcsinh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arcsinh_values() returns some values of the hyperbolic arc sine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcSinh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -2.3124383412727526203, -0.88137358701954302523, 0.00000000000000000000, 0.099834078899207563327, 0.19869011034924140647, 0.29567304756342243910, 0.39003531977071527608, 0.48121182505960344750, 0.56882489873224753010, 0.65266656608235578681, 0.73266825604541086415, 0.80886693565278246251, 0.88137358701954302523, 1.4436354751788103425, 1.8184464592320668235, 2.0947125472611012942, 2.3124383412727526203, 2.9982229502979697388, 5.2983423656105887574, 7.6009027095419886115 }; static double x_vec[N_MAX] = { -5.0, -1.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 100.0, 1000.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arctan_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arctan_values() returns some values of the arc tangent function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcTan[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double f_vec[N_MAX] = { 0.00000000000000000000, 0.24497866312686415417, 0.32175055439664219340, 0.46364760900080611621, 0.78539816339744830962, 1.1071487177940905030, 1.2490457723982544258, 1.3258176636680324651, 1.3734007669450158609, 1.4711276743037345919, 1.5208379310729538578 }; static double x_vec[N_MAX] = { 0.00000000000000000000, 0.25000000000000000000, 0.33333333333333333333, 0.50000000000000000000, 1.0000000000000000000, 2.0000000000000000000, 3.0000000000000000000, 4.0000000000000000000, 5.0000000000000000000, 10.000000000000000000, 20.000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arctan_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arctan_int_values() returns some values of the inverse tangent integral. // // Discussion: // // The function is defined by: // // ARCTAN_INT(x) = Integral ( 0 <= t <= x ) arctan ( t ) / t dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double f_vec[N_MAX] = { 0.19531241721588483191E-02, -0.39062433772980711281E-02, 0.78124470192576499535E-02, 0.15624576181996527280E-01, -0.31246610349485401551E-01, 0.62472911335014397321E-01, 0.12478419717389654039E+00, -0.24830175098230686908E+00, 0.48722235829452235711E+00, 0.91596559417721901505E+00, 0.12749694484943800618E+01, -0.15760154034463234224E+01, 0.24258878412859089996E+01, 0.33911633326292997361E+01, 0.44176450919422186583E+01, -0.47556713749547247774E+01, 0.50961912150934111303E+01, 0.53759175735714876256E+01, -0.61649904785027487422E+01, 0.72437843013083534973E+01 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0039062500E+00, 0.0078125000E+00, 0.0156250000E+00, -0.0312500000E+00, 0.0625000000E+00, 0.1250000000E+00, -0.2500000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, -2.0000000000E+00, 4.0000000000E+00, 8.0000000000E+00, 16.0000000000E+00, -20.0000000000E+00, 25.0000000000E+00, 30.0000000000E+00, -50.0000000000E+00, 100.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arctan2_values ( int &n_data, double &x, double &y, double &fxy ) //****************************************************************************80 // // Purpose: // // arctan2_values() returns the arc tangent function of two arguments. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcTan[x,y] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, &Y, the arguments of the function. // // Output, double &FXY, the value of the function. // { # define N_MAX 19 static double f_vec[N_MAX] = { -1.5707963267948966192, -1.0471975511965977462, -0.52359877559829887308, 0.00000000000000000000, 0.52359877559829887308, 1.0471975511965977462, 1.5707963267948966192, 2.0943951023931954923, 2.6179938779914943654, 3.1415926535897932385, -2.6179938779914943654, -2.0943951023931954923, -1.5707963267948966192, -1.0471975511965977462, -0.52359877559829887308, 0.00000000000000000000, 0.52359877559829887308, 1.0471975511965977462, 1.5707963267948966192 }; static double x_vec[N_MAX] = { 0.00000000000000000000, 0.50000000000000000000, 0.86602540378443864676, 1.00000000000000000000, 0.86602540378443864676, 0.50000000000000000000, 0.00000000000000000000, -0.50000000000000000000, -0.86602540378443864676, -1.00000000000000000000, -0.86602540378443864676, -0.50000000000000000000, 0.00000000000000000000, 0.50000000000000000000, 0.86602540378443864676, 1.00000000000000000000, 0.86602540378443864676, 0.50000000000000000000, 0.00000000000000000000 }; static double y_vec[N_MAX] = { -1.00000000000000000000, -0.86602540378443864676, -0.50000000000000000000, 0.00000000000000000000, 0.50000000000000000000, 0.86602540378443864676, 1.00000000000000000000, 0.86602540378443864676, 0.50000000000000000000, 0.00000000000000000000, -0.50000000000000000000, -0.86602540378443864676, -1.00000000000000000000, -0.86602540378443864676, -0.50000000000000000000, 0.00000000000000000000, 0.50000000000000000000, 0.86602540378443864676, 1.00000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; y = 0.0; fxy = 0.0; } else { x = x_vec[n_data-1]; y = y_vec[n_data-1]; fxy = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void arctanh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // arctanh_values() returns some values of the hyperbolic arc tangent function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ArcTanh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 15 static double fx_vec[N_MAX] = { -0.54930614433405484570, 0.00000000000000000000, 0.0010000003333335333335, 0.10033534773107558064, 0.20273255405408219099, 0.30951960420311171547, 0.42364893019360180686, 0.54930614433405484570, 0.69314718055994530942, 0.86730052769405319443, 1.0986122886681096914, 1.4722194895832202300, 2.6466524123622461977, 3.8002011672502000318, 7.2543286192620472067 }; static double x_vec[N_MAX] = { -0.5, 0.0, 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 0.999, 0.999999 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bei0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bei0_values() returns some values of the Kelvin BEI function of order NU = 0. // // Discussion: // // The function is defined by: // // BER(NU,X) + i * BEI(NU,X) = exp(NU*Pi*I) * J(NU,X*exp(-PI*I/4)) // // where J(NU,X) is the J Bessel function. // // In Mathematica, BEI(NU,X) can be defined by: // // Im [ Exp [ NU * Pi * I ] * BesselJ [ NU, X * Exp[ -Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 0.0000000000000000, 0.06249321838219946, 0.2495660400366597, 0.5575600623030867, 0.9722916273066612, 1.457182044159804, 1.937586785266043, 2.283249966853915, 2.292690322699300, 1.686017203632139, 0.1160343815502004 }; static double x_vec[N_MAX] = { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bei1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bei1_values() returns some values of the Kelvin BEI function of order NU = 1. // // Discussion: // // The function is defined by: // // BER(NU,X) + i * BEI(NU,X) = exp(NU*Pi*I) * J(NU,X*exp(-PI*I/4)) // // where J(NU,X) is the J Bessel function. // // In Mathematica, BEI(NU,X) can be defined by: // // Im [ Exp [ NU * Pi * I ] * BesselJ [ NU, X * Exp[ -Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 0.0000000000000000, 0.1711951797170153, 0.3075566313755366, 0.3678649890020899, 0.2997754370020335, 0.03866844396595048, -0.4874541770160708, -1.344042373111174, -2.563821688561078, -4.105685408400878, -5.797907901792625 }; static double x_vec[N_MAX] = { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bell_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // bell_values() returns some values of the Bell numbers. // // Discussion: // // The Bell number B(N) is the number of restricted growth functions on N. // // Note that the Stirling numbers of the second kind, S^m_n, count the // number of partitions of N objects into M classes, and so it is // true that // // B(N) = S^1_N + S^2_N + + S^N_N. // // The Bell numbers were named for Eric Temple Bell. // // In Mathematica, the function can be evaluated by // // Sum[StirlingS2[n,m],{m,1,n}] // // Definition: // // The Bell number B(N) is defined as the number of partitions (of // any size) of a set of N distinguishable objects. // // A partition of a set is a division of the objects of the set into // subsets. // // Examples: // // There are 15 partitions of a set of 4 objects: // // (1234), // (123) (4), // (124) (3), // (12) (34), // (12) (3) (4), // (134) (2), // (13) (24), // (13) (2) (4), // (14) (23), // (1) (234), // (1) (23) (4), // (14) (2) (3), // (1) (24) (3), // (1) (2) (34), // (1) (2) (3) (4). // // and so B(4) = 15. // // First values: // // N B(N) // 0 1 // 1 1 // 2 2 // 3 5 // 4 15 // 5 52 // 6 203 // 7 877 // 8 4140 // 9 21147 // 10 115975 // // Recursion: // // B(I) = sum ( 1 <= J <=I ) Binomial ( I-1, J-1 ) * B(I-J) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the Bell number. // // Output, int &C, the value of the Bell number. // { # define N_MAX 11 static int c_vec[N_MAX] = { 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ber0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ber0_values() returns some values of the Kelvin BER function of order NU = 0. // // Discussion: // // The function is defined by: // // BER(NU,X) + i * BEI(NU,X) = exp(NU*Pi*I) * J(NU,X*exp(-PI*I/4)) // // where J(NU,X) is the J Bessel function. // // In Mathematica, BER(NU,X) can be defined by: // // Re [ Exp [ NU * Pi * I ] * BesselJ [ NU, X * Exp[ -Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 1.0000000000000000, 0.9990234639908383, 0.9843817812130869, 0.9210721835462558, 0.7517341827138082, 0.3999684171295313, -0.2213802495986939, -1.193598179589928, -2.563416557258580, -4.299086551599756, -6.230082478666358 }; static double x_vec[N_MAX] = { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ber1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ber1_values() returns some values of the Kelvin BER function of order NU = 1. // // Discussion: // // The function is defined by: // // BER(NU,X) + i * BEI(NU,X) = exp(NU*Pi*I) * J(NU,X*exp(-PI*I/4)) // // where J(NU,X) is the J Bessel function. // // In Mathematica, BER(NU,X) can be defined by: // // Re [ Exp [ NU * Pi * I ] * BesselJ [ NU, X * Exp[ -Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 0.0000000000000000, -0.1822431237551121, -0.3958682610197114, -0.6648654179597691, -0.9970776519264285, -1.373096897645111, -1.732644221128481, -1.959644131289749, -1.869248459031899, -1.202821631480086, 0.3597766667766728 }; static double x_vec[N_MAX] = { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bernoulli_number_values ( int &n_data, int &n, double &c ) //****************************************************************************80 // // Purpose: // // bernoulli_number_values() returns some values of the Bernoulli numbers. // // Discussion: // // The Bernoulli numbers are rational. // // If we define the sum of the M-th powers of the first N integers as: // // SIGMA(M,N) = sum ( 0 <= I <= N ) I^M // // and let C(I,J) be the combinatorial coefficient: // // C(I,J) = I! / ( ( I - J )! * J! ) // // then the Bernoulli numbers B(J) satisfy: // // SIGMA(M,N) = 1/(M+1) * sum ( 0 <= J <= M ) C(M+1,J) B(J) * (N+1)^(M+1-J) // // In Mathematica, the function can be evaluated by: // // BernoulliB[n] // // First values: // // B0 1 = 1.00000000000 // B1 -1/2 = -0.50000000000 // B2 1/6 = 1.66666666666 // B3 0 = 0 // B4 -1/30 = -0.03333333333 // B5 0 = 0 // B6 1/42 = 0.02380952380 // B7 0 = 0 // B8 -1/30 = -0.03333333333 // B9 0 = 0 // B10 5/66 = 0.07575757575 // B11 0 = 0 // B12 -691/2730 = -0.25311355311 // B13 0 = 0 // B14 7/6 = 1.16666666666 // B15 0 = 0 // B16 -3617/510 = -7.09215686274 // B17 0 = 0 // B18 43867/798 = 54.97117794486 // B19 0 = 0 // B20 -174611/330 = -529.12424242424 // B21 0 = 0 // B22 854,513/138 = 6192.123 // B23 0 = 0 // B24 -236364091/2730 = -86580.257 // B25 0 = 0 // B26 8553103/6 = 1425517.16666 // B27 0 = 0 // B28 -23749461029/870 = -27298231.0678 // B29 0 = 0 // B30 8615841276005/14322 = 601580873.901 // // Recursion: // // With C(N+1,K) denoting the standard binomial coefficient, // // B(0) = 1.0 // B(N) = - ( sum ( 0 <= K < N ) C(N+1,K) * B(K) ) / C(N+1,N) // // Special Values: // // Except for B(1), all Bernoulli numbers of odd index are 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the Bernoulli number. // // Output, double &C, the value of the Bernoulli number. // { # define N_MAX 10 static double c_vec[N_MAX] = { 0.1000000000000000E+01, -0.5000000000000000E+00, 0.1666666666666667E+00, 0.0000000000000000E+00, -0.3333333333333333E-01, -0.2380952380952380E-01, -0.3333333333333333E-01, 0.7575757575757575E-01, -0.5291242424242424E+03, 0.6015808739006424E+09 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 6, 8, 10, 20, 30 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0.0E+00; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bernoulli_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bernoulli_poly_values() returns some values of the Bernoulli polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BernoulliB[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // /// Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the Bernoulli polynomial. // // Output, double &X, the argument of the Bernoulli polynomial. // // Output, double &FX, the value of the Bernoulli polynomial. // { # define N_MAX 27 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, -0.3000000000000000E+00, 0.6666666666666667E-02, 0.4800000000000000E-01, -0.7733333333333333E-02, -0.2368000000000000E-01, 0.6913523809523810E-02, 0.2490880000000000E-01, -0.1014997333333333E-01, -0.4527820800000000E-01, 0.2332631815757576E-01, -0.3125000000000000E+00, -0.1142400000000000E+00, -0.0176800000000000E+00, 0.0156800000000000E+00, 0.0147400000000000E+00, 0.0000000000000000E+00, -0.1524000000000000E-01, -0.2368000000000000E-01, -0.2282000000000000E-01, -0.1376000000000000E-01, 0.0000000000000000E+01, 0.1376000000000000E-01, 0.2282000000000000E-01, 0.2368000000000000E-01, 0.1524000000000000E-01, 0.0000000000000000E+01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, -0.5E+00, -0.4E+00, -0.3E+00, -0.2E+00, -0.1E+00, 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bernstein_poly_01_values ( int &n_data, int &n, int &k, double &x, double &b ) //****************************************************************************80 // // Purpose: // // bernstein_poly_01_values() returns some values of the Bernstein polynomials. // // Discussion: // // The Bernstein polynomials are assumed to be based on [0,1]. // // The formula for the Bernstein polynomials is // // B(N,I)(X) = [N!/(I//(N-I)!)] * (1-X)^(N-I) * X^I // // In Mathematica, the function can be evaluated by: // // Binomial[n,i] * (1-x)^(n-i) * x^i // // First values: // // B(0,0)(X) = 1 // // B(1,0)(X) = 1-X // B(1,1)(X) = X // // B(2,0)(X) = (1-X)^2 // B(2,1)(X) = 2 * (1-X) * X // B(2,2)(X) = X^2 // // B(3,0)(X) = (1-X)^3 // B(3,1)(X) = 3 * (1-X)^2 * X // B(3,2)(X) = 3 * (1-X) * X^2 // B(3,3)(X) = X^3 // // B(4,0)(X) = (1-X)^4 // B(4,1)(X) = 4 * (1-X)^3 * X // B(4,2)(X) = 6 * (1-X)^2 * X^2 // B(4,3)(X) = 4 * (1-X) * X^3 // B(4,4)(X) = X^4 // // Special values: // // B(N,I)(X) has a unique maximum value at X = I/N. // // B(N,I)(X) has an I-fold zero at 0 and and N-I fold zero at 1. // // B(N,I)(1/2) = C(N,K) / 2^N // // For a fixed X and N, the polynomials add up to 1: // // Sum ( 0 <= I <= N ) B(N,I)(X) = 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the degree of the polynomial. // // Output, int &K, the index of the polynomial. // // Output, double &X, the argument of the polynomial. // // Output, double &B, the value of the polynomial B(N,K)(X). // { # define N_MAX 15 static double b_vec[N_MAX] = { 0.1000000000000000E+01, 0.7500000000000000E+00, 0.2500000000000000E+00, 0.5625000000000000E+00, 0.3750000000000000E+00, 0.6250000000000000E-01, 0.4218750000000000E+00, 0.4218750000000000E+00, 0.1406250000000000E+00, 0.1562500000000000E-01, 0.3164062500000000E+00, 0.4218750000000000E+00, 0.2109375000000000E+00, 0.4687500000000000E-01, 0.3906250000000000E-02 }; static int k_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4 }; static int n_vec[N_MAX] = { 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; k = 0; x = 0.0; b = 0.0; } else { n = n_vec[n_data-1]; k = k_vec[n_data-1]; x = x_vec[n_data-1]; b = b_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_i0_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_i0_int_values() returns some values of the Bessel I0 integral. // // Discussion: // // The function is defined by: // // I0_INT(x) = Integral ( 0 <= t <= x ) I0(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.19531256208818052282E-02, -0.39062549670565734544E-02, 0.62520348032546565850E-01, 0.12516285581366971819E+00, -0.51051480879740303760E+00, 0.10865210970235898158E+01, 0.27750019054282535299E+01, -0.13775208868039716639E+02, 0.46424372058106108576E+03, 0.64111867658021584522E+07, -0.10414860803175857953E+08, 0.44758598913855743089E+08, -0.11852985311558287888E+09, 0.31430078220715992752E+09, -0.83440212900794309620E+09, 0.22175367579074298261E+10, 0.58991731842803636487E+10, -0.41857073244691522147E+11, 0.79553885818472357663E+12, 0.15089715082719201025E+17 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0039062500E+00, 0.0625000000E+00, 0.1250000000E+00, -0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, -4.0000000000E+00, 8.0000000000E+00, 18.0000000000E+00, -18.5000000000E+00, 20.0000000000E+00, -21.0000000000E+00, 22.0000000000E+00, -23.0000000000E+00, 24.0000000000E+00, 25.0000000000E+00, -27.0000000000E+00, 30.0000000000E+00, 40.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_i0_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_i0_spherical_values() returns some values of the Spherical Bessel function i0. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselI[1/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 January 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 1.001667500198440E+00, 1.006680012705470E+00, 1.026880814507039E+00, 1.061089303580402E+00, 1.110132477734529E+00, 1.175201193643801E+00, 1.257884462843477E+00, 1.360215358179667E+00, 1.484729970750144E+00, 1.634541271164267E+00, 1.813430203923509E+00, 2.025956895698133E+00, 2.277595505698373E+00, 2.574897010920645E+00, 2.925685126512827E+00, 3.339291642469967E+00, 3.826838748926716E+00, 4.401577467270101E+00, 5.079293155726485E+00, 5.878791279137455E+00, 6.822479299281938E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_i0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_i0_values() returns some values of the I0 Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // The modified Bessel function I0(Z) corresponds to N = 0. // // In Mathematica, the function can be evaluated by: // // BesselI[0,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.1010025027795146E+01, 0.1040401782229341E+01, 0.1092045364317340E+01, 0.1166514922869803E+01, 0.1266065877752008E+01, 0.1393725584134064E+01, 0.1553395099731217E+01, 0.1749980639738909E+01, 0.1989559356618051E+01, 0.2279585302336067E+01, 0.3289839144050123E+01, 0.4880792585865024E+01, 0.7378203432225480E+01, 0.1130192195213633E+02, 0.1748117185560928E+02, 0.2723987182360445E+02, 0.6723440697647798E+02, 0.4275641157218048E+03, 0.2815716628466254E+04 }; static double x_vec[N_MAX] = { 0.00E+00, 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 0.10E+01, 0.12E+01, 0.14E+01, 0.16E+01, 0.18E+01, 0.20E+01, 0.25E+01, 0.30E+01, 0.35E+01, 0.40E+01, 0.45E+01, 0.50E+01, 0.60E+01, 0.80E+01, 0.10E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_i1_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_i1_spherical_values() returns some values of the Spherical Bessel function i1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselI[3/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 January 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.03336667857363341E+00, 0.06693371456802954E+00, 0.1354788933285401E+00, 0.2072931911031093E+00, 0.2841280857128948E+00, 0.3678794411714423E+00, 0.4606425870674146E+00, 0.5647736480096238E+00, 0.6829590627779635E+00, 0.8182955028627777E+00, 0.9743827435800610E+00, 1.155432469636406E+00, 1.366396525527973E+00, 1.613118767572064E+00, 1.902515460838681E+00, 2.242790117769266E+00, 2.643689828630357E+00, 3.116811526884873E+00, 3.675968313148932E+00, 4.337627987747642E+00, 5.121438384183637E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_i1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_i1_values() returns some values of the I1 Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // In Mathematica, the function can be evaluated by: // // BesselI[1,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.1005008340281251E+00, 0.2040267557335706E+00, 0.3137040256049221E+00, 0.4328648026206398E+00, 0.5651591039924850E+00, 0.7146779415526431E+00, 0.8860919814143274E+00, 0.1084810635129880E+01, 0.1317167230391899E+01, 0.1590636854637329E+01, 0.2516716245288698E+01, 0.3953370217402609E+01, 0.6205834922258365E+01, 0.9759465153704450E+01, 0.1538922275373592E+02, 0.2433564214245053E+02, 0.6134193677764024E+02, 0.3998731367825601E+03, 0.2670988303701255E+04 }; static double x_vec[N_MAX] = { 0.00E+00, 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 0.10E+01, 0.12E+01, 0.14E+01, 0.16E+01, 0.18E+01, 0.20E+01, 0.25E+01, 0.30E+01, 0.35E+01, 0.40E+01, 0.45E+01, 0.50E+01, 0.60E+01, 0.80E+01, 0.10E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_in_values ( int &n_data, int &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_in_values() returns some values of the In Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // In Mathematica, the function can be evaluated by: // // BesselI[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &NU, the order of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 0.5016687513894678E-02, 0.1357476697670383E+00, 0.6889484476987382E+00, 0.1276466147819164E+01, 0.2245212440929951E+01, 0.1750561496662424E+02, 0.2281518967726004E+04, 0.3931278522104076E+08, 0.2216842492433190E-01, 0.2127399592398527E+00, 0.1033115016915114E+02, 0.1758380716610853E+04, 0.2677764138883941E+21, 0.2714631559569719E-03, 0.9825679323131702E-02, 0.2157974547322546E+01, 0.7771882864032600E+03, 0.2278548307911282E+21, 0.2752948039836874E-09, 0.3016963879350684E-06, 0.4580044419176051E-02, 0.2189170616372337E+02, 0.1071597159477637E+21, 0.3966835985819020E-24, 0.4310560576109548E-18, 0.5024239357971806E-10, 0.1250799735644948E-03, 0.5442008402752998E+19 }; static int nu_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_ix_values ( int &n_data, double &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_ix_values() returns some values of the Ix Bessel function. // // Discussion: // // This set of data considers the less common case in which the // index of the Bessel function In is actually not an integer. // We may suggest this case by occasionally replacing the symbol // "In" by "Ix". // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // In Mathematica, the function can be evaluated by: // // BesselI[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 March 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &NU, the order of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 0.3592084175833614E+00, 0.9376748882454876E+00, 2.046236863089055E+00, 3.053093538196718E+00, 4.614822903407601E+00, 26.47754749755907E+00, 2778.784603874571E+00, 4.327974627242893E+07, 0.2935253263474798E+00, 1.099473188633110E+00, 21.18444226479414E+00, 2500.906154942118E+00, 2.866653715931464E+20, 0.05709890920304825E+00, 0.3970270801393905E+00, 13.76688213868258E+00, 2028.512757391936E+00, 2.753157630035402E+20, 0.4139416015642352E+00, 1.340196758982897E+00, 22.85715510364670E+00, 2593.006763432002E+00, 2.886630075077766E+20, 0.03590910483251082E+00, 0.2931108636266483E+00, 11.99397010023068E+00, 1894.575731562383E+00, 2.716911375760483E+20 }; static double nu_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0.0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j_spherical_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j_spherical_values() returns values of the Spherical Bessel function j. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselJ[n+1/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 January 2016 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the index of the function. // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.8689780717709105E+00, 0.2776712616989048E+00, 0.05147914933043151E+00, 0.006743927971987495E+00, 0.0006838294584220406E+00, 0.00005658597917091951E+00, 3.955923765931341E-06, 2.394450910776484E-07, 1.277940110150618E-08, 6.099572379372921E-10, 2.633096568558721E-11, -0.05440211108893698E+00, 0.07846694179875155E+00, 0.07794219362856245E+00, -0.03949584498447032E+00, -0.1055892851176917E+00, -0.05553451162145218E+00, 0.04450132233409427E+00, 0.1133862306557747E+00, 0.1255780236495678E+00, 0.1000964095484906E+00, 0.06460515449256426E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; static double x_vec[N_MAX] = { 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 0.9050000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00, 10.00000000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j0_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j0_int_values() returns some values of the Bessel J0 integral. // // Discussion: // // The function is defined by: // // J0_INT(x) = Integral ( 0 <= t <= x ) J0(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.97656242238978822427E-03, 0.39062450329491108875E-02, -0.62479657927917933620E-01, 0.12483733492120479139E+00, -0.48968050664604505505E+00, 0.91973041008976023931E+00, -0.14257702931970265690E+01, 0.10247341594606064818E+01, -0.12107468348304501655E+01, 0.11008652032736190799E+01, -0.10060334829904124192E+01, 0.81330572662485953519E+00, -0.10583788214211277585E+01, 0.87101492116545875169E+00, -0.88424908882547488420E+00, 0.11257761503599914603E+01, -0.90141212258183461184E+00, 0.91441344369647797803E+00, -0.94482281938334394886E+00, 0.92266255696016607257E+00 }; static double x_vec[N_MAX] = { 0.0009765625E+00, 0.0039062500E+00, -0.0625000000E+00, 0.1250000000E+00, -0.5000000000E+00, 1.0000000000E+00, -2.0000000000E+00, 4.0000000000E+00, -8.0000000000E+00, 16.0000000000E+00, -16.5000000000E+00, 18.0000000000E+00, -20.0000000000E+00, 25.0000000000E+00, -30.0000000000E+00, 40.0000000000E+00, -50.0000000000E+00, 75.0000000000E+00, -80.0000000000E+00, 100.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j0_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j0_spherical_values() returns some values of the Spherical Bessel function j0. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselJ[1/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.9983341664682815E+00, 0.9933466539753061E+00, 0.9735458557716262E+00, 0.9410707889917256E+00, 0.8966951136244035E+00, 0.8414709848078965E+00, 0.7766992383060220E+00, 0.7038926642774716E+00, 0.6247335019009407E+00, 0.5410264615989973E+00, 0.4546487134128408E+00, 0.3674983653725410E+00, 0.2814429918963129E+00, 0.1982697583928709E+00, 0.1196386250556803E+00, 0.4704000268662241E-01, -0.1824191982111872E-01, -0.7515914765495039E-01, -0.1229223453596812E+00, -0.1610152344586103E+00, -0.1892006238269821E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j0_zero_values ( int &n_data, int &k, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j0_zero_values() returns some values of J0 Bessel zeroes. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2016 // // Author: // // John Burkardt // // Input: // // int &n_data: the user sets N_DATA to 0 before the first call. // // Output: // // int &n_data: on each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &k: the index of the zero. // // double &fx: the value of the function. // { # define N_MAX 30 static double fx_vec[N_MAX] = { 2.40482555769577276862163187933E+00, 5.52007811028631064959660411281E+00, 8.65372791291101221695419871266E+00, 11.7915344390142816137430449119E+00, 14.9309177084877859477625939974E+00, 18.0710639679109225431478829756E+00, 21.2116366298792589590783933505E+00, 24.3524715307493027370579447632E+00, 27.4934791320402547958772882346E+00, 30.6346064684319751175495789269E+00, 33.7758202135735686842385463467E+00, 36.9170983536640439797694930633E+00, 40.0584257646282392947993073740E+00, 43.1997917131767303575240727287E+00, 46.3411883716618140186857888791E+00, 49.4826098973978171736027615332E+00, 52.6240518411149960292512853804E+00, 55.7655107550199793116834927735E+00, 58.9069839260809421328344066346E+00, 62.0484691902271698828525002646E+00, 65.1899648002068604406360337425E+00, 68.3314693298567982709923038400E+00, 71.4729816035937328250630738561E+00, 74.6145006437018378838205404693E+00, 77.7560256303880550377393718912E+00, 80.8975558711376278637721434909E+00, 84.0390907769381901578796383480E+00, 87.1806298436411536512618050690E+00, 90.3221726372104800557177667775E+00, 93.4637187819447741711905915439E+00 }; static int k_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; k = 0; fx = 0.0; } else { k = k_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j0_values() returns some values of the J0 Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselJ[0,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { -0.1775967713143383E+00, -0.3971498098638474E+00, -0.2600519549019334E+00, 0.2238907791412357E+00, 0.7651976865579666E+00, 0.1000000000000000E+01, 0.7651976865579666E+00, 0.2238907791412357E+00, -0.2600519549019334E+00, -0.3971498098638474E+00, -0.1775967713143383E+00, 0.1506452572509969E+00, 0.3000792705195556E+00, 0.1716508071375539E+00, -0.9033361118287613E-01, -0.2459357644513483E+00, -0.1711903004071961E+00, 0.4768931079683354E-01, 0.2069261023770678E+00, 0.1710734761104587E+00, -0.1422447282678077E-01 }; static double x_vec[N_MAX] = { -5.0E+00, -4.0E+00, -3.0E+00, -2.0E+00, -1.0E+00, 0.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 11.0E+00, 12.0E+00, 13.0E+00, 14.0E+00, 15.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j1_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j1_spherical_values() returns some values of the Spherical Bessel function j1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselJ[3/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.3330001190255757E-01, 0.6640038067032223E-01, 0.1312121544218529E+00, 0.1928919568034122E+00, 0.2499855053465475E+00, 0.3011686789397568E+00, 0.3452845698577903E+00, 0.3813753724123076E+00, 0.4087081401263934E+00, 0.4267936423844913E+00, 0.4353977749799916E+00, 0.4345452193763121E+00, 0.4245152947656493E+00, 0.4058301968314685E+00, 0.3792360591872637E+00, 0.3456774997623560E+00, 0.3062665174917607E+00, 0.2622467779189737E+00, 0.2149544641595738E+00, 0.1657769677515280E+00, 0.1161107492591575E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_j1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_j1_values() returns some values of the J1 Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselJ[1,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.3275791375914652E+00, 0.6604332802354914E-01, -0.3390589585259365E+00, -0.5767248077568734E+00, -0.4400505857449335E+00, 0.0000000000000000E+00, 0.4400505857449335E+00, 0.5767248077568734E+00, 0.3390589585259365E+00, -0.6604332802354914E-01, -0.3275791375914652E+00, -0.2766838581275656E+00, -0.4682823482345833E-02, 0.2346363468539146E+00, 0.2453117865733253E+00, 0.4347274616886144E-01, -0.1767852989567215E+00, -0.2234471044906276E+00, -0.7031805212177837E-01, 0.1333751546987933E+00, 0.2051040386135228E+00 }; static double x_vec[N_MAX] = { -5.0E+00, -4.0E+00, -3.0E+00, -2.0E+00, -1.0E+00, 0.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 11.0E+00, 12.0E+00, 13.0E+00, 14.0E+00, 15.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_jn_values ( int &n_data, int &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_jn_values() returns some values of the Jn Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselJ[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 April 2001 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.1149034849319005E+00, 0.3528340286156377E+00, 0.4656511627775222E-01, 0.2546303136851206E+00, -0.5971280079425882E-01, 0.2497577302112344E-03, 0.7039629755871685E-02, 0.2611405461201701E+00, -0.2340615281867936E+00, -0.8140024769656964E-01, 0.2630615123687453E-09, 0.2515386282716737E-06, 0.1467802647310474E-02, 0.2074861066333589E+00, -0.1138478491494694E+00, 0.3873503008524658E-24, 0.3918972805090754E-18, 0.2770330052128942E-10, 0.1151336924781340E-04, -0.1167043527595797E+00 }; static int nu_vec[N_MAX] = { 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20 }; static double x_vec[N_MAX] = { 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_jx_values ( int &n_data, double &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_jx_values() returns some values of the Jx Bessel function. // // Discussion: // // This set of data considers the less common case in which the // index of the Bessel function Jn is actually not an integer. // We may suggest this case by occasionally replacing the symbol // "Jn" by "Jx". // // In Mathematica, the function can be evaluated by: // // BesselJ[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 0.3544507442114011E+00, 0.6713967071418031E+00, 0.5130161365618278E+00, 0.3020049060623657E+00, 0.06500818287737578E+00, -0.3421679847981618E+00, -0.1372637357550505E+00, 0.1628807638550299E+00, 0.2402978391234270E+00, 0.4912937786871623E+00, -0.1696513061447408E+00, 0.1979824927558931E+00, -0.1094768729883180E+00, 0.04949681022847794E+00, 0.2239245314689158E+00, 0.2403772011113174E+00, 0.1966584835818184E+00, 0.02303721950962553E+00, 0.3314145508558904E+00, 0.5461734240402840E+00, -0.2616584152094124E+00, 0.1296035513791289E+00, -0.1117432171933552E+00, 0.03142623570527935E+00, 0.1717922192746527E+00, 0.3126634069544786E+00, 0.1340289119304364E+00, 0.06235967135106445E+00 }; static double nu_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0.0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_k0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_k0_values() returns some values of the K0 Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // The modified Bessel function K0(Z) corresponds to N = 0. // // In Mathematica, the function can be evaluated by: // // BesselK[0,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.2427069024702017E+01, 0.1752703855528146E+01, 0.1114529134524434E+01, 0.7775220919047293E+00, 0.5653471052658957E+00, 0.4210244382407083E+00, 0.3185082202865936E+00, 0.2436550611815419E+00, 0.1879547519693323E+00, 0.1459314004898280E+00, 0.1138938727495334E+00, 0.6234755320036619E-01, 0.3473950438627925E-01, 0.1959889717036849E-01, 0.1115967608585302E-01, 0.6399857243233975E-02, 0.3691098334042594E-02, 0.1243994328013123E-02, 0.1464707052228154E-03, 0.1778006231616765E-04 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00, 5.0E+00, 6.0E+00, 8.0E+00, 10.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_k0_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_k0_int_values() returns some values of the Bessel K0 integral. // // Discussion: // // The function is defined by: // // K0_INT(x) = Integral ( 0 <= t <= x ) K0(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.78587929563466784589E-02, 0.26019991617330578111E-01, 0.24311842237541167904E+00, 0.39999633750480508861E+00, 0.92710252093114907345E+00, 0.12425098486237782662E+01, 0.14736757343168286825E+01, 0.15606495706051741364E+01, 0.15673873907283660493E+01, 0.15696345532693743714E+01, 0.15701153443250786355E+01, 0.15706574852894436220E+01, 0.15707793116159788598E+01, 0.15707942066465767196E+01, 0.15707962315469192247E+01, 0.15707963262340149876E+01, 0.15707963267948756308E+01, 0.15707963267948966192E+01, 0.15707963267948966192E+01, 0.15707963267948966192E+01 }; static double x_vec[N_MAX] = { 0.0009765625E+00, 0.0039062500E+00, 0.0625000000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, 4.0000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 6.5000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00, 80.0000000000E+00, 100.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_k1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_k1_values() returns some values of the K1 Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // The modified Bessel function K1(Z) corresponds to N = 1. // // In Mathematica, the function can be evaluated by: // // BesselK[1,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.9853844780870606E+01, 0.4775972543220472E+01, 0.2184354424732687E+01, 0.1302834939763502E+01, 0.8617816344721803E+00, 0.6019072301972346E+00, 0.4345923910607150E+00, 0.3208359022298758E+00, 0.2406339113576119E+00, 0.1826230998017470E+00, 0.1398658818165224E+00, 0.7389081634774706E-01, 0.4015643112819418E-01, 0.2223939292592383E-01, 0.1248349888726843E-01, 0.7078094908968090E-02, 0.4044613445452164E-02, 0.1343919717735509E-02, 0.1553692118050011E-03, 0.1864877345382558E-04 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00, 5.0E+00, 6.0E+00, 8.0E+00, 10.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_kn_values ( int &n_data, int &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_kn_values() returns some values of the Kn Bessel function. // // Discussion: // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 * W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // In Mathematica, the function can be evaluated by: // // BesselK[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 0.4951242928773287E+02, 0.1624838898635177E+01, 0.2537597545660559E+00, 0.1214602062785638E+00, 0.6151045847174204E-01, 0.5308943712223460E-02, 0.2150981700693277E-04, 0.6329543612292228E-09, 0.7101262824737945E+01, 0.6473853909486342E+00, 0.8291768415230932E-02, 0.2725270025659869E-04, 0.3727936773826211E-22, 0.3609605896012407E+03, 0.9431049100596467E+01, 0.3270627371203186E-01, 0.5754184998531228E-04, 0.4367182254100986E-22, 0.1807132899010295E+09, 0.1624824039795591E+06, 0.9758562829177810E+01, 0.1614255300390670E-02, 0.9150988209987996E-22, 0.6294369360424535E+23, 0.5770856852700241E+17, 0.4827000520621485E+09, 0.1787442782077055E+03, 0.1706148379722035E-20 }; static int nu_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_kx_values ( int &n_data, double &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_kx_values() returns some values of the Kx Bessel function. // // Discussion: // // This set of data considers the less common case in which the // index of the Bessel function Kn is actually not an integer. // We may suggest this case by occasionally replacing the symbol // "Kn" by "Kx". // // The modified Bessel functions In(Z) and Kn(Z) are solutions of // the differential equation // // Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. // // In Mathematica, the function can be evaluated by: // // BesselK[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 2.294489339798475E+00, 0.4610685044478946E+00, 0.1199377719680614E+00, 0.06506594315400999E+00, 0.03602598513176459E+00, 0.003776613374642883E+00, 0.00001799347809370518E+00, 5.776373974707445E-10, 0.9221370088957891E+00, 0.1799066579520922E+00, 0.004531936049571459E+00, 0.00001979282590307570E+00, 3.486992497366216E-23, 3.227479531135262E+00, 0.3897977588961997E+00, 0.006495775004385758E+00, 0.00002393132586462789E+00, 3.627839645299048E-23, 0.7311451879202114E+00, 0.1567475478393932E+00, 0.004257389528177461E+00, 0.00001915541065869563E+00, 3.463337593569306E-23, 4.731184839919541E+00, 0.4976876225514758E+00, 0.007300864610941163E+00, 0.00002546421294106458E+00, 3.675275677913656E-23 }; static double nu_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0.0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y0_values() returns some values of the Y0 Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselY[0,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { -0.1534238651350367E+01, 0.8825696421567696E-01, 0.5103756726497451E+00, 0.3768500100127904E+00, -0.1694073932506499E-01, -0.3085176252490338E+00, -0.2881946839815792E+00, -0.2594974396720926E-01, 0.2235214893875662E+00, 0.2499366982850247E+00, 0.5567116728359939E-01, -0.1688473238920795E+00, -0.2252373126343614E+00, -0.7820786452787591E-01, 0.1271925685821837E+00, 0.2054642960389183E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 11.0E+00, 12.0E+00, 13.0E+00, 14.0E+00, 15.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y0_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y0_int_values() returns some values of the Bessel Y0 integral. // // Discussion: // // The function is defined by: // // Y0_INT(x) = Integral ( 0 <= t <= x ) Y0(t) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -0.91442642860172110926E-02, -0.29682047390397591290E-01, -0.25391431276585388961E+00, -0.56179545591464028187E+00, -0.63706937660742309754E+00, -0.28219285008510084123E+00, 0.38366964785312561103E+00, -0.12595061285798929390E+00, 0.24129031832266684828E+00, 0.17138069757627037938E+00, 0.18958142627134083732E+00, 0.17203846136449706946E+00, -0.16821597677215029611E+00, -0.93607927351428988679E-01, 0.88229711948036648408E-01, -0.89324662736274161841E-02, -0.54814071000063488284E-01, -0.94958246003466381588E-01, -0.19598064853404969850E-01, -0.83084772357154773468E-02 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, 4.0000000000E+00, 6.0000000000E+00, 10.0000000000E+00, 16.0000000000E+00, 16.2500000000E+00, 17.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00, 30.0000000000E+00, 40.0000000000E+00, 50.0000000000E+00, 70.0000000000E+00, 100.0000000000E+00, 125.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y0_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y0_spherical_values() returns some values of the Spherical Bessel function y0. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselY[1/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { -0.9950041652780258E+01, -0.4900332889206208E+01, -0.2302652485007213E+01, -0.1375559358182797E+01, -0.8708833866839568E+00, -0.5403023058681397E+00, -0.3019647953972280E+00, -0.1214051020716007E+00, 0.1824970143830545E-01, 0.1262233859406039E+00, 0.2080734182735712E+00, 0.2675005078433390E+00, 0.3072473814755190E+00, 0.3295725974495951E+00, 0.3365079788102351E+00, 0.3299974988668152E+00, 0.3119671174358603E+00, 0.2843524095821944E+00, 0.2490995600928186E+00, 0.2081493978722149E+00, 0.1634109052159030E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y0_zero_values ( int &n_data, int &k, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y0_zero_values() returns some values of Y0 Bessel zeroes. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 March 2024 // // Author: // // John Burkardt // // Input: // // int &n_data: the user sets N_DATA to 0 before the first call. // // Output: // // int &n_data: on each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &k: the index of the zero. // // double &fx: the value of the function. // { # define N_MAX 32 static double fx_vec[N_MAX] = { 0.8935769662791675, 3.957678419314858, 7.086051060301773, 10.22234504349642, 13.36109747387276, 16.50092244152809, 19.64130970088794, 22.78202804729156, 25.92295765318092, 29.06403025272840, 32.20520411649328, 35.34645230521432, 38.48775665308154, 41.62910446621381, 44.77048660722199, 47.91189633151648, 51.05332855236236, 54.19477936108705, 57.33624570476628, 60.47772516422348, 63.61921579772038, 66.76071602872964, 69.90222456393850, 73.04374033239207, 76.18526243968061, 79.32679013300400, 82.46832277421550, 85.60985981879671, 88.75140079929514, 91.89294531215718, 95.03449300717121, 98.17604357893667 }; static int k_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; k = 0; fx = 0.0; } else { k = k_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y1_values() returns some values of the Y1 Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselY[1,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { -0.6458951094702027E+01, -0.7812128213002887E+00, -0.1070324315409375E+00, 0.3246744247918000E+00, 0.3979257105571000E+00, 0.1478631433912268E+00, -0.1750103443003983E+00, -0.3026672370241849E+00, -0.1580604617312475E+00, 0.1043145751967159E+00, 0.2490154242069539E+00, 0.1637055374149429E+00, -0.5709921826089652E-01, -0.2100814084206935E+00, -0.1666448418561723E+00, 0.2107362803687351E-01 }; static double x_vec[N_MAX] = { 0.1E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 11.0E+00, 12.0E+00, 13.0E+00, 14.0E+00, 15.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_y1_spherical_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_y1_spherical_values() returns some values of the Spherical Bessel function y1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi/(2*x)] * BesselY[3/2,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { -0.1004987506942709E+03, -0.2549501110000635E+02, -0.6730177068289658E+01, -0.3233669719296388E+01, -0.1985299346979349E+01, -0.1381773290676036E+01, -0.1028336567803712E+01, -0.7906105943286149E+00, -0.6133274385019998E+00, -0.4709023582986618E+00, -0.3506120042760553E+00, -0.2459072254437506E+00, -0.1534232496148467E+00, -0.7151106706610352E-01, 0.5427959479750482E-03, 0.6295916360231598E-01, 0.1157316440198251E+00, 0.1587922092967723E+00, 0.1921166676076864E+00, 0.2157913917934037E+00, 0.2300533501309578E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_yn_values ( int &n_data, int &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_yn_values() returns some values of the Yn Bessel function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // BesselY[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -0.1650682606816254E+01, -0.6174081041906827E+00, 0.3676628826055245E+00, -0.5868082442208615E-02, 0.9579316872759649E-01, -0.2604058666258122E+03, -0.9935989128481975E+01, -0.4536948224911019E+00, 0.1354030476893623E+00, -0.7854841391308165E-01, -0.1216180142786892E+09, -0.1291845422080393E+06, -0.2512911009561010E+02, -0.3598141521834027E+00, 0.5723897182053514E-02, -0.4113970314835505E+23, -0.4081651388998367E+17, -0.5933965296914321E+09, -0.1597483848269626E+04, 0.1644263394811578E-01 }; static int nu_vec[N_MAX] = { 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20 }; static double x_vec[N_MAX] = { 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bessel_yx_values ( int &n_data, double &nu, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // bessel_yx_values() returns some values of the Yx Bessel function. // // Discussion: // // This set of data considers the less common case in which the // index of the Bessel function Yn is actually not an integer. // We may suggest this case by occasionally replacing the symbol // "Yn" by "Yx". // // In Mathematica, the function can be evaluated by: // // BesselY[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &NU, the order of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { -1.748560416961876E+00, -0.4310988680183761E+00, 0.2347857104062485E+00, 0.4042783022390569E+00, 0.4560488207946332E+00, -0.1012177091851084E+00, 0.2117088663313982E+00, -0.07280690478506185E+00, -1.102495575160179E+00, -0.3956232813587035E+00, 0.3219244429611401E+00, 0.1584346223881903E+00, 0.02742813676191382E+00, -2.876387857462161E+00, -0.8282206324443037E+00, 0.2943723749617925E+00, -0.1641784796149411E+00, 0.1105304445562544E+00, -0.9319659251969881E+00, -0.2609445010948933E+00, 0.2492796362185881E+00, 0.2174410301416733E+00, -0.01578576650557229E+00, -4.023453301501028E+00, -0.9588998694752389E+00, 0.2264260361047367E+00, -0.2193617736566760E+00, 0.09413988344515077E+00 }; static double nu_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 1.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 2.50E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 1.25E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00, 2.75E+00 }; static double x_vec[N_MAX] = { 0.2E+00, 1.0E+00, 2.0E+00, 2.5E+00, 3.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 1.0E+00, 2.0E+00, 5.0E+00, 10.0E+00, 50.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nu = 0.0; x = 0.0; fx = 0.0; } else { nu = nu_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_cdf_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // beta_cdf_values() returns some values of the Beta CDF. // // Discussion: // // The incomplete Beta function may be written // // BETA_INC(A,B,X) = Integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT // / Integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT // // Thus, // // BETA_INC(A,B,0.0) = 0.0; // BETA_INC(A,B,1.0) = 1.0 // // The incomplete Beta function is also sometimes called the // "modified" Beta function, or the "normalized" Beta function // or the Beta CDF (cumulative density function. // // In Mathematica, the function can be evaluated by: // // BETA[X,A,B] / BETA[A,B] // // The function can also be evaluated by using the Statistics package: // // Needs["Statistics`ContinuousDistributions`"] // dist = BetaDistribution [ a, b ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 April 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Karl Pearson, // Tables of the Incomplete Beta Function, // Cambridge University Press, 1968. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, the parameters of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 45 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 1.30625, 1.30625, 1.30625 }; static double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 11.7562, 11.7562, 11.7562 }; static double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01, 0.918884684620518, 0.21052977489419, 0.1824130512500673 }; static double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.225609, 0.0335568, 0.0295222 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_inc_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // beta_inc_values() returns some values of the incomplete Beta function. // // Discussion: // // The incomplete Beta function may be written // // BETA_INC(A,B,X) = Integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT // / Integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT // // Thus, // // BETA_INC(A,B,0.0) = 0.0; // BETA_INC(A,B,1.0) = 1.0 // // The incomplete Beta function is also sometimes called the // "modified" Beta function, or the "normalized" Beta function // or the Beta CDF (cumulative density function. // // In Mathematica, the function can be evaluated by: // // BETA[X,A,B] / BETA[A,B] // // The function can also be evaluated by using the Statistics package: // // Needs["Statistics`ContinuousDistributions`"] // dist = BetaDistribution [ a, b ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 April 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Karl Pearson, // Tables of the Incomplete Beta Function, // Cambridge University Press, 1968. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, the parameters of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 45 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 1.30625, 1.30625, 1.30625 }; static double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 11.7562, 11.7562, 11.7562 }; static double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01, 0.918884684620518, 0.21052977489419, 0.1824130512500673 }; static double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.225609, 0.0335568, 0.0295222 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_log_values ( int &n_data, double &x, double &y, double &fxy ) //****************************************************************************80 // // Purpose: // // beta_log_values() returns some values of the logarithm of the Beta function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[Beta[x]] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, &Y, the arguments of the function. // // double &FXY, the value of the function. // { # define N_MAX 17 static double fxy_vec[N_MAX] = { 0.1609437912434100E+01, 0.9162907318741551E+00, 0.5108256237659907E+00, 0.2231435513142098E+00, 0.1609437912434100E+01, 0.9162907318741551E+00, 0.0000000000000000E+00, -0.1791759469228055E+01, -0.3401197381662155E+01, -0.4941642422609304E+01, -0.6445719819385578E+01, -0.3737669618283368E+01, -0.5123963979403259E+01, -0.6222576268071369E+01, -0.7138866999945524E+01, -0.7927324360309794E+01, -0.9393661429103221E+01 }; static double x_vec[N_MAX] = { 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 7.0E+00 }; static double y_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 0.2E+00, 0.4E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; y = 0.0; fxy = 0.0; } else { x = x_vec[n_data-1]; y = y_vec[n_data-1]; fxy = fxy_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_noncentral_cdf_values ( int &n_data, double &a, double &b, double &lambda, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // beta_noncentral_cdf_values() returns some values of the noncentral Beta CDF. // // Discussion: // // The values presented here are taken from the reference, where they // were given to a limited number of decimal places. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 January 2008 // // Author: // // John Burkardt // // Reference: // // R Chattamvelli, R Shanmugam, // Algorithm AS 310: // Computing the Non-central Beta Distribution Function, // Applied Statistics, // Volume 46, Number 1, 1997, pages 146-156. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, the shape parameters. // // double &LAMBDA, the noncentrality parameter. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 25 static double a_vec[N_MAX] = { 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 20.0, 20.0, 20.0, 10.0, 10.0, 15.0, 20.0, 20.0, 20.0, 30.0, 30.0, 10.0, 10.0, 10.0, 15.0, 10.0, 12.0, 30.0, 35.0 }; static double b_vec[N_MAX] = { 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 20.0, 20.0, 20.0, 20.0, 10.0, 5.0, 10.0, 30.0, 50.0, 20.0, 40.0, 5.0, 10.0, 30.0, 20.0, 5.0, 17.0, 30.0, 30.0 }; static double fx_vec[N_MAX] = { 0.4563021, 0.1041337, 0.6022353, 0.9187770, 0.6008106, 0.0902850, 0.9998655, 0.9925997, 0.9641112, 0.9376626573, 0.7306817858, 0.1604256918, 0.1867485313, 0.6559386874, 0.9796881486, 0.1162386423, 0.9930430054, 0.0506899273, 0.1030959706, 0.9978417832, 0.2555552369, 0.0668307064, 0.0113601067, 0.7813366615, 0.8867126477 }; static double lambda_vec[N_MAX] = { 54.0, 140.0, 170.0, 54.0, 140.0, 250.0, 54.0, 140.0, 250.0, 150.0, 120.0, 80.0, 110.0, 65.0, 130.0, 80.0, 130.0, 20.0, 54.0, 80.0, 120.0, 55.0, 64.0, 140.0, 20.0 }; static double x_vec[N_MAX] = { 0.8640, 0.9000, 0.9560, 0.8686, 0.9000, 0.9000, 0.8787, 0.9000, 0.9220, 0.868, 0.900, 0.880, 0.850, 0.660, 0.720, 0.720, 0.800, 0.644, 0.700, 0.780, 0.760, 0.795, 0.560, 0.800, 0.670 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; lambda = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; lambda = lambda_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_pdf_values ( int &n_data, double &alpha, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // beta_pdf_values() returns some values of the Beta PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 July 2015 // // Author: // // John Burkardt // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &ALPHA, &BETA, the parameters of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 10 static double alpha_vec[N_MAX] = { 1.092091484911879, 2.808477213834471, 1.287888961910225, 3.169828561512062, 2.006531407488083, 0.009191855792026001, 0.472723751058401, 4.204237253278341, 1.301514988836825, 1.758143299519481 }; static double beta_vec[N_MAX] = { 4.781587882544648, 2.076535407379806, 0.549783967662353, 0.3086361453280091, 3.773367432107051, 4.487520304498656, 0.06808445791730976, 0.6155195788227712, 4.562418534907164, 4.114436583429598 }; static double fx_vec[N_MAX] = { 0.002826137156803199, 0.04208950342768649, 0.2184064957817208, 0.1335142301445414, 0.1070571849830009, 0.005796394377470491, 0.5518796772414584, 0.0, 2.87907465409348, 2.126992854611924 }; static double x_vec[N_MAX] = { 0.8667224264776531, 0.04607764003473368, 0.02211617261254013, 0.4582543823302144, 0.8320834756642252, 0.3520587633290876, 0.898529119425846, -0.01692420862048847, 0.09718884992568674, 0.2621671905296927 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; alpha = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { alpha = alpha_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void beta_values ( int &n_data, double &x, double &y, double &fxy ) //****************************************************************************80 // // Purpose: // // beta_values() returns some values of the Beta function. // // Discussion: // // Beta(X,Y) = ( Gamma(X) * Gamma(Y) ) / Gamma(X+Y) // // Both X and Y must be greater than 0. // // In Mathematica, the function can be evaluated by: // // Beta[X,Y] // // Properties: // // Beta(X,Y) = Beta(Y,X). // Beta(X,Y) = Integral ( 0 <= T <= 1 ) T^(X-1) (1-T)^(Y-1) dT. // Beta(X,Y) = Gamma(X) * Gamma(Y) / Gamma(X+Y) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, &Y, the arguments of the function. // // double &FXY, the value of the function. // { # define N_MAX 17 static double b_vec[N_MAX] = { 0.5000000000000000E+01, 0.2500000000000000E+01, 0.1666666666666667E+01, 0.1250000000000000E+01, 0.5000000000000000E+01, 0.2500000000000000E+01, 0.1000000000000000E+01, 0.1666666666666667E+00, 0.3333333333333333E-01, 0.7142857142857143E-02, 0.1587301587301587E-02, 0.2380952380952381E-01, 0.5952380952380952E-02, 0.1984126984126984E-02, 0.7936507936507937E-03, 0.3607503607503608E-03, 0.8325008325008325E-04 }; static double x_vec[N_MAX] = { 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 6.0E+00, 7.0E+00 }; static double y_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 0.2E+00, 0.4E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; y = 0.0; fxy = 0.0; } else { x = x_vec[n_data-1]; y = y_vec[n_data-1]; fxy = b_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void binomial_values ( int &n_data, int &a, int &b, int &fx ) //****************************************************************************80 // // Purpose: // // binomial_values() returns some values of the binomial coefficients. // // Discussion: // // The formula for the binomial coefficient is // // C(N,K) = N! / ( K! * (N-K)! ) // // In Mathematica, the function can be evaluated by: // // Binomial[n,k] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &A, &B, the arguments of the function. // // int &FX, the value of the function. // { # define N_MAX 20 static int a_vec[N_MAX] = { 1, 6, 6, 6, 15, 15, 15, 15, 15, 15, 15, 25, 25, 25, 25, 25, 25, 25, 25, 25 }; static int b_vec[N_MAX] = { 0, 1, 3, 5, 1, 3, 5, 7, 9, 11, 13, 1, 3, 5, 7, 9, 11, 13, 15, 17 }; static int fx_vec[N_MAX] = { 1, 6, 20, 6, 15, 455, 3003, 6435, 5005, 1365, 105, 25, 2300, 53130, 480700, 2042975, 4457400, 5200300, 3268760, 1081575 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0; b = 0; fx = 0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void binomial_cdf_values ( int &n_data, int &a, double &b, int &x, double &fx ) //****************************************************************************80 // // Purpose: // // binomial_cdf_values() returns some values of the binomial CDF. // // Discussion: // // CDF(X)(A,B) is the probability of at most X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = BinomialDistribution [ n, p ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &A, a parameter of the function. // // double &B, a parameter of the function. // // int &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 17 static int a_vec[N_MAX] = { 2, 2, 2, 2, 2, 4, 4, 4, 4, 10, 10, 10, 10, 10, 10, 10, 10 }; static double b_vec[N_MAX] = { 0.05E+00, 0.05E+00, 0.05E+00, 0.50E+00, 0.50E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.05E+00, 0.10E+00, 0.15E+00, 0.20E+00, 0.25E+00, 0.30E+00, 0.40E+00, 0.50E+00 }; static double fx_vec[N_MAX] = { 0.9025000000000000E+00, 0.9975000000000000E+00, 0.1000000000000000E+01, 0.2500000000000000E+00, 0.7500000000000000E+00, 0.3164062500000000E+00, 0.7382812500000000E+00, 0.9492187500000000E+00, 0.9960937500000000E+00, 0.9999363101685547E+00, 0.9983650626000000E+00, 0.9901259090013672E+00, 0.9672065024000000E+00, 0.9218730926513672E+00, 0.8497316674000000E+00, 0.6331032576000000E+00, 0.3769531250000000E+00 }; static int x_vec[N_MAX] = { 0, 1, 2, 0, 1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0; b = 0.0; x = 0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void binomial_pdf_values ( int &n_data, int &a, double &b, int &x, double &fx ) //****************************************************************************80 // // Purpose: // // binomial_pdf_values() returns some values of the binomial PDF. // // Discussion: // // PDF(X)(A,B) is the probability of X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = BinomialDistribution [ n, p ] // PDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &A, a parameter of the function. // // double &B, a parameter of the function. // // int &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 10 static int a_vec[N_MAX] = { 5, 12, 6, 13, 9, 1, 2, 17, 6, 8 }; static double b_vec[N_MAX] = { 0.8295092339327006, 0.06611873491603133, 0.0438289977791071, 0.4495389603071763, 0.7972869541062562, 0.3507523379805466, 0.8590968552798568, 0.007512364073964213, 0.1136640464424993, 0.2671322702601793 }; static double fx_vec[N_MAX] = { 0.3927408939646697, 0.0006199968732461383, 0.764211224733124, 0.0004260353334364943, 0.302948289145794, 0.3507523379805466, 0.01985369619202562, 0.006854388879646552, 0.000002156446446382985, 0.0005691150511772053 }; static int x_vec[N_MAX] = { 5, 5, 0, 0, 7, 1, 0, 2, 6, 7 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0; b = 0.0; x = 0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void bivariate_normal_cdf_values ( int &n_data, double &x, double &y, double &r, double &fxy ) //****************************************************************************80 // // Purpose: // // bivariate_normal_cdf_values() returns some values of the bivariate normal CDF. // // Discussion: // // FXY is the probability that two variables A and B, which are // related by a bivariate normal distribution with correlation R, // respectively satisfy A <= X and B <= Y. // // Mathematica can evaluate the bivariate normal CDF via the commands: // // < &z, complex &fz ) //****************************************************************************80 // // Purpose: // // c8_log_values() returns the logarithm of a complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2019 // // Author: // // John Burkardt // // Reference: // // David Collens, // Algorithm 243: Logarithm of a Complex Number, // Communications of the Association for Computing Machinery, // Volume 7, Number 11, November 1964, page 660. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // complex &Z, the argument of the function. // // complex &FZ, the value of the function. // { # define N_MAX 12 static complex fz_vec[N_MAX] = { complex ( 1.039720770839918, - 2.356194490192345 ), complex ( 0.804718956217050, + 2.677945044588987 ), complex ( 0.346573590279973, - 2.356194490192345 ), complex ( 0.000000000000000, + 3.141592653589793 ), complex ( 0.693147180559945, - 1.570796326794897 ), complex ( 0.000000000000000, - 1.570796326794897 ), complex ( 0.000000000000000, + 1.570796326794897 ), complex ( 0.693147180559945, + 1.570796326794897 ), complex ( 0.346573590279973, - 0.785398163397448 ), complex ( 0.000000000000000, + 0.000000000000000 ), complex ( 1.039720770839918, - 0.785398163397448 ), complex ( 0.804718956217050, + 0.463647609000806 ) }; static complex z_vec[N_MAX] = { complex ( -2.0, - 2.0 ), complex ( -2.0, + 1.0 ), complex ( -1.0, - 1.0 ), complex ( -1.0, + 0.0 ), complex ( 0.0, - 2.0 ), complex ( 0.0, - 1.0 ), complex ( 0.0, + 1.0 ), complex ( 0.0, + 2.0 ), complex ( 1.0, - 1.0 ), complex ( 1.0, + 0.0 ), complex ( 2.0, - 2.0 ), complex ( 2.0, + 1.0 ) }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; z = complex ( 0.0, 0.0 ); fz = complex ( 0.0, 0.0 ); } else { z = z_vec[n_data-1]; fz = fz_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void catalan_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // catalan_values() returns some values of the Catalan numbers. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Binomial[2*n,n] / ( n + 1 ) // // First values: // // C(0) 1 // C(1) 1 // C(2) 2 // C(3) 5 // C(4) 14 // C(5) 42 // C(6) 132 // C(7) 429 // C(8) 1430 // C(9) 4862 // C(10) 16796 // // Formula: // // C(N) = (2*N)! / ( (N+1) * (N!) * (N!) ) // = 1 / (N+1) * COMB ( 2N, N ) // = 1 / (2N+1) * COMB ( 2N+1, N+1). // // Recursion: // // C(N) = 2 * (2*N-1) * C(N-1) / (N+1) // C(N) = sum ( 1 <= I <= N-1 ) C(I) * C(N-I) // // Discussion: // // The Catalan number C(N) counts: // // 1) the number of binary trees on N vertices; // 2) the number of ordered trees on N+1 vertices; // 3) the number of full binary trees on 2N+1 vertices; // 4) the number of well formed sequences of 2N parentheses; // 5) the number of ways 2N ballots can be counted, in order, // with N positive and N negative, so that the running sum // is never negative; // 6) the number of standard tableaus in a 2 by N rectangular Ferrers diagram; // 7) the number of monotone functions from [1..N} to [1..N} which // satisfy f(i) <= i for all i; // 8) the number of ways to triangulate a polygon with N+2 vertices. // // Example: // // N = 3 // // ()()() // ()(()) // (()()) // (())() // ((())) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the Catalan number. // // int &C, the value of the Catalan number. // { # define N_MAX 11 static int c_vec[N_MAX] = { 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cauchy_cdf_values ( int &n_data, double &mu, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cauchy_cdf_values() returns some values of the Cauchy CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = CauchyDistribution [ mu, sigma ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &MU, the mean of the distribution. // // double &SIGMA, the standard deviation of the distribution. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.8524163823495667E+00, 0.9220208696226307E+00, 0.9474315432887466E+00, 0.6475836176504333E+00, 0.6024163823495667E+00, 0.5779791303773693E+00, 0.5628329581890012E+00, 0.6475836176504333E+00, 0.5000000000000000E+00, 0.3524163823495667E+00, 0.2500000000000000E+00 }; static double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double sigma_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cbrt_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cbrt_values() returns some values of the cube root function. // // Discussion: // // CBRT(X) = real number Y such that Y * Y * Y = X. // // In Mathematica, the function can be evaluated by: // // Sign[x] * ( Abs[x] )^(1/3) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, -0.0020082988563383484484E+00, 0.44814047465571647087E+00, -0.46415888336127788924E+00, 0.73680629972807732116E+00, -1.0000000000000000000E+00, 1.2599210498948731648E+00, -1.4422495703074083823E+00, 1.4645918875615232630E+00, -2.6684016487219448673E+00, 3.0723168256858472933E+00, -4.1408177494228532500E+00, 4.5947008922070398061E+00, -497.93385921817447440E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, -0.8100000073710001E-08, 0.9000000000000000E-01, -0.1000000000000000E+00, 0.4000000000000000E+00, -0.1000000000000000E+01, 0.2000000000000000E+01, -0.3000000000000000E+01, 0.3141592653589793E+01, -0.1900000000000000E+02, 0.2900000000000000E+02, -0.7100000000000000E+02, 0.9700000000000000E+02, -0.1234567890000000E+09 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_t_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_t_poly_values() returns values of Chebyshev polynomials T(n,x). // // Discussion: // // In Mathematica, the function can be evaluated by: // // ChebyshevT[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+01, 0.8000000000000000E+00, 0.2800000000000000E+00, -0.3520000000000000E+00, -0.8432000000000000E+00, -0.9971200000000000E+00, -0.7521920000000000E+00, -0.2063872000000000E+00, 0.4219724800000000E+00, 0.8815431680000000E+00, 0.9884965888000000E+00, 0.7000513740800000E+00, 0.1315856097280000E+00 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static double x_vec[N_MAX] = { 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_t01_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_t01_poly_values() returns values of shifted Chebyshev polynomials T01(n,x). // // Discussion: // // T01(n,x) = T(n,2*x-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { 0.0000000000000000, 1.0000000000000000, 0.7000000000000000, -0.0200000000000000, -0.7280000000000000, -0.9992000000000000, -0.6708800000000000, 0.0599680000000000, 0.7548352000000000, 0.9968012800000000, 0.6406865920000000, -0.0998400512000000, -0.7804626636800000, -0.9928076779520000, -1.0000000000000000, 0.2063872000000000, -0.9784704000000000, 0.2580224000000000, 0.9870208000000000, 0.0000000000000000, -0.9870208000000000, -0.2580224000000000, 0.9784704000000000, -0.2063872000000000, 1.0000000000000000 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static double x_vec[N_MAX] = { 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_u_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_u_poly_values() returns values of Chebyshev polynomials U(n,x). // // Discussion: // // In Mathematica, the function can be evaluated by: // // ChebyshevU[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+01, 0.1600000000000000E+01, 0.1560000000000000E+01, 0.8960000000000000E+00, -0.1264000000000000E+00, -0.1098240000000000E+01, -0.1630784000000000E+01, -0.1511014400000000E+01, -0.7868390400000000E+00, 0.2520719360000000E+00, 0.1190154137600000E+01, 0.1652174684160000E+01, 0.1453325357056000E+01 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static double x_vec[N_MAX] = { 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_u01_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_u01_poly_values() returns values of shifted Chebyshev polynomials U01(n,x). // // Discussion: // // U01(n,x) = U(n,2*x-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { 0.000000000000000, 1.000000000000000, 1.400000000000000, 0.9600000000000000, -0.05600000000000000, -1.038400000000000, -1.397760000000000, -0.9184640000000000, 0.1119104000000000, 1.075138560000000, 1.393283584000000, 0.8754584576000000, -0.1676417433600000, -1.110156898304000, -8.000000000000000, 1.511014400000000, -1.133260800000000, -0.1636352000000000, 1.019801600000000, 0.000000000000000, -1.019801600000000, 0.1636352000000000, 1.133260800000000, -1.511014400000000, 8.000000000000000 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static double x_vec[N_MAX] = { 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_v_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_v_poly_values() returns values of Chebyshev polynomials V(n,x). // // Discussion: // // In Mathematica, the function can be evaluated by: // // u = Sqrt[(x+1)/2], // ChebyshevT[2*n+1,u] / u // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 1.0000000000000000E+00, 0.6000000000000000E+00, -0.0400000000000000E+00, -0.6640000000000000E+00, -1.0224000000000000E+00, -0.9718400000000000E+00, -0.5325440000000000E+00, 0.1197696000000000E+00, 0.7241753600000000E+00, 1.0389109760000000E+00, 0.9380822016000000E+00, 0.4620205465600000E+00, -0.1988493271040000E+00 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static double x_vec[N_MAX] = { 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_v01_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_v01_poly_values() returns values of shifted Chebyshev polynomials V01(n,x). // // Discussion: // // V01(n,x) = V(n,2*x-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { 0.0000000000000000, 1.0000000000000000, 0.4000000000000000, -0.4400000000000000, -1.0160000000000000, -0.9824000000000000, -0.3593600000000000, 0.4792960000000000, 1.0303744000000000, 0.9632281600000000, 0.3181450240000000, -0.5178251264000000, -1.0431002009600000, -0.9425151549440000, -15.000000000000000, 3.1417984000000000, -1.3912448000000000, -1.2177792000000000, 1.1837056000000000, 1.0000000000000000, -0.8558976000000000, -0.8905088000000000, 0.8752768000000000, 0.1197696000000000, 1.0000000000000000 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static double x_vec[N_MAX] = { 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_w_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_w_poly_values() returns values of Chebyshev polynomials W(n,x). // // Discussion: // // In Mathematica, the function can be evaluated by: // // u = Sqrt[(x+1)/2], // ChebyshevU[2*n,u] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.000000000000000E+00, 1.000000000000000E+00, 2.600000000000000E+00, 3.160000000000000E+00, 2.456000000000000E+00, 0.769600000000000E+00, -1.224640000000000E+00, -2.729024000000000E+00, -3.141798400000000E+00, -2.297853440000000E+00, -0.534767104000000E+00, 1.442226073600000E+00, 2.842328821760000E+00, 3.105500041216000E+00 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static double x_vec[N_MAX] = { 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00, 0.8E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cheby_w01_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cheby_w01_poly_values() returns values of shifted Chebyshev polynomials W01(n,x). // // Discussion: // // W01(n,x) = W(n,2*x-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the order of the function. // // double &X, the point where the function is evaluated. // // double &FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { 0.000000000000000, 1.000000000000000, 2.400000000000000, 2.360000000000000, 0.904000000000000, -1.094400000000000, -2.436160000000000, -2.316224000000000, -0.806553600000000, 1.187048960000000, 2.468422144000000, 2.268742041600000, 0.707816714240000, -1.277798641664000, -1.000000000000000, -0.119769600000000, -0.875276800000000, 0.890508800000000, 0.855897600000000, -1.000000000000000, -1.183705600000000, 1.217779200000000, 1.391244800000000, -3.141798400000000, 15.00000000000000 }; static int n_vec[N_MAX] = { -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static double x_vec[N_MAX] = { 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void chi_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // chi_values() returns some values of the hyperbolic cosine integral function. // // Discussion: // // The hyperbolic cosine integral is defined by // // CHI(X) = gamma + log ( x ) // + integral ( 0 <= T < X ) ( cosh ( T ) - 1 ) / T dT // // where gamma is Euler's constant. // // In Mathematica, the function can be evaluated by: // // CoshIntegral[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { -0.05277684495649362, 0.1577508933739787, 0.3455691756953907, 0.5183999848333915, 0.6813138871854339, 0.8378669409802082, 1.141841924170595, 1.445494075789644, 1.759505807660965, 2.092577214062032, 2.452666922646915, 3.524425488354165, 4.960392094765610, 6.959191927647393, 9.813547558823186, 13.96581164859243 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void chi_square_cdf_values ( int &n_data, int &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // chi_square_cdf_values() returns some values of the Chi-Square CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = ChiSquareDistribution [ df ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &A, the parameter of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { // # define N_MAX 21 static int a_vec[N_MAX] = { 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 3, 3, 3, 3, 3, 10, 10, 10 }; static double fx_vec[N_MAX] = { 0.7965567455405796E-01, 0.4987520807317687E-02, 0.1124629160182849E+00, 0.9950166250831946E-02, 0.4729107431344619E+00, 0.1812692469220181E+00, 0.5975750516063926E-01, 0.1752309630642177E-01, 0.6826894921370859E+00, 0.3934693402873666E+00, 0.1987480430987992E+00, 0.9020401043104986E-01, 0.3743422675270363E-01, 0.4275932955291202E+00, 0.6083748237289110E+00, 0.7385358700508894E+00, 0.8282028557032669E+00, 0.8883897749052874E+00, 0.1721156299558408E-03, 0.3659846827343712E-02, 0.1857593622214067E-01 }; static double x_vec[N_MAX] = { 0.01E+00, 0.01E+00, 0.02E+00, 0.02E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 6.00E+00, 1.00E+00, 2.00E+00, 3.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void chi_square_pdf_values ( int &n_data, double &df, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // chi_square_pdf_values() returns some values of the Chi-Square PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 August 2015 // // Author: // // John Burkardt // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &DF, the degrees of freedom. // // double &X, the argument of the function. // // double &FX, the value of the function. // { // # define N_MAX 21 static double df_vec[N_MAX] = { 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 3.0, 3.0, 3.0, 3.0, 10.0, 10.0, 10.0 }; static double fx_vec[N_MAX] = { 3.969525474770117, 0.4975062395963412, 2.792879016972342, 0.4950249168745841, 0.5164415474672784, 0.4093653765389909, 0.2065766189869113, 0.08187307530779819, 0.2419707245191434, 0.3032653298563167, 0.2419707245191434, 0.1516326649281584, 0.08065690817304777, 0.2075537487102974, 0.1541803298037693, 0.1079819330263761, 0.07322491280963248, 0.04865217332964145, 0.0007897534631674914, 0.00766415502440505, 0.02353325907815472 }; static double x_vec[N_MAX] = { 0.01E+00, 0.01E+00, 0.02E+00, 0.02E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 6.00E+00, 1.00E+00, 2.00E+00, 3.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; df = 0.0; x = 0.0; fx = 0.0; } else { df = df_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void chi_square_noncentral_cdf_values ( int &n_data, int &df, double &lambda, double &x, double &cdf ) //****************************************************************************80 // // Purpose: // // chi_square_noncentral_cdf_values() returns values of the noncentral chi CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NoncentralChiSquareDistribution [ df, lambda ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &DF, the number of degrees of freedom. // // double &LAMBDA, the noncentrality parameter. // // double &X, the argument of the function. // // double &CDF, the noncentral chi CDF. // { # define N_MAX 28 static double cdf_vec[N_MAX] = { 0.8399444269398261E+00, 0.6959060300435139E+00, 0.5350879697078847E+00, 0.7647841496310313E+00, 0.6206436532195436E+00, 0.4691667375373180E+00, 0.3070884345937569E+00, 0.2203818092990903E+00, 0.1500251895581519E+00, 0.3071163194335791E-02, 0.1763982670131894E-02, 0.9816792594625022E-03, 0.1651753140866208E-01, 0.2023419573950451E-03, 0.4984476352854074E-06, 0.1513252400654827E-01, 0.2090414910614367E-02, 0.2465021206048452E-03, 0.2636835050342939E-01, 0.1857983220079215E-01, 0.1305736595486640E-01, 0.5838039534819351E-01, 0.4249784402463712E-01, 0.3082137716021596E-01, 0.1057878223400849E+00, 0.7940842984598509E-01, 0.5932010895599639E-01, 0.2110395656918684E+00 }; static int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 60, 80, 100, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 8 }; static double lambda_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 30.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 0.5E+00 }; static double x_vec[N_MAX] = { 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 60.000E+00, 60.000E+00, 60.000E+00, 0.050E+00, 0.050E+00, 0.050E+00, 4.000E+00, 4.000E+00, 4.000E+00, 5.000E+00, 5.000E+00, 5.000E+00, 6.000E+00, 6.000E+00, 6.000E+00, 5.000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; lambda = 0.0; df = 0; cdf = 0.0; } else { x = x_vec[n_data-1]; lambda = lambda_vec[n_data-1]; df = df_vec[n_data-1]; cdf = cdf_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ci_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ci_values() returns some values of the cosine integral function. // // Discussion: // // The cosine integral is defined by // // CI(X) = - integral ( X <= T < +oo ) ( cos ( T ) ) / T dT // // In Mathematica, the function can be evaluated by: // // CosIntegral[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { -0.1777840788066129E+00, -0.2227070695927976E-01, 0.1005147070088978E+00, 0.1982786159524672E+00, 0.2760678304677729E+00, 0.3374039229009681E+00, 0.4204591828942405E+00, 0.4620065850946773E+00, 0.4717325169318778E+00, 0.4568111294183369E+00, 0.4229808287748650E+00, 0.2858711963653835E+00, 0.1196297860080003E+00, -0.3212854851248112E-01, -0.1409816978869304E+00, -0.1934911221017388E+00 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cin_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cin_values() returns some values of the alternate cosine integral function. // // Discussion: // // The alternate cosine integral is defined by // // CIN(X) = gamma + log(X) + integral ( 0 <= T <= X ) ( cos ( T ) - 1 ) / T dT // // In Mathematica, the function can be evaluated by: // // EulerGamma + Log[x] - CosIntegral[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.6185256314820045E-01, 0.8866074809482194E-01, 0.1200260139539026E+00, 0.1557934976348559E+00, 0.1957873187759337E+00, 0.2398117420005647E+00, 0.3390780388012470E+00, 0.4516813164280685E+00, 0.5754867772153906E+00, 0.7081912003853150E+00, 0.8473820166866132E+00, 0.1207635200410304E+01, 0.1556198167561642E+01, 0.1862107181909382E+01, 0.2104491723908354E+01, 0.2274784183779546E+01 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cinh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cinh_values() returns some values of the alternate hyperbolic cosine integral. // // Discussion: // // The alternate hyperbolic cosine integral is defined by // // CINH(X) = integral ( 0 <= T < X ) ( cosh ( T ) - 1 ) / T dT // // In Mathematica, the function can be evaluated by: // // Integrate [ ( Cosh[t] - 1 ) / t, { t, 0, x } ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 17 static double fx_vec[N_MAX] = { 0.00000000000000000, 0.06315467070191883, 0.09136085223843649, 0.1250284547325902, 0.1643278712460683, 0.2094587379417273, 0.2606512760786754, 0.3823047024751071, 0.5318061742668980, 0.7122865135136963, 0.9275748842583805, 1.182304077185436, 2.030919091578478, 3.284564141195967, 5.129213294250493, 7.850037532801762, 11.88451858691463 }; static double x_vec[N_MAX] = { 0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void clausen_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // clausen_values() returns some values of the Clausen's integral. // // Discussion: // // The function is defined by: // // CLAUSEN(x) = integral ( 0 <= t <= x ) -ln ( 2 * sin ( t / 2 ) ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.14137352886760576684E-01, 0.13955467081981281934E+00, -0.38495732156574238507E+00, 0.84831187770367927099E+00, 0.10139591323607685043E+01, -0.93921859275409211003E+00, 0.72714605086327924743E+00, 0.43359820323553277936E+00, -0.98026209391301421161E-01, -0.56814394442986978080E+00, -0.70969701784448921625E+00, 0.99282013254695671871E+00, -0.98127747477447367875E+00, -0.64078266570172320959E+00, 0.86027963733231192456E+00, 0.39071647608680211043E+00, 0.47574793926539191502E+00, 0.10105014481412878253E+01, 0.96332089044363075154E+00, -0.61782699481929311757E+00 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, -0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, -1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, -3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, -5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, -10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, -30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void clebsch_gordan_values ( int &n_data, double &j1, double &j2, double &j3, double &m1, double &m2, double &m3, double &fx ) //****************************************************************************80 // // Purpose: // // clebsch_gordan_values() returns some values of the Clebsch-Gordan function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ClebschGordan[{j1,m1},{j2,m2},{j3,m3}] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &J1, &J2, &J3, &M1, &M2, &M3, the arguments // of the function. // // double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.7071067811865475, 1.000000000000000, 0.5773502691896258, -0.2581988897471611, -0.6324555320336759, -0.7745966692414834, 0.4082482904638630, 0.8164965809277260, 0.5345224838248488, 0.2672612419124244, 0.8944271909999159, 0.3380617018914066 }; static double j1_vec[N_MAX] = { 0.5, 0.5, 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.5, 1.5 }; static double j2_vec[N_MAX] = { 0.5, 0.5, 1.0, 1.5, 1.5, 1.5, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0 }; static double j3_vec[N_MAX] = { 1.0, 1.0, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.0, 2.0, 2.5, 3.5 }; static double m1_vec[N_MAX] = { 0.5, 0.5, -0.5, 0.0, -1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 0.5, 1.5 }; static double m2_vec[N_MAX] = { -0.5, 0.5, 1.0, 0.5, 1.5, 1.5, -1.0, 0.0, -2.0, -1.0, 1.0, -1.0 }; static double m3_vec[N_MAX] = { -0.5, 0.5, 1.0, 0.5, 1.5, 1.5, -1.0, 0.0, -2.0, -1.0, 1.0, -1.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; j1 = 0.0; j2 = 0.0; j3 = 0.0; m1 = 0.0; m2 = 0.0; m3 = 0.0; fx = 0.0; } else { j1 = j1_vec[n_data-1]; j2 = j2_vec[n_data-1]; j3 = j3_vec[n_data-1]; m1 = m1_vec[n_data-1]; m2 = m2_vec[n_data-1]; m3 = m3_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void collatz_count_values ( int &n_data, int &n, int &count ) //****************************************************************************80 // // Purpose: // // collatz_count_values() returns some values of the Collatz count function. // // Discussion: // // The rules for generation of the Collatz sequence are recursive. // If T is the current entry of the sequence, (T is // assumed to be a positive integer), then the next // entry, U is determined as follows: // // if T is 1 (or less) // terminate the sequence; // else if T is even // U = T/2. // else (if T is odd and not 1) // U = 3*T+1; // // The Collatz count is the length of the Collatz sequence for a given // starting value. By convention, we include the initial value in the // count, so the minimum value of the count is 1. // // N Sequence Count // // 1 1 // 2 1 2 // 3 10, 5, 16, 8, 4, 2, 1 8 // 4 2 1 3 // 5 16, 8, 4, 2, 1 6 // 6 3, 10, 5, 16, 8, 4, 2, 1 9 // 7 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 17 // 8 4, 2, 1 4 // 9 28, 14, 7, 20 // 10 5, 16, 8, 4, 2, 1 7 // 11 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 15 // 12 6, 3, 10, 5, 16, 8, 4, 2, 1 10 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 March 2006 // // Author: // // John Burkardt // // Reference: // // Eric Weisstein, // "The Collatz Problem", // CRC Concise Encyclopedia of Mathematics, // CRC 1998. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the initial value of a Collatz sequence. // // int &COUNT, the length of the Collatz sequence starting // with N. // { # define N_MAX 20 static int count_vec[N_MAX] = { 1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 112, 25, 26, 27, 17, 28, 111, 18, 83, 29 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 27, 50, 100, 200, 300, 400, 500, 600, 700, 800 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; count = 0; } else { n = n_vec[n_data-1]; count = count_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cos_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cos_values() returns some values of the cosine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Cos[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 13 static double fx_vec[N_MAX] = { 1.0000000000000000000, 0.96592582628906828675, 0.87758256189037271612, 0.86602540378443864676, 0.70710678118654752440, 0.54030230586813971740, 0.50000000000000000000, 0.00000000000000000000, -0.41614683654714238700, -0.98999249660044545727, -1.0000000000000000000, -0.65364362086361191464, 0.28366218546322626447 }; static double x_vec[N_MAX] = { 0.0000000000000000000, 0.26179938779914943654, 0.50000000000000000000, 0.52359877559829887308, 0.78539816339744830962, 1.0000000000000000000, 1.0471975511965977462, 1.5707963267948966192, 2.0000000000000000000, 3.0000000000000000000, 3.1415926535897932385, 4.0000000000000000000, 5.0000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cos_degree_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cos_degree_values() returns values of the cosine function for degree arguments. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Cos[x Degree] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.99619469809174553230, 1.0000000000000000000, 0.99984769515639123916, 0.99939082701909573001, 0.99862953475457387378, 0.99756405025982424761, 0.99619469809174553230, 0.98480775301220805937, 0.96592582628906828675, 0.86602540378443864676, 0.70710678118654752440, 0.50000000000000000000, 0.25881904510252076235, 0.087155742747658173558, 0.069756473744125300776, 0.052335956242943832722, 0.034899496702500971646, 0.017452406437283512819, 0.000000000000000000000, -0.017452406437283512819, -0.25881904510252076235, -1.0000000000000000000 }; static double x_vec[N_MAX] = { -5.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 30.0, 45.0, 60.0, 75.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 105.0, 180.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cos_power_int_values ( int &n_data, double &a, double &b, int &n, double &fx ) //****************************************************************************80 // // Purpose: // // cos_power_int_values() returns some values of the sine power integral. // // Discussion: // // The function has the form // // COS_POWER_INT(A,B,N) = integral ( A <= T <= B ) ( cos(T) )^N dt // // In Mathematica, the function can be evaluated by: // // Integrate [ ( Cos[x] )^n, { x, a, b } ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2012 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, the limits of integration. // // int &N, the power. // // double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00 }; static double b_vec[N_MAX] = { 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793, 3.141592653589793 }; static double fx_vec[N_MAX] = { 3.141592653589793, 0.0, 1.570796326794897, 0.0, 1.178097245096172, 0.0, 0.9817477042468104, 0.0, 0.8590292412159591, 0.0, 0.7731263170943632 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; n = 0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; n = n_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cosh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cosh_values() returns some values of the hyperbolic cosine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Cosh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { 74.209948524787844444, 1.5430806348152437785, 1.0000000000000000000, 1.0050041680558035990, 1.0200667556190758463, 1.0453385141288604850, 1.0810723718384548093, 1.1276259652063807852, 1.1854652182422677038, 1.2551690056309430182, 1.3374349463048445980, 1.4330863854487743878, 1.5430806348152437785, 3.7621956910836314596, 10.067661995777765842, 27.308232836016486629, 74.209948524787844444, 11013.232920103323140 }; static double x_vec[N_MAX] = { -5.0, -1.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cot_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // cot_values() returns some values of the cotangent function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Cot[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 15 static double fx_vec[N_MAX] = { 11.972209353628661620, 3.7320508075688772935, 1.8304877217124519193, 1.7320508075688772935, 1.0000000000000000000, 0.64209261593433070301, 0.57735026918962576451, 0.26794919243112270647, 0.00000000000000000000, 0.13165249758739585347, 0.065543462815238228565, -0.45765755436028576375, -7.0152525514345334694, 0.86369115445061661395, -0.29581291553274554043 }; static double x_vec[N_MAX] = { 0.083333333333333333333, 0.26179938779914943654, 0.50000000000000000000, 0.52359877559829887308, 0.78539816339744830962, 1.0000000000000000000, 1.0471975511965977462, 1.3089969389957471827, 1.5707963267948966192, 1.4398966328953219010, 1.5053464798451092601, 2.0000000000000000000, 3.0000000000000000000, 4.0000000000000000000, 5.0000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cp_values ( int &n_data, double &tc, double &p, double &cp ) //****************************************************************************80 // // Purpose: // // cp_values() returns some values of the specific heat at constant pressure. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2004 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, pages 229-237. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &CP, the specific heat at constant pressure, // in KJ/(kg K). // { # define N_MAX 24 static double cp_vec[N_MAX] = { 4.228E+00, 2.042E+00, 1.975E+00, 2.013E+00, 2.040E+00, 2.070E+00, 2.135E+00, 2.203E+00, 2.378E+00, 2.541E+00, 2.792E+00, 2.931E+00, 4.226E+00, 4.223E+00, 4.202E+00, 4.177E+00, 4.130E+00, 4.089E+00, 4.053E+00, 4.021E+00, 3.909E+00, 3.844E+00, 3.786E+00, 2.890E+00 }; static double p_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 100.0E+00, 200.0E+00, 300.0E+00, 400.0E+00, 500.0E+00, 1000.0E+00, 1500.0E+00, 2000.0E+00, 5000.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 100.0E+00, 200.0E+00, 300.0E+00, 350.0E+00, 400.0E+00, 500.0E+00, 600.0E+00, 850.0E+00, 1100.0E+00, 1600.0E+00, 2000.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; cp = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; cp = cp_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void datenum_values ( int &n_data, int &y, int &m, int &d, double &date_num ) //****************************************************************************80 // // Purpose: // // datenum_values() returns the MATLAB datenum for various dates. // // Discussion: // // The MATLAB datenum function returns a numeric value for a given date, // which is 1 for the (fictitious) date 1 January 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 December 2017 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &Y, &M, &D, the Common Era date. // // Output, double &DATE_NUM, the datenum. // { # define N_MAX 11 static int d_vec[N_MAX] = { 1, 1, 1, 1, 17, 9, 10, 12, 6, 25, 1 }; static double date_num_vec[N_MAX] = { 1.0, 367.0, 36526.0, 365244.0, 708434.0, 710284.0, 713023.0, 718199.0, 723186.0, 729080.0, 730486.0 }; static int m_vec[N_MAX] = { 1, 1, 1, 1, 8, 9, 3, 5, 1, 2, 1 }; static int y_vec[N_MAX] = { 0, 1, 100, 1000, 1939, 1944, 1952, 1966, 1980, 1996, 2000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; y = 0; m = 0; d = 0; date_num = 0; } else { y = y_vec[n_data-1]; m = m_vec[n_data-1]; d = d_vec[n_data-1]; date_num = date_num_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void dawson_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // dawson_values() returns some values of Dawson's integral. // // Discussion: // // The definition of Dawson's integral is // // D(X) = exp ( -X * X ) * integral ( 0 <= Y <= X ) exp ( Y * Y ) dY // // Dawson's integral has a maximum at roughly // // X = 0.9241388730 // // In Mathematica, the function can be evaluated by: // // Sqrt[Pi] * Exp[-x^2] * I * Erf[I*x] / 2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 1998. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.9933599239785286E-01, 0.1947510333680280E+00, 0.2826316650213119E+00, 0.3599434819348881E+00, 0.4244363835020223E+00, 0.4747632036629779E+00, 0.5105040575592318E+00, 0.5321017070563654E+00, 0.5407243187262987E+00, 0.5380795069127684E+00, 0.5262066799705525E+00, 0.5072734964077396E+00, 0.4833975173848241E+00, 0.4565072375268973E+00, 0.4282490710853986E+00, 0.3999398943230814E+00, 0.3725593489740788E+00, 0.3467727691148722E+00, 0.3229743193228178E+00, 0.3013403889237920E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void debye1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // debye1_values() returns some values of Debye's function of order 1. // // Discussion: // // The function is defined by: // // DEBYE1(x) = 1 / x * integral ( 0 <= t <= x ) t / ( exp ( t ) - 1 ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.99951182471380889183E+00, 0.99221462647120597836E+00, 0.96918395997895308324E+00, 0.88192715679060552968E+00, 0.77750463411224827642E+00, 0.68614531078940204342E+00, 0.60694728460981007205E+00, 0.53878956907785587703E+00, 0.48043521957304283829E+00, 0.38814802129793784501E+00, 0.36930802829242526815E+00, 0.32087619770014612104E+00, 0.29423996623154246701E+00, 0.27126046678502189985E+00, 0.20523930310221503723E+00, 0.16444346567994602563E+00, 0.10966194482735821276E+00, 0.82246701178200016086E-01, 0.54831135561510852445E-01, 0.32898681336964528729E-01 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void debye2_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // debye2_values() returns some values of Debye's function of order 2. // // Discussion: // // The function is defined by: // // DEBYE2(x) = 2 / x^2 * integral ( 0 <= t <= x ) t^2 / ( exp ( t ) - 1 ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.99934911727904599738E+00, 0.98962402299599181205E+00, 0.95898426200345986743E+00, 0.84372119334725358934E+00, 0.70787847562782928288E+00, 0.59149637225671282917E+00, 0.49308264399053185014E+00, 0.41079413579749669069E+00, 0.34261396060786351671E+00, 0.24055368752127897660E+00, 0.22082770061202308232E+00, 0.17232915939014138975E+00, 0.14724346738730182894E+00, 0.12666919046715789982E+00, 0.74268805954862854626E-01, 0.47971498020121871622E-01, 0.21369201683658373846E-01, 0.12020564476446432799E-01, 0.53424751249537071952E-02, 0.19232910450553508562E-02 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void debye3_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // debye3_values() returns some values of Debye's function of order 3. // // Discussion: // // The function is defined by: // // DEBYE3(x) = 3 / x^3 * integral ( 0 <= t <= x ) t^3 / ( exp ( t ) - 1 ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.99926776885985461940E+00, 0.98833007755734698212E+00, 0.95390610472023510237E+00, 0.82496296897623372315E+00, 0.67441556407781468010E+00, 0.54710665141286285468E+00, 0.44112847372762418113E+00, 0.35413603481042394211E+00, 0.28357982814342246206E+00, 0.18173691382177474795E+00, 0.16277924385112436877E+00, 0.11759741179993396450E+00, 0.95240802723158889887E-01, 0.77581324733763020269E-01, 0.36560295673194845002E-01, 0.19295765690345489563E-01, 0.57712632276188798621E-02, 0.24352200674805479827E-02, 0.72154882216335666096E-03, 0.15585454565440389896E-03 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void debye4_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // debye4_values() returns some values of Debye's function of order 4. // // Discussion: // // The function is defined by: // // DEBYE4(x) = 4 / x^4 * integral ( 0 <= t <= x ) t^4 / ( exp ( t ) - 1 ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.99921896192761576256E+00, 0.98755425280996071022E+00, 0.95086788606389739976E+00, 0.81384569172034042516E+00, 0.65487406888673697092E+00, 0.52162830964878715188E+00, 0.41189273671788528876E+00, 0.32295434858707304628E+00, 0.25187863642883314410E+00, 0.15185461258672022043E+00, 0.13372661145921413299E+00, 0.91471377664481164749E-01, 0.71227828197462523663E-01, 0.55676547822738862783E-01, 0.21967566525574960096E-01, 0.96736755602711590082E-02, 0.19646978158351837850E-02, 0.62214648623965450200E-03, 0.12289514092077854510E-03, 0.15927210319002161231E-04 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void dielectric_values ( int &n_data, double &tc, double &p, double &eps ) //****************************************************************************80 // // Purpose: // // dielectric_values() returns some values of the static dielectric constant. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, page 266. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &EPS, the dielectric constant, dimensionless. // { # define N_MAX 15 static double eps_vec[N_MAX] = { 88.29E+00, 90.07E+00, 92.02E+00, 95.14E+00, 100.77E+00, 78.85E+00, 70.27E+00, 62.60E+00, 55.78E+00, 44.31E+00, 35.11E+00, 20.40E+00, 1.17E+00, 1.11E+00, 1.08E+00 }; static double p_vec[N_MAX] = { 100.0E+00, 500.0E+00, 1000.0E+00, 2000.0E+00, 5000.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00, 100.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 150.0E+00, 200.0E+00, 300.0E+00, 400.0E+00, 500.0E+00, 600.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; eps = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; eps = eps_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void dedekind_sum_values ( int &n_data, int &p, int &q, int &n, int &d ) //****************************************************************************80 // // Purpose: // // dedekind_sum_values() returns some values of the Dedekind sum. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 July 2009 // // Author: // // John Burkardt // // Reference: // // Hans Rademacher, Emil Grosswald, // Dedekind Sums, // Mathematics Association of America, 1972, // LC: QA241.R2. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA // by 1, and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &P, &Q, the arguments of the function. // // Output, int &N, &D, the numerator and denominator of the // function value. // { # define N_MAX 95 static int d_vec[N_MAX] = { 1, 1, 18, 8, 5, 18, 14, 16, 27, 5, 22, 72, 13, 14, 90, 32, 17, 27, 38, 40, 1, 18, 1, 14, 27, 22, 13, 18, 17, 38, 1, 1, 8, 1, 14, 16, 1, 22, 13, 14, 32, 17, 38, 8, 1, 18, 5, 14, 27, 22, 13, 90, 1, 38, 1, 1, 18, 8, 18, 14, 16, 27, 22, 72, 1, 14, 32, 17, 27, 38, 1, 5, 14, 22, 13, 17, 38, 1, 1, 18, 8, 1, 18, 16, 27, 1, 22, 72, 13, 18, 32, 17, 27, 38, 8 }; static int n_vec[N_MAX] = { 0, 0, 1, 1, 1, 5, 5, 7, 14, 3, 15, 55, 11, 13, 91, 35, 20, 34, 51, 57, 0, -1, 0, 1, 4, 5, 4, 7, 8, 21, 0, 0, -1, 0, -1, 1, 0, 3, 1, 3, 5, 5, 9, 3, 0, 1, -1, 1, -4, 3, -1, 19, 0, 11, 0, 0, -1, 1, -5, -1, -1, 4, -5, -1, 0, 3, -5, 1, 2, 11, 0, 1, -5, 5, -4, 5, -9, 0, 0, 1, -1, 0, 5, -7, -4, 0, -3, 1, 4, -7, -3, 1, -2, 3, 3 }; static int p_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static int q_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 1, 5, 7, 11, 13, 17, 19, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; p = 0; q = 0; n = 0; d = 0; } else { p = p_vec[n_data-1]; q = q_vec[n_data-1]; n = n_vec[n_data-1]; d = d_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void dilogarithm_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // dilogarithm_values() returns some values of the dilogarithm function. // // Discussion: // // The dilogarithm is defined as // // Li_2(X) = - integral ( 0 <= T <= X ) ln ( 1 - T ) / T dT // // The dilogarithm is also known as Spence's integral. // // In Abramowitz and Stegun form of the function is different, // and is equivalent to evaluated Li_2(1-X). // // The dilogarithm is the special case, with N = 2, of the // polylogarithm Li_N(X). // // In Mathematica, the function can be evaluated by: // // PolyLog[2,X] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.5063929246449603E-01, 0.1026177910993911E+00, 0.1560350339454831E+00, 0.2110037754397048E+00, 0.2676526390827326E+00, 0.3261295100754761E+00, 0.3866059411605865E+00, 0.4492829744712817E+00, 0.5143989891542119E+00, 0.5822405264650125E+00, 0.6531576315069018E+00, 0.7275863077163334E+00, 0.8060826895177240E+00, 0.8893776242860387E+00, 0.9784693929303061E+00, 0.1074794600008248E+01, 0.1180581123830255E+01, 0.1299714723004959E+01, 0.1440633796970039E+01, 0.1644934066848226E+01 }; static double x_vec[N_MAX] = { 0.00E+00, 0.05E+00, 0.10E+00, 0.15E+00, 0.20E+00, 0.25E+00, 0.30E+00, 0.35E+00, 0.40E+00, 0.45E+00, 0.50E+00, 0.55E+00, 0.60E+00, 0.65E+00, 0.70E+00, 0.75E+00, 0.80E+00, 0.85E+00, 0.90E+00, 0.95E+00, 0.10E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void dixon_elliptic_values ( int &n_data, double &x, double &c, double &s ) //****************************************************************************80 // // Purpose: // // dixon_elliptic_values() returns some values of the Dixon elliptic functions. // // Discussion: // // In Mathematica, the functions can be evaluated by: // // c = DixonCM [ x ] // s = DixonSM [ x ] // // The values should satisfy the condition // // c^3 + s^3 = 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 December 2023 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &n_data. The user sets n_data to 0 before the first call. // // Output: // // int &n_data. On each call, the routine increments n_data by 1, and // returns the corresponding data; when there is no more data, the // output value of n_data will be 0 again. // // double &x: the argument. // // double &c, &s: the values of the cm and sm functions. // { # define N_MAX 21 static double c_vec[N_MAX] = { 1.000000, 0.999667, 0.997337, 0.991040, 0.978892, 0.959182, 0.930494, 0.891817, 0.842651, 0.783054, 0.713636, 0.635486, 0.550033, 0.458886, 0.363655, 0.265799, 0.166510, 0.0666355, -0.0333615, -0.133414, -0.233857 }; static double s_vec[N_MAX] = { 0.000000, 0.0999833, 0.199734, 0.298657, 0.395785, 0.489826, 0.579255, 0.662445, 0.737828, 0.804069, 0.860228, 0.905873, 0.941134, 0.966693, 0.983705, 0.993701, 0.998459, 0.999901, 1.00001, 1.00079, 1.00425 }; static double x_vec[N_MAX] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 }; n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; c = 0.0; s = 0.0; } else { x = x_vec[n_data-1]; c = c_vec[n_data-1]; s = s_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void e1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // e1_values() returns some values of the exponential integral function E1(X). // // Definition: // // The exponential integral E1(X) is defined by the formula: // // E1(X) = integral ( 1 <= T <= +oo ) exp ( -X*T ) / T dT // // In Mathematica, the function can be evaluated by: // // ExpIntegralE[1,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.5597735947761608E+00, 0.4543795031894021E+00, 0.3737688432335091E+00, 0.3105965785455430E+00, 0.2601839393259996E+00, 0.2193839343955203E+00, 0.1859909045360402E+00, 0.1584084368514626E+00, 0.1354509578491291E+00, 0.1162193125713579E+00, 0.1000195824066327E+00, 0.8630833369753979E-01, 0.7465464440125305E-01, 0.6471312936386886E-01, 0.5620437817453485E-01, 0.4890051070806112E-01 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void easter_gregorian_values ( int &n_data, int &d, int &m, int &y ) //****************************************************************************80 // // Purpose: // // easter_gregorian_values() returns dates of Easter in Gregorian calendar. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 January 2018 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &D, &M, &Y, day, month and year of Easter. // { # define N_MAX 10 static double d_vec[N_MAX] = { 30, 12, 4, 23, 15, 31, 20, 11, 27, 16 }; static double m_vec[N_MAX] = { 3, 4, 4, 4, 4, 3, 4, 4, 3, 4 }; static double y_vec[N_MAX] = { 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; d = 0; m = 0; y = 0; } else { d = d_vec[n_data-1]; m = m_vec[n_data-1]; y = y_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void easter_julian_values ( int &n_data, int &d, int &m, int &y ) //****************************************************************************80 // // Purpose: // // easter_julian_values() returns dates of Easter in Julian calendar. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 January 2018 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &D, &M, &Y, day, month and year of Easter. // { # define N_MAX 10 static double d_vec[N_MAX] = { 27, 19, 11, 30, 15, 5, 27, 11, 1, 23 }; static double m_vec[N_MAX] = { 4, 4, 4, 4, 4, 5, 4, 4, 5, 4 }; static double y_vec[N_MAX] = { 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; d = 0; m = 0; y = 0; } else { d = d_vec[n_data-1]; m = m_vec[n_data-1]; y = y_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ei_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ei_values() returns some values of the exponential integral function EI(X). // // Definition: // // The exponential integral EI(X) has the formula: // // EI(X) = - integral ( -X <= T < +oo ) exp ( -T ) / T dT // // In Mathematica, the function can be evaluated by: // // ExpIntegralEi[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.4542199048631736E+00, 0.7698812899373594E+00, 0.1064907194624291E+01, 0.1347396548212326E+01, 0.1622811713696867E+01, 0.1895117816355937E+01, 0.2167378279563403E+01, 0.2442092285192652E+01, 0.2721398880232024E+01, 0.3007207464150646E+01, 0.3301285449129798E+01, 0.3605319949019469E+01, 0.3920963201354904E+01, 0.4249867557487934E+01, 0.4593713686953585E+01, 0.4954234356001890E+01 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_ea_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_ea_values() returns values of the complete elliptic integral E(A). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the second kind. // // The function is defined by the formula: // // E(A) = integral ( 0 <= T <= PI/2 ) // sqrt ( 1 - sin ( A )^2 * sin ( T )^2 ) dT // // In Mathematica, the function can be evaluated by: // // EllipticE[(Sin[Pi*a/180])^2] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function, measured // in degrees. // // Output, double &FX, the value of the function. // { # define N_MAX 19 static double fx_vec[N_MAX] = { 1.570796326794897E+00, 1.567809073977622E+00, 1.558887196601596E+00, 1.544150496914673E+00, 1.523799205259774E+00, 1.498114928422116E+00, 1.467462209339427E+00, 1.432290969306756E+00, 1.393140248523812E+00, 1.350643881047676E+00, 1.305539094297794E+00, 1.258679624779997E+00, 1.211056027568459E+00, 1.163827964493139E+00, 1.118377737969864E+00, 1.076405113076403E+00, 1.040114395706010E+00, 1.012663506234396E+00, 1.000000000000000E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 5.0E+00, 10.0E+00, 15.0E+00, 20.0E+00, 25.0E+00, 30.0E+00, 35.0E+00, 40.0E+00, 45.0E+00, 50.0E+00, 55.0E+00, 60.0E+00, 65.0E+00, 70.0E+00, 75.0E+00, 80.0E+00, 85.0E+00, 90.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_ek_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_ek_values() returns values of the complete elliptic integral E(K). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the second kind. // // The function is defined by the formula: // // E(K) = integral ( 0 <= T <= PI/2 ) // sqrt ( 1 - K^2 * sin ( T )^2 ) dT // // In Mathematica, the function can be evaluated by: // // EllipticE[k^2] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 1.570796326794897E+00, 1.550973351780472E+00, 1.530757636897763E+00, 1.510121832092819E+00, 1.489035058095853E+00, 1.467462209339427E+00, 1.445363064412665E+00, 1.422691133490879E+00, 1.399392138897432E+00, 1.375401971871116E+00, 1.350643881047676E+00, 1.325024497958230E+00, 1.298428035046913E+00, 1.270707479650149E+00, 1.241670567945823E+00, 1.211056027568459E+00, 1.178489924327839E+00, 1.143395791883166E+00, 1.104774732704073E+00, 1.060473727766278E+00, 1.000000000000000E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000, 0.2236067977499790, 0.3162277660168379, 0.3872983346207417, 0.4472135954999579, 0.5000000000000000, 0.5477225575051661, 0.5916079783099616, 0.6324555320336759, 0.6708203932499369, 0.7071067811865476, 0.7416198487095663, 0.7745966692414834, 0.8062257748298550, 0.8366600265340756, 0.8660254037844386, 0.8944271909999159, 0.9219544457292888, 0.9486832980505138, 0.9746794344808963, 1.0000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_em_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_em_values() returns values of the complete elliptic integral E(M). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the second kind. // // The function is defined by the formula: // // E(M) = integral ( 0 <= T <= PI/2 ) // sqrt ( 1 - M * sin ( T )^2 ) dT // // In Mathematica, the function can be evaluated by: // // EllipticE[m] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 1.570796326794897E+00, 1.550973351780472E+00, 1.530757636897763E+00, 1.510121832092819E+00, 1.489035058095853E+00, 1.467462209339427E+00, 1.445363064412665E+00, 1.422691133490879E+00, 1.399392138897432E+00, 1.375401971871116E+00, 1.350643881047676E+00, 1.325024497958230E+00, 1.298428035046913E+00, 1.270707479650149E+00, 1.241670567945823E+00, 1.211056027568459E+00, 1.178489924327839E+00, 1.143395791883166E+00, 1.104774732704073E+00, 1.060473727766278E+00, 1.000000000000000E+00 }; static double x_vec[N_MAX] = { 0.00E+00, 0.05E+00, 0.10E+00, 0.15E+00, 0.20E+00, 0.25E+00, 0.30E+00, 0.35E+00, 0.40E+00, 0.45E+00, 0.50E+00, 0.55E+00, 0.60E+00, 0.65E+00, 0.70E+00, 0.75E+00, 0.80E+00, 0.85E+00, 0.90E+00, 0.95E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_fa_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_fa_values() returns values of the complete elliptic integral F(A). // // Discussion: // // This is one form of what is sometimes called the complete elliptic integral // of the first kind. // // The function is defined by the formula: // // F(A) = integral ( 0 <= T <= PI/2 ) // dT / sqrt ( 1 - sin ( A )^2 * sin ( T )^2 ) // // In Mathematica, the function can be evaluated by: // // EllipticK[(Sin[a*Pi/180])^2] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function, measured // in degrees. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { 0.1570796326794897E+01, 0.1573792130924768E+01, 0.1582842804338351E+01, 0.1598142002112540E+01, 0.1620025899124204E+01, 0.1648995218478530E+01, 0.1685750354812596E+01, 0.1731245175657058E+01, 0.1786769134885021E+01, 0.1854074677301372E+01, 0.1935581096004722E+01, 0.2034715312185791E+01, 0.2156515647499643E+01, 0.2308786798167196E+01, 0.2504550079001634E+01, 0.2768063145368768E+01, 0.3153385251887839E+01, 0.3831741999784146E+01 }; static double x_vec[N_MAX] = { 0.0E+00, 5.0E+00, 10.0E+00, 15.0E+00, 20.0E+00, 25.0E+00, 30.0E+00, 35.0E+00, 40.0E+00, 45.0E+00, 50.0E+00, 55.0E+00, 60.0E+00, 65.0E+00, 70.0E+00, 75.0E+00, 80.0E+00, 85.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_fk_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_fk_values() returns values of the complete elliptic integral F(K). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the first kind. // // The function is defined by the formula: // // F(K) = integral ( 0 <= T <= PI/2 ) // dT / sqrt ( 1 - K^2 * sin ( T )^2 ) // // In Mathematica, the function can be evaluated by: // // EllipticK[k^2] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 1.570796326794897E+00, 1.591003453790792E+00, 1.612441348720219E+00, 1.635256732264580E+00, 1.659623598610528E+00, 1.685750354812596E+00, 1.713889448178791E+00, 1.744350597225613E+00, 1.777519371491253E+00, 1.813883936816983E+00, 1.854074677301372E+00, 1.898924910271554E+00, 1.949567749806026E+00, 2.007598398424376E+00, 2.075363135292469E+00, 2.156515647499643E+00, 2.257205326820854E+00, 2.389016486325580E+00, 2.578092113348173E+00, 2.908337248444552E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.2236067977499790E+00, 0.3162277660168379E+00, 0.3872983346207417E+00, 0.4472135954999579E+00, 0.5000000000000000E+00, 0.5477225575051661E+00, 0.5916079783099616E+00, 0.6324555320336759E+00, 0.6708203932499369E+00, 0.7071067811865476E+00, 0.7416198487095663E+00, 0.7745966692414834E+00, 0.8062257748298550E+00, 0.8366600265340756E+00, 0.8660254037844386E+00, 0.8944271909999159E+00, 0.9219544457292888E+00, 0.9486832980505138E+00, 0.9746794344808963E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_fm_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // elliptic_fm_values() returns values of the complete elliptic integral F(M). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the first kind. // // The function is defined by the formula: // // F(M) = integral ( 0 <= T <= PI/2 ) // dT / sqrt ( 1 - M * sin ( T )^2 ) // // In Mathematica, the function can be evaluated by: // // EllipticK[m] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 1.570796326794897E+00, 1.591003453790792E+00, 1.612441348720219E+00, 1.635256732264580E+00, 1.659623598610528E+00, 1.685750354812596E+00, 1.713889448178791E+00, 1.744350597225613E+00, 1.777519371491253E+00, 1.813883936816983E+00, 1.854074677301372E+00, 1.898924910271554E+00, 1.949567749806026E+00, 2.007598398424376E+00, 2.075363135292469E+00, 2.156515647499643E+00, 2.257205326820854E+00, 2.389016486325580E+00, 2.578092113348173E+00, 2.908337248444552E+00 }; static double x_vec[N_MAX] = { 0.00E+00, 0.05E+00, 0.10E+00, 0.15E+00, 0.20E+00, 0.25E+00, 0.30E+00, 0.35E+00, 0.40E+00, 0.45E+00, 0.50E+00, 0.55E+00, 0.60E+00, 0.65E+00, 0.70E+00, 0.75E+00, 0.80E+00, 0.85E+00, 0.90E+00, 0.95E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_ea_values ( int &n_data, double &phi, double &a, double &ea ) //****************************************************************************80 // // Purpose: // // elliptic_inc_ea_values() returns values of the incomplete elliptic integral E(PHI,A). // // Discussion: // // This is one form of the incomplete elliptic integral of the second kind. // // E(PHI,A) = integral ( 0 <= T <= PHI ) // sqrt ( 1 - sin^2 ( A ) * sin^2 ( T ) ) dT // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &A, the arguments of the function. // // Output, double &EA, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 123.0821233267548, 11.26931745051486, -94.88806452075445, -99.71407853545323, 57.05881039324191, -19.71363287074183, 56.31230299738043, -91.55605346417718, -27.00654574696468, -169.2293728595904, 61.96859564803047, -158.7324398933148, 105.0883958999383, -48.95883872360177, -42.58568835110901, 11.65603284687828, -8.398113719173338, 17.69362213019626, 73.8803420626852, -69.82492339645128 }; static double ea_vec[N_MAX] = { 0.3384181367348019, 1.292924624509506, 0.6074183768796306, 0.3939726730783567, 0.06880814097089803, 0.0969436473376824, 0.6025937791452033, 0.9500549494837583, 1.342783372140486, 0.1484915631401388, 1.085432887050926, 0.1932136916085597, 0.3983689593057807, 0.1780054133336934, 1.164525270273536, 1.080167047541845, 1.346684963830312, 1.402100272685504, 0.2928091845544553, 0.5889342583405707 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; a = 0.0; ea = 0.0; phi = 0.0; } else { a = a_vec[n_data]; ea = ea_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_ek_values ( int &n_data, double &phi, double &k, double &ek ) //****************************************************************************80 // // Purpose: // // elliptic_inc_ek_values() returns values of the incomplete elliptic integral E(PHI,K). // // Discussion: // // This is the incomplete elliptic integral of the second kind. // // E(PHI,K) = integral ( 0 <= T <= PHI ) // sqrt ( 1 - K^2 * sin ( T )^2 ) dT // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &K, the arguments. // // Output, double &EK, the function value. // { # define N_MAX 20 static double ek_vec[N_MAX] = { 0.2852345328295404, 1.298690225567921, 0.5508100202571943, 0.3575401358115371, 0.06801307805507453, 0.09679584980231837, 0.6003112504412838, 0.8996717721794724, 1.380715261453875, 0.1191644625202453, 1.196994838171557, 0.1536260979667945, 0.3546768920544152, 0.1758756066650882, 1.229819109410569, 1.08381066114337, 1.35023378157378, 1.419775884709218, 0.2824895528020034, 0.5770427720982867 }; static double k_vec[N_MAX] = { 2.712952582080266, 0.1279518954120547, -1.429437513650137, -1.981659235625333, 3.894801879555818, -1.042486024983672, 0.8641142168759754, -1.049058412826877, -0.3024062128402472, -6.574288841527263, 0.6987397421988888, -5.12558591600033, 2.074947853793764, -1.670886158426681, -0.4843595000931672, 0.1393061679635559, -0.0946527302537008, 0.1977207111754007, 1.788159919089993, -1.077780624681256 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; ek = 0.0; k = 0.0; phi = 0.0; } else { ek = ek_vec[n_data]; k = k_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_em_values ( int &n_data, double &phi, double &m, double &em ) //****************************************************************************80 // // Purpose: // // elliptic_inc_em_values() returns values of the incomplete elliptic integral E(PHI,M). // // Discussion: // // This is the incomplete elliptic integral of the second kind. // // E(PHI,M) = integral ( 0 <= T <= PHI ) // sqrt ( 1 - M * sin ( T )^2 ) dT // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &M, the arguments. // // Output, double &EM, the function value. // { # define N_MAX 20 static double em_vec[N_MAX] = { 0.2732317284159052, 1.124749725099781, 0.6446601913679151, 0.3968902354370061, 0.06063960799944668, 0.08909411577948728, 0.532402014802015, 1.251888640660265, 1.28897116191626, 0.1481718153599732, 1.038090185639913, 0.1931275771541276, 0.3304419611986801, 0.167394796063963, 1.214501175324736, 0.9516560179840655, 1.203682959526176, 1.206426326185419, 0.2522791382096692, 0.6026499038720986 }; static double m_vec[N_MAX] = { 8.450689756874594, 0.6039878267930615, 0.1794126658351454, 0.7095689301026752, 133.9643389059188, 47.96621393936416, 2.172070586163255, 0.002038130569431913, 0.3600036705339421, 0.6219544540067304, 0.8834215943508453, 0.2034290670379481, 5.772526076430922, 11.14853902343298, 0.2889238477277305, 0.7166617182589116, 0.4760623731559658, 0.6094948502068943, 8.902276887883076, 0.5434439226321253 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; em = 0.0; m = 0.0; phi = 0.0; } else { em = em_vec[n_data]; m = m_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_fa_values ( int &n_data, double &phi, double &a, double &fa ) //****************************************************************************80 // // Purpose: // // elliptic_inc_fa_values() returns values of the incomplete elliptic integral F(PHI,A). // // Discussion: // // This is the incomplete elliptic integral of the first kind. // // F(PHI,A) = integral ( 0 <= T <= PHI ) // dT / sqrt ( 1 - sin^2 ( A ) * sin^2 ( T ) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &A, the arguments. // // Output, double &FA, the function value. // { # define N_MAX 20 static double a_vec[N_MAX] = { 123.0821233267548, 11.26931745051486, -94.88806452075445, -99.71407853545323, 57.05881039324191, -19.71363287074183, 56.31230299738043, -91.55605346417718, -27.00654574696468, -169.2293728595904, 61.96859564803047, -158.7324398933148, 105.0883958999383, -48.95883872360177, -42.58568835110901, 11.65603284687828, -8.398113719173338, 17.69362213019626, 73.8803420626852, -69.82492339645128 }; static double fa_vec[N_MAX] = { 0.3478806460316299, 1.313180577009584, 0.7037956689264326, 0.4157626844675118, 0.06888475483285136, 0.09697816754845832, 0.6605394722518515, 1.82758346036751, 1.482258783392487, 0.1485295339221232, 1.753800062701494, 0.193528896465351, 0.4199100508706138, 0.1790836490491233, 1.446048832279763, 1.094097652100984, 1.358947908427035, 1.46400078231538, 0.3009092014525799, 0.6621341112075102 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; a = 0.0; fa = 0.0; phi = 0.0; } else { a = a_vec[n_data]; fa = fa_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_fk_values ( int &n_data, double &phi, double &k, double &fk ) //****************************************************************************80 // // Purpose: // // elliptic_inc_fk_values() returns values of the incomplete elliptic integral F(PHI,K). // // Discussion: // // This is the incomplete elliptic integral of the first kind. // // F(PHI,K) = integral ( 0 <= T <= PHI ) // dT / sqrt ( 1 - K^2 * sin ( T )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &K, the arguments. // // Output, double &FK, the value of the function. // { # define N_MAX 20 static double fk_vec[N_MAX] = { 0.4340870330108736, 1.307312511398114, 0.8005154258533936, 0.4656721451084328, 0.06969849613441773, 0.09712646708750489, 0.6632598061016007, 2.2308677858579, 1.439846282888019, 0.2043389243773096, 1.537183574881771, 0.2749229901565622, 0.4828388342828284, 0.1812848567886627, 1.360729522341841, 1.09039680912027, 1.355363051581808, 1.445462819732441, 0.3125355489354676, 0.6775731623807174 }; static double k_vec[N_MAX] = { 2.712952582080266, 0.1279518954120547, -1.429437513650137, -1.981659235625333, 3.894801879555818, -1.042486024983672, 0.8641142168759754, -1.049058412826877, -0.3024062128402472, -6.574288841527263, 0.6987397421988888, -5.12558591600033, 2.074947853793764, -1.670886158426681, -0.4843595000931672, 0.1393061679635559, -0.0946527302537008, 0.1977207111754007, 1.788159919089993, -1.077780624681256 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; fk = 0.0; k = 0.0; phi = 0.0; } else { fk = fk_vec[n_data]; k = k_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_fm_values ( int &n_data, double &phi, double &m, double &fm ) //****************************************************************************80 // // Purpose: // // elliptic_inc_fm_values() returns values of the incomplete elliptic integral F(PHI,M). // // Discussion: // // This is the incomplete elliptic integral of the first kind. // // F(PHI,M) = integral ( 0 <= T <= PHI ) // dT / sqrt ( 1 - M * sin ( T )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &M, the arguments. // // Output, double &FM, the value of the function. // { # define N_MAX 20 static double fm_vec[N_MAX] = { 0.4804314075855023, 1.535634981092025, 0.6602285297476601, 0.4125884303785135, 0.07964566007155376, 0.1062834070535258, 0.7733990864393913, 1.252862499892228, 1.549988686611532, 0.1488506735822822, 1.892229900799662, 0.1936153327753556, 0.5481932935424454, 0.1911795073571756, 1.379225069349756, 1.261282453331402, 1.535239838525378, 1.739782418156071, 0.3616930047198503, 0.6458627645916422 }; static double m_vec[N_MAX] = { 8.450689756874594, 0.6039878267930615, 0.1794126658351454, 0.7095689301026752, 133.9643389059188, 47.96621393936416, 2.172070586163255, 0.002038130569431913, 0.3600036705339421, 0.6219544540067304, 0.8834215943508453, 0.2034290670379481, 5.772526076430922, 11.14853902343298, 0.2889238477277305, 0.7166617182589116, 0.4760623731559658, 0.6094948502068943, 8.902276887883076, 0.5434439226321253 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 1.302990057703935, 0.6523628380743488, 0.4046022501376546, 0.06884642871852312, 0.0969609046794745, 0.630370432896175, 1.252375418911598, 1.409796082144801, 0.1485105463502483, 1.349466184634646, 0.1933711786970301, 0.4088829927466769, 0.1785430666405224, 1.292588374416351, 1.087095515757691, 1.352794600489329, 1.432530166308616, 0.2968093345769761, 0.6235880396594726 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; fm = 0.0; m = 0.0; phi = 0.0; } else { fm = fm_vec[n_data]; m = m_vec[n_data]; phi = phi_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_pia_values ( int &n_data, double &phi, double &n, double &a, double &pia ) //****************************************************************************80 // // Purpose: // // elliptic_inc_pia_values() returns values of incomplete elliptic integral Pi(PHI,N,A). // // Discussion: // // This is the incomplete elliptic integral of the third kind. // // Pi(PHI,N,A) = integral ( 0 <= T <= PHI ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - sin^2(A) * sin ( T )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &N, &A, the arguments of the function. // // Output, double &PIA, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 88.87822485052908, -86.55208740039521, -116.6195703112117, -9.742878017582015, 65.73480919446207, -115.0387719677141, 124.9421177735846, -89.78704401263703, -98.42673771271734, -53.74936192418378, 68.28047574440727, 20.82174673810708, -29.1042364797769, -37.80176710944693, -55.81173355852393, -37.66594589748672, -80.09408170610219, 52.23806528467412, 74.30945212430545, -17.22920703094039 }; static double n_vec[N_MAX] = { 8.064681366127422, -0.2840588974558835, -5.034023488967104, -1.244606253942751, 1.465981775919188, 95338.12857321106, -44.43130633436311, -0.8029374966926196, 5.218883222649502, 2.345821782626782, 0.157358332363011, 1.926593468907062, 6.113982855261652, 1.805710621498681, -0.4072847419780592, -0.9416404038595624, 0.7009655305226739, -1.019830985340273, -0.4510798219577842, 0.6028821390092596 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 0.8823091382756705, 0.4046022501376546, 0.9958310121985398, 0.630370432896175, 0.002887706662908567, 0.1485105463502483, 1.320800086884777, 0.4088829927466769, 0.552337007372852, 1.087095515757691, 0.7128175949111615, 0.2968093345769761, 0.2910907344062498, 0.9695030752034163, 1.122288759723523, 1.295911610809573, 1.116491437736542, 1.170719322533712, 1.199360682338851 }; static double pia_vec[N_MAX] = { 0.7099335174334724, 0.9601963779142505, 0.3362852532098376, 0.7785343427543768, 0.857889755214478, 0.004630772344931844, 0.1173842687902911, 1.505788070660267, 0.7213264194624553, 0.8073261799642218, 1.402853811110838, 1.259245331474513, 0.3779079263971614, 0.3088493910496766, 0.9782829177005183, 0.9430491574504173, 3.320796277384155, 0.9730988737054799, 1.301988094953789, 1.64558360445259 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; a = 0.0; n = 0.0; phi = 0.0; pia = 0.0; } else { a = a_vec[n_data]; n = n_vec[n_data]; phi = phi_vec[n_data]; pia = pia_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_pik_values ( int &n_data, double &phi, double &n, double &k, double &pik ) //****************************************************************************80 // // Purpose: // // elliptic_inc_pik_values() returns values of incomplete elliptic integral Pi(PHI,N,K). // // Discussion: // // This is the incomplete elliptic integral of the third kind. // // Pi(PHI,N,K) = integral ( 0 <= T <= PHI ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - K^2 * sin ( T )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &N, &K, the arguments of the function. // // Output, double &PIK, the value of the function. // { # define N_MAX 20 static double k_vec[N_MAX] = { 1.959036804709882, -1.123741823223131, -2.317629084640271, -0.1202582658444815, 1.008702896970963, -103.3677494756118, 4.853800240677973, -1.016577251056124, -1.94341484065839, -0.8876593284500023, 0.8160487832898813, 0.2994546721661018, -0.7044232294525243, -0.9266523277404759, -0.6962608926846425, -0.4453932031991797, -0.9104582513322106, 0.6187501419936026, 0.8672305032589989, -0.1996772638241632 }; static double n_vec[N_MAX] = { 8.064681366127422, -0.2840588974558835, -5.034023488967104, -1.244606253942751, 1.465981775919188, 95338.12857321106, -44.43130633436311, -0.8029374966926196, 5.218883222649502, 2.345821782626782, 0.157358332363011, 1.926593468907062, 6.113982855261652, 1.805710621498681, -0.4072847419780592, -0.9416404038595624, 0.7009655305226739, -1.019830985340273, -0.4510798219577842, 0.6028821390092596 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 0.8823091382756705, 0.4046022501376546, 0.9958310121985398, 0.630370432896175, 0.002887706662908567, 0.1485105463502483, 1.320800086884777, 0.4088829927466769, 0.552337007372852, 1.087095515757691, 0.7128175949111615, 0.2968093345769761, 0.2910907344062498, 0.9695030752034163, 1.122288759723523, 1.295911610809573, 1.116491437736542, 1.170719322533712, 1.199360682338851 }; static double pik_vec[N_MAX] = { 0.7982975462595892, 1.024022134726036, 0.40158120852642, 0.7772649487439858, 0.8737159913132074, 0.004733334297691273, 0.1280656893638068, 1.594376037512564, 0.8521145133671923, 0.8154325229803082, 1.31594514075427, 1.25394623148424, 0.3796503567258643, 0.3111034454739552, 0.9442477901112342, 0.9153111661980959, 2.842080644328393, 0.9263253777034376, 1.212396018757624, 1.628083572710471 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; k = 0.0; n = 0.0; phi = 0.0; pik = 0.0; } else { k = k_vec[n_data]; n = n_vec[n_data]; phi = phi_vec[n_data]; pik = pik_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_inc_pim_values ( int &n_data, double &phi, double &n, double &m, double &pim ) //****************************************************************************80 // // Purpose: // // elliptic_inc_pim_values() returns values of incomplete elliptic integral Pi(PHI,N,M). // // Discussion: // // This is the incomplete elliptic integral of the third kind. // // Pi(PHI,N,M) = integral ( 0 <= T <= PHI ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - M * sin ( T )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &PHI, &N, &M, the arguments of the function. // // Output, double &PIM, the value of the function. // { # define N_MAX 20 static double m_vec[N_MAX] = { 7.330122710928245, 0.1108806690614566, 0.2828355944410993, 0.6382999794812498, 2.294718938593894, 42062.55329826538, 39.2394337789563, 0.008002151065098688, 0.7190579590867517, 0.9703767630929055, 1.098881295982823, 1.398066725917478, 4.641021931654496, 4.455969064311461, 0.3131448239736511, 0.3686443684703166, 0.06678210908100803, 0.9635538974026796, 1.060208762696207, 0.4687160847955397 }; static double n_vec[N_MAX] = { 8.064681366127422, -0.2840588974558835, -5.034023488967104, -1.244606253942751, 1.465981775919188, 95338.12857321106, -44.43130633436311, -0.8029374966926196, 5.218883222649502, 2.345821782626782, 0.157358332363011, 1.926593468907062, 6.113982855261652, 1.805710621498681, -0.4072847419780592, -0.9416404038595624, 0.7009655305226739, -1.019830985340273, -0.4510798219577842, 0.6028821390092596 }; static double phi_vec[N_MAX] = { 0.3430906586047127, 0.8823091382756705, 0.4046022501376546, 0.9958310121985398, 0.630370432896175, 0.002887706662908567, 0.1485105463502483, 1.320800086884777, 0.4088829927466769, 0.552337007372852, 1.087095515757691, 0.7128175949111615, 0.2968093345769761, 0.2910907344062498, 0.9695030752034163, 1.122288759723523, 1.295911610809573, 1.116491437736542, 1.170719322533712, 1.199360682338851 }; static double pim_vec[N_MAX] = { 1.0469349800785, 0.842114448140669, 0.3321642201520043, 0.8483033529960849, 1.055753817656772, 0.005108896144265593, 0.1426848042785896, 1.031350958206424, 0.7131013701418496, 0.8268044665355507, 1.57632867896015, 1.542817120857211, 0.4144629799126912, 0.3313231611366746, 0.9195822851915201, 0.9422320754002217, 2.036599002815859, 1.076799231499882, 1.416084462957852, 1.824124922310891 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; m = 0.0; n = 0.0; phi = 0.0; pim = 0.0; } else { m = m_vec[n_data]; n = n_vec[n_data]; phi = phi_vec[n_data]; pim = pim_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void elliptic_pia_values ( int &n_data, double &n, double &a, double &pia ) //****************************************************************************80 // // Purpose: // // elliptic_pia_values() returns values of the complete elliptic integral Pi(A). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the third kind. // // The function is defined by the formula: // // Pi(N,A) = integral ( 0 <= T <= PI/2 ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - sin^2(A) * sin ( T )^2 ) // // In MATLAB, the function can be evaluated by: // // ellipticPi(n,(sin(A*pi/180))^2) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &N, &A, the arguments. // // Output, double &PIA, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 30.00000000000000, 45.00000000000000, 60.00000000000000, 77.07903361841643, 30.00000000000000, 45.00000000000000, 60.00000000000000, 77.07903361841643, 30.00000000000000, 45.00000000000000, 60.00000000000000, 77.07903361841643, 30.00000000000000, 45.00000000000000, 60.00000000000000, 77.07903361841643, 30.00000000000000, 45.00000000000000, 60.00000000000000, 77.07903361841643 }; static double n_vec[N_MAX] = { -10.0, -10.0, -10.0, -10.0, -3.0, -3.0, -3.0, -3.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.5 }; static double pia_vec[N_MAX] = { 0.4892245275965397, 0.5106765677902629, 0.5460409271920561, 0.6237325893535237, 0.823045542660675, 0.8760028274011437, 0.9660073560143946, 1.171952391481798, 1.177446843000566, 1.273127366749682, 1.440034318657551, 1.836472172302591, 1.685750354812596, 1.854074677301372, 2.156515647499643, 2.908337248444552, 2.413671504201195, 2.701287762095351, 3.234773471249465, 4.633308147279891 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; n = 0.0; pia = 0.0; } else { a = a_vec[n_data-1]; n = n_vec[n_data-1]; pia = pia_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_pik_values ( int &n_data, double &n, double &k, double &pik ) //****************************************************************************80 // // Purpose: // // elliptic_pik_values() returns values of the complete elliptic integral Pi(K). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the third kind. // // The function is defined by the formula: // // Pi(N,K) = integral ( 0 <= T <= PI/2 ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - K^2 * sin ( T )^2 ) // // In MATLAB, the function can be evaluated by: // // ellipticPi(n,k^2) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &N, &K, the arguments. // // Output, double &PIK, the value of the function. // { # define N_MAX 20 static double k_vec[N_MAX] = { 0.5000000000000000, 0.7071067811865476, 0.8660254037844386, 0.9746794344808963, 0.5000000000000000, 0.7071067811865476, 0.8660254037844386, 0.9746794344808963, 0.5000000000000000, 0.7071067811865476, 0.8660254037844386, 0.9746794344808963, 0.5000000000000000, 0.7071067811865476, 0.8660254037844386, 0.9746794344808963, 0.5000000000000000, 0.7071067811865476, 0.8660254037844386, 0.9746794344808963 }; static double n_vec[N_MAX] = { -10.0, -10.0, -10.0, -10.0, -3.0, -3.0, -3.0, -3.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.5 }; static double pik_vec[N_MAX] = { 0.4892245275965397, 0.5106765677902629, 0.5460409271920561, 0.6237325893535237, 0.823045542660675, 0.8760028274011437, 0.9660073560143946, 1.171952391481798, 1.177446843000566, 1.273127366749682, 1.440034318657551, 1.836472172302591, 1.685750354812596, 1.854074677301372, 2.156515647499643, 2.908337248444552, 2.413671504201195, 2.701287762095351, 3.234773471249465, 4.633308147279891 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; k = 0.0; n = 0.0; pik = 0.0; } else { k = k_vec[n_data-1]; n = n_vec[n_data-1]; pik = pik_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void elliptic_pim_values ( int &n_data, double &n, double &m, double &pim ) //****************************************************************************80 // // Purpose: // // elliptic_pim_values() returns values of the complete elliptic integral Pi(M). // // Discussion: // // This is one form of what is sometimes called the complete elliptic // integral of the third kind. // // The function is defined by the formula: // // Pi(N,M) = integral ( 0 <= T <= PI/2 ) // dT / (1 - N sin^2(T) ) sqrt ( 1 - M * sin ( T )^2 ) // // In MATLAB, the function can be evaluated by: // // ellipticPi(n,m) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &N, &M, the arguments. // // Output, double &PIM, the value of the function. // { # define N_MAX 20 static double m_vec[N_MAX] = { 0.25, 0.50, 0.75, 0.95, 0.25, 0.50, 0.75, 0.95, 0.25, 0.50, 0.75, 0.95, 0.25, 0.50, 0.75, 0.95, 0.25, 0.50, 0.75, 0.95 }; static double n_vec[N_MAX] = { -10.0, -10.0, -10.0, -10.0, -3.0, -3.0, -3.0, -3.0, -1.0, -1.0, -1.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.5, 0.5 }; static double pim_vec[N_MAX] = { 0.4892245275965397, 0.5106765677902629, 0.5460409271920561, 0.6237325893535237, 0.823045542660675, 0.8760028274011437, 0.9660073560143946, 1.171952391481798, 1.177446843000566, 1.273127366749682, 1.440034318657551, 1.836472172302591, 1.685750354812596, 1.854074677301372, 2.156515647499643, 2.908337248444552, 2.413671504201195, 2.701287762095351, 3.234773471249465, 4.633308147279891 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; m = 0.0; n = 0.0; pim = 0.0; } else { m = m_vec[n_data-1]; n = n_vec[n_data-1]; pim = pim_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void erf_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // erf_values() returns some values of the ERF or "error" function. // // Discussion: // // The error function is defined by: // // ERF(X) = ( 2 / sqrt ( PI ) * integral ( 0 <= T <= X ) exp ( - T^2 ) dT // // In Mathematica, the function can be evaluated by: // // Erf[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.1124629160182849E+00, 0.2227025892104785E+00, 0.3286267594591274E+00, 0.4283923550466685E+00, 0.5204998778130465E+00, 0.6038560908479259E+00, 0.6778011938374185E+00, 0.7421009647076605E+00, 0.7969082124228321E+00, 0.8427007929497149E+00, 0.8802050695740817E+00, 0.9103139782296354E+00, 0.9340079449406524E+00, 0.9522851197626488E+00, 0.9661051464753107E+00, 0.9763483833446440E+00, 0.9837904585907746E+00, 0.9890905016357307E+00, 0.9927904292352575E+00, 0.9953222650189527E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void erfc_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // erfc_values() returns some values of the ERFC or "complementary error" function. // // Discussion: // // The complementary error function is defined by: // // ERFC(X) = 1 - ( 2 / sqrt ( PI ) * integral ( 0 <= T <= X ) exp ( - T^2 ) dT // // In Mathematica, the function can be evaluated by: // // Erfc[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 May 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 1.000000000000000E+00, 0.7772974107895215E+00, 0.5716076449533315E+00, 0.3961439091520741E+00, 0.2578990352923395E+00, 0.1572992070502851E+00, 0.08968602177036462E+00, 0.04771488023735119E+00, 0.02365161665535599E+00, 0.01090949836426929E+00, 0.004677734981047266E+00, 0.001862846297981891E+00, 0.0006885138966450786E+00, 0.0002360344165293492E+00, 0.00007501319466545902E+00, 0.00002209049699858544E+00, 6.025761151762095E-06, 1.521993362862285E-06, 3.558629930076853E-07, 7.700392745696413E-08, 1.541725790028002E-08 }; static double x_vec[N_MAX] = { 0.0E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00, 3.2E+00, 3.4E+00, 3.6E+00, 3.8E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void euler_number_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // euler_number_values() returns some values of the Euler numbers. // // Discussion: // // In Mathematica, the function can be evaluated by: // // EulerE[n] // // These numbers rapidly get too big to store in an ordinary integer! // // The terms of odd index are 0. // // E(N) = -C(N,N-2) * E(N-2) - C(N,N-4) * E(N-4) - - C(N,0) * E(0). // // First terms: // // E0 = 1 // E1 = 0; // E2 = -1 // E3 = 0; // E4 = 5 // E5 = 0; // E6 = -61 // E7 = 0; // E8 = 1385 // E9 = 0; // E10 = -50521 // E11 = 0; // E12 = 2702765 // E13 = 0; // E14 = -199360981 // E15 = 0; // E16 = 19391512145 // E17 = 0; // E18 = -2404879675441 // E19 = 0; // E20 = 370371188237525 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the Euler number. // // Output, int &C, the value of the Euler number. // { # define N_MAX 8 static int c_vec[N_MAX] = { 1, 0, -1, 5, -61, 1385, -50521, 2702765 }; static int n_vec[N_MAX] = { 0, 1, 2, 4, 6, 8, 10, 12 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void euler_poly_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // euler_poly_values() returns some values of the Euler polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // EulerE[n,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the Euler polynomial. // // Output, double &X, the argument of the Euler polynomial. // // Output, double &FX, the value of the Euler polynomial. // { # define N_MAX 27 static double fx_vec[N_MAX] = { 0.100000000000E+01, -0.300000000000E+00, -0.160000000000E+00, 0.198000000000E+00, 0.185600000000E+00, -0.403680000000E+00, -0.560896000000E+00, 0.171878880000E+01, 0.318043136000E+01, -0.125394670080E+02, -0.289999384576E+02, -0.625000000000E-01, -0.174240000000E+00, -0.297680000000E+00, -0.404320000000E+00, -0.475260000000E+00, -0.500000000000E+00, -0.475240000000E+00, -0.403680000000E+00, -0.292820000000E+00, -0.153760000000E+00, 0.000000000000E+00, 0.153760000000E+00, 0.292820000000E+00, 0.403680000000E+00, 0.475240000000E+00, 0.500000000000E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, -0.5E+00, -0.4E+00, -0.3E+00, -0.2E+00, -0.1E+00, 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void exp_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // exp_values() returns some values of the exponential function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Exp[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 March 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 24 static double fx_vec[N_MAX] = { 0.000045399929762484851536E+00, 0.0067379469990854670966E+00, 0.36787944117144232160E+00, 1.0000000000000000000E+00, 1.0000000100000000500E+00, 1.0001000050001666708E+00, 1.0010005001667083417E+00, 1.0100501670841680575E+00, 1.1051709180756476248E+00, 1.2214027581601698339E+00, 1.3498588075760031040E+00, 1.4918246976412703178E+00, 1.6487212707001281468E+00, 1.8221188003905089749E+00, 2.0137527074704765216E+00, 2.2255409284924676046E+00, 2.4596031111569496638E+00, 2.7182818284590452354E+00, 7.3890560989306502272E+00, 23.140692632779269006E+00, 148.41315910257660342E+00, 22026.465794806716517E+00, 4.8516519540979027797E+08, 2.3538526683701998541E+17 }; static double x_vec[N_MAX] = { -10.0E+00, -5.0E+00, -1.0E+00, 0.0E+00, 0.00000001E+00, 0.0001E+00, 0.001E+00, 0.01E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 2.0E+00, 3.1415926535897932385E+00, 5.0E+00, 10.0E+00, 20.0E+00, 40.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void exp3_int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // exp3_int_values() returns some values of the EXP3 integral function. // // Discussion: // // The function is defined by: // // EXP3_INT(x) = Integral ( 0 <= t <= x ) exp ( -t^3 ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.19531249963620212007E-02, 0.78124990686775522671E-02, 0.31249761583499728667E-01, 0.12493899888803079984E+00, 0.48491714311363971332E+00, 0.80751118213967145286E+00, 0.86889265412623270696E+00, 0.88861722235357162648E+00, 0.89286018500218176869E+00, 0.89295351429387631138E+00, 0.89297479112737843939E+00, 0.89297880579798112220E+00, 0.89297950317496621294E+00, 0.89297951152951902903E+00, 0.89297951156918122102E+00, 0.89297951156924734716E+00, 0.89297951156924917298E+00, 0.89297951156924921121E+00, 0.89297951156924921122E+00, 0.89297951156924921122E+00 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.2500000000E+00, 1.5000000000E+00, 1.8750000000E+00, 2.0000000000E+00, 2.1250000000E+00, 2.2500000000E+00, 2.5000000000E+00, 2.7500000000E+00, 3.0000000000E+00, 3.1250000000E+00, 3.2500000000E+00, 3.5000000000E+00, 3.7500000000E+00, 4.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void exponential_01_pdf_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // exponential_01_pdf_values() returns some values of the standard exponential PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { 0.4959398481993681, 0.00856777959135697, 0.01720937842266235, 0.07507070056996956, 0.1679332083261492, 0.0, 0.399845179478639, 0.9005384971416223, 0.0, 0.05044803826563792 }; static double x_vec[N_MAX] = { 0.7013006334030669, 4.759746670799113, 4.062300786629853, 2.589324935217918, 1.784188948117787, -0.1363469579618277, 0.9166778581012469, 0.1047623644285883, -0.2589405122149109, 2.986811417663269 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void exponential_cdf_values ( int &n_data, double &lambda, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // exponential_cdf_values() returns some values of the Exponential CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = ExponentialDistribution [ lambda ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &LAMBDA, the parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 9 static double fx_vec[N_MAX] = { 0.3934693402873666E+00, 0.6321205588285577E+00, 0.7768698398515702E+00, 0.8646647167633873E+00, 0.8646647167633873E+00, 0.9816843611112658E+00, 0.9975212478233336E+00, 0.9996645373720975E+00, 0.9999546000702375E+00 }; static double lambda_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; lambda = 0.0; x = 0.0; fx = 0.0; } else { lambda = lambda_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void exponential_pdf_values ( int &n_data, double &lambda, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // exponential_pdf_values() returns some values of the Exponential PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &LAMBDA, the parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { 0.0001446999730194618, 0.06289850821824726, 0.3663607831924032, 0.3542787877169571, 1.472582451176006E-12, 1.829637907028298E-06, 0.01173398427218792, 0.0, 0.1034724689882351, 1.95394780436833 }; static double lambda_vec[N_MAX] = { 1.092091484911879, 4.147546169663503, 2.076535407379806, 1.287888961910225, 0.2191449888955355, 0.3086361453280091, 2.006531407488083, 3.986434770531281, 4.487520304498656, 0.472723751058401 }; static double x_vec[N_MAX] = { 9.558807522740191, 5.573123971945631, 0.5677992226519164, 1.010563614677953, 6.303053694254367, 4.440343499102481, 7.522202212856243, -0.08143245130010748, 3.442598613603521, 0.03753060499296568 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; lambda = 0.0; x = 0.0; fx = 0.0; } else { lambda = lambda_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void extreme_values_cdf_values ( int &n_data, double &alpha, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // extreme_values_cdf_values() returns some values of the Extreme Values CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = ExtremeValuesDistribution [ alpha, beta ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &ALPHA, the first parameter of the distribution. // // Output, double &BETA, the second parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double alpha_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double beta_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double fx_vec[N_MAX] = { 0.3678794411714423E+00, 0.8734230184931166E+00, 0.9818510730616665E+00, 0.9975243173927525E+00, 0.5452392118926051E+00, 0.4884435800065159E+00, 0.4589560693076638E+00, 0.4409910259429826E+00, 0.5452392118926051E+00, 0.3678794411714423E+00, 0.1922956455479649E+00, 0.6598803584531254E-01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; alpha = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { alpha = alpha_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void f_cdf_values ( int &n_data, int &a, int &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // f_cdf_values() returns some values of the F CDF test function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = FRatioDistribution [ dfn, dfd ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &A, int &B, the parameters of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static int a_vec[N_MAX] = { 1, 1, 5, 1, 2, 4, 1, 6, 8, 1, 3, 6, 1, 1, 1, 1, 2, 3, 4, 5 }; static int b_vec[N_MAX] = { 1, 5, 1, 5, 10, 20, 5, 6, 16, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5 }; static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.4999714850534485E+00, 0.4996034370170990E+00, 0.7496993658293228E+00, 0.7504656462757382E+00, 0.7514156325324275E+00, 0.8999867031372156E+00, 0.8997127554259699E+00, 0.9002845660853669E+00, 0.9500248817817622E+00, 0.9500574946122442E+00, 0.9501926400000000E+00, 0.9750133887312993E+00, 0.9900022327445249E+00, 0.9949977837872073E+00, 0.9989999621122122E+00, 0.5687988496283079E+00, 0.5351452100063650E+00, 0.5143428032407864E+00, 0.5000000000000000E+00 }; static double x_vec[N_MAX] = { 1.00E+00, 0.528E+00, 1.89E+00, 1.69E+00, 1.60E+00, 1.47E+00, 4.06E+00, 3.05E+00, 2.09E+00, 6.61E+00, 3.71E+00, 3.00E+00, 10.01E+00, 16.26E+00, 22.78E+00, 47.18E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0; b = 0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void f_noncentral_cdf_values ( int &n_data, int &n1, int &n2, double &lambda, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // f_noncentral_cdf_values() returns some values of the F CDF test function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NoncentralFRatioDistribution [ n1, n2, lambda ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N1, int &N2, the numerator and denominator // degrees of freedom. // // Output, double &LAMBDA, the noncentrality parameter. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.6367825323508774E+00, 0.5840916116305482E+00, 0.3234431872392788E+00, 0.4501187879813550E+00, 0.6078881441188312E+00, 0.7059275551414605E+00, 0.7721782003263727E+00, 0.8191049017635072E+00, 0.3170348430749965E+00, 0.4327218008454471E+00, 0.4502696915707327E+00, 0.4261881186594096E+00, 0.6753687206341544E+00, 0.4229108778879005E+00, 0.6927667261228938E+00, 0.3632174676491226E+00, 0.4210054012695865E+00, 0.4266672258818927E+00, 0.4464016600524644E+00, 0.8445888579504827E+00, 0.4339300273343604E+00 }; static double lambda_vec[N_MAX] = { 0.00E+00, 0.00E+00, 0.25E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 0.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00 }; static int n1_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 16 }; static int n2_vec[N_MAX] = { 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 5, 5, 5, 5, 1, 5, 6, 12, 16, 8 }; static double x_vec[N_MAX] = { 1.00E+00, 1.00E+00, 1.00E+00, 0.50E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 2.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n1 = 0; n2 = 0; lambda = 0.0; x = 0.0; fx = 0.0; } else { n1 = n1_vec[n_data-1]; n2 = n2_vec[n_data-1]; lambda = lambda_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void factorial_values ( int &n_data, int &n, int &fn ) //****************************************************************************80 // // Purpose: // // factorial_values() returns values of the factorial function. // // Discussion: // // 0! = 1 // I! = Product ( 1 <= J <= I ) I // // In Mathematica, the function can be evaluated by: // // n! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, int &FN, the value of the function. // { # define N_MAX 13 static int fn_vec[N_MAX] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; fn = 0; } else { n = n_vec[n_data-1]; fn = fn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void factorial2_values ( int &n_data, int &n, int &fn ) //****************************************************************************80 // // Purpose: // // factorial2_values() returns values of the double factorial function. // // Formula: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * * 1 ) (N odd) // // In Mathematica, the function can be evaluated by: // // n!! // // Example: // // N N!! // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, page 16. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, int &FN, the value of the function. // { # define N_MAX 16 static int fn_vec[N_MAX] = { 1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10395, 46080, 135135, 645120, 2027025 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; fn = 0; } else { n = n_vec[n_data-1]; fn = fn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void fresnel_cos_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // fresnel_cos_values() returns values of the Fresnel cosine integral function. // // Discussion: // // The Fresnel cosine integral is defined by: // // C(X) = integral ( 0 <= T <= X ) cos ( PI * T^2 / 2 ) dT // // In Mathematica, the function can be evaluated by: // // FresnelC[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.1999210575944531E+00, 0.3974807591723594E+00, 0.5810954469916523E+00, 0.7228441718963561E+00, 0.7798934003768228E+00, 0.7154377229230734E+00, 0.5430957835462564E+00, 0.3654616834404877E+00, 0.3336329272215571E+00, 0.4882534060753408E+00, 0.6362860449033195E+00, 0.5549614058564281E+00, 0.3889374961919690E+00, 0.4674916516989059E+00, 0.6057207892976856E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void fresnel_sin_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // fresnel_sin_values() returns some values of the Fresnel sine integral function. // // Discussion: // // The Fresnel sine integral is defined by // // S(X) = integral ( 0 <= T <= X ) sin ( pi * T^2 / 2 ) dT // // In Mathematica, the function can be evaluated by: // // FresnelS[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.4187609161656762E-02, 0.3335943266061318E-01, 0.1105402073593870E+00, 0.2493413930539178E+00, 0.4382591473903548E+00, 0.6234009185462497E+00, 0.7135250773634121E+00, 0.6388876835093809E+00, 0.4509387692675831E+00, 0.3434156783636982E+00, 0.4557046121246569E+00, 0.6196899649456836E+00, 0.5499893231527195E+00, 0.3915284435431718E+00, 0.4963129989673750E+00 }; static double x_vec[N_MAX] = { 0.0E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.2E+00, 2.4E+00, 2.6E+00, 2.8E+00, 3.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void frobenius_number_data_values ( int &n_data, int order, int c[], int &f ) //****************************************************************************80 // // Purpose: // // frobenius_number_data_values() returns data for the Frobenius problem. // // Discussion: // // The user should first call FROBENIUS_NUMBER_ORDER_VALUES to get the // order or size of the "C" vector that will be returned by this routine. // // The Frobenius number of order N and data C is the solution of the // Frobenius coin sum problem for N coin denominations C(1) through C(N). // // The Frobenius coin sum problem assumes the existence of // N coin denominations, and asks for the largest value that cannot // be formed by any combination of coins of these denominations. // // The coin denominations are assumed to be distinct positive integers. // // For general N, this problem is fairly difficult to handle. // // For N = 2, it is known that: // // * if C1 and C2 are not relatively prime, then // there are infinitely large values that cannot be formed. // // * otherwise, the largest value that cannot be formed is // C1 * C2 - C1 - C2, and that exactly half the values between // 1 and C1 * C2 - C1 - C2 + 1 cannot be represented. // // As a simple example, if C1 = 2 and C2 = 7, then the largest // unrepresentable value is 5, and there are (5+1)/2 = 3 // unrepresentable values, namely 1, 3, and 5. // // For a general N, and a set of coin denominations C1, C2,, CN, // the Frobenius number F(N, C(1:N) ) is defined as the largest value // B for which the equation // // C1*X1 + C2*X2 + + CN*XN = B // // has no nonnegative integer solution X(1:N). // // In Mathematica, the Frobenius number can be determined by // // FrobeniusNumber[ {C1,,CN} ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 November 2007 // // Author: // // John Burkardt // // Reference: // // Gerard Cornuejols, Regina Urbaniak, Robert Weismantel, Laurence Wolsey, // Decomposition of Integer Programs and of Generating Sets, // in Algorithms - ESA 97, // Lecture Notes in Computer Science 1284, // edited by R Burkard, G Woeginger, // Springer, 1997, pages 92-103. // // Robert Owens, // An Algorithm to Solve the Frobenius Problem, // Mathematics Magazine, // Volume 76, Number 4, October 2003, 264-275. // // James Sylvester, // Question 7382, // Mathematical Questions with their Solutions, // Educational Times, // Volume 41, page 21, 1884. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input, int &N_DATA. Unlike most other routines in this // library, this routine assumes that N_DATA has already been processed by a call // to FROBENIUS_NUMBER_ORDER_VALUE. Therefore, this routine will return the // next set of data as long as N_DATA is in the expected range. // // Input, int ORDER, the order of the problem. // // Output, int C[ORDER], the denominations of the problem. // // Output, int &F, the value of the function. // { # define CVEC_MAX 77 # define N_MAX 19 static int c_vec[CVEC_MAX] = { 2, 5, 3, 17, 4, 19, 5, 13, 12, 11, 99, 100, 6, 9, 20, 5, 17, 23, 137, 251, 256, 31, 41, 47, 61, 271, 277, 281, 283, 10, 18, 26, 33, 35, 34, 37, 38, 40, 43, 12223, 12224, 36674, 61119, 85569, 1000, 1476, 3764, 4864, 4871, 7773, 12228, 36679, 36682, 46908, 61139, 73365, 12137, 36405, 24269, 36407, 84545, 60683, 13211, 13212, 39638, 66060, 52864, 79268, 92482, 13429, 26850, 26855, 40280, 40281, 53711, 53714, 67141 }; static int f_vec[N_MAX] = { 3, 31, 53, 47, 109, 9701, 43, 41, 4948, 240, 13022, 67, 175, 89643481, 47350, 89716838, 58925134, 104723595, 45094583 }; int i; static int v_data = 0; if ( n_data < 1 || N_MAX < n_data ) { n_data = 0; v_data = 0; for ( i = 0; i < order; i++ ) { c[i] = 0; } f = 0; } else { for ( i = 0; i < order; i++ ) { c[i] = c_vec[v_data+i]; } v_data = v_data + order; if ( n_data == N_MAX ) { v_data = 0; } f = f_vec[n_data-1]; } return; # undef CVEC_MAX # undef N_MAX } //****************************************************************************80 void frobenius_number_order_values ( int &n_data, int &order ) //****************************************************************************80 // // Purpose: // // frobenius_number_order_values() returns orders of the Frobenius problem. // // Discussion: // // This routine returns the order or size of a Frobenius problem. // To get the corresponding data, call FROBENIUS_NUMBER_DATA_VALUES. // // The Frobenius number of order N and data C is the solution of a Frobenius // coin sum problem for N coin denominations C(1) through C(N). // // The Frobenius coin sum problem assumes the existence of // N coin denominations, and asks for the largest value that cannot // be formed by any combination of coins of these denominations. // // The coin denominations are assumed to be distinct positive integers. // // For general order N, this problem is fairly difficult to handle. // // For order N = 2, it is known that: // // * if C1 and C2 are not relatively prime, then // there are infinitely large values that cannot be formed. // // * otherwise, the largest value that cannot be formed is // C1 * C2 - C1 - C2, and that exactly half the values between // 1 and C1 * C2 - C1 - C2 + 1 cannot be represented. // // As a simple example, if C1 = 2 and C2 = 7, then the largest // unrepresentable value is 5, and there are (5+1)/2 = 3 // unrepresentable values, namely 1, 3, and 5. // // For a general N, and a set of coin denominations C1, C2,, CN, // the Frobenius number F(N, C(1:N) ) is defined as the largest value // B for which the equation // // C1*X1 + C2*X2 + + CN*XN = B // // has no nonnegative integer solution X(1:N). // // In Mathematica, the Frobenius number can be determined by // // FrobeniusNumber[ {C1,,CN} ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 November 2007 // // Author: // // John Burkardt // // Reference: // // Gerard Cornuejols, Regina Urbaniak, Robert Weismantel, Laurence Wolsey, // Decomposition of Integer Programs and of Generating Sets, // in Algorithms - ESA 97, // Lecture Notes in Computer Science 1284, // edited by R Burkard, G Woeginger, // Springer, 1997, pages 92-103, // LC: QA76.9.A43.E83. // // Robert Owens, // An Algorithm to Solve the Frobenius Problem, // Mathematics Magazine, // Volume 76, Number 4, October 2003, 264-275. // // James Sylvester, // Question 7382, // Mathematical Questions with their Solutions, // Educational Times, // Volume 41, page 21, 1884. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &ORDER, the order of a Frobenius problem. // { # define N_MAX 19 static int order_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; order = 0; } else { order = order_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void frobenius_number_order2_values ( int &n_data, int &c1, int &c2, int &f ) //****************************************************************************80 // // Purpose: // // frobenius_number_order2_values() returns values of the order 2 Frobenius number. // // Discussion: // // The Frobenius number of order N is the solution of the Frobenius // coin sum problem for N coin denominations. // // The Frobenius coin sum problem assumes the existence of // N coin denominations, and asks for the largest value that cannot // be formed by any combination of coins of these denominations. // // The coin denominations are assumed to be distinct positive integers. // // For general N, this problem is fairly difficult to handle. // // For N = 2, it is known that: // // * if C1 and C2 are not relatively prime, then // there are infinitely large values that cannot be formed. // // * otherwise, the largest value that cannot be formed is // C1 * C2 - C1 - C2, and that exactly half the values between // 1 and C1 * C2 - C1 - C2 + 1 cannot be represented. // // As a simple example, if C1 = 2 and C2 = 7, then the largest // unrepresentable value is 5, and there are (5+1)/2 = 3 // unrepresentable values, namely 1, 3, and 5. // // For a general N, and a set of coin denominations C1, C2,, CN, // the Frobenius number F(N, C(1:N) ) is defined as the largest value // B for which the equation // // C1*X1 + C2*X2 + + CN*XN = B // // has no nonnegative integer solution X(1:N). // // In Mathematica, the Frobenius number can be determined by // // FrobeniusNumber[ {C1,,CN} ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 November 2007 // // Author: // // John Burkardt // // Reference: // // James Sylvester, // Question 7382, // Mathematical Questions with their Solutions, // Educational Times, // Volume 41, page 21, 1884. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &C1, &C2, the parameters of the function. // // Output, int &F, the value of the function. // { # define N_MAX 6 static int c1_vec[N_MAX] = { 2, 3, 4, 5, 12, 99 }; static int c2_vec[N_MAX] = { 5, 17, 19, 13, 11, 100 }; static int f_vec[N_MAX] = { 3, 31, 53, 47, 109, 9701 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; c1 = 0; c2 = 0; f = 0; } else { c1 = c1_vec[n_data-1]; c2 = c2_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_values() returns some values of the Gamma function. // // Discussion: // // The Gamma function is defined as: // // Gamma(Z) = Integral ( 0 <= T < +oo ) T^(Z-1) exp(-T) dT // // It satisfies the recursion: // // Gamma(X+1) = X * Gamma(X) // // Gamma is undefined for nonpositive integral X. // Gamma(0.5) = sqrt(PI) // For N a positive integer, Gamma(N+1) = N!, the standard factorial. // // In Mathematica, the function can be evaluated by: // // Gamma[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 May 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { -0.3544907701811032E+01, -0.1005871979644108E+03, 0.9943258511915060E+02, 0.9513507698668732E+01, 0.4590843711998803E+01, 0.2218159543757688E+01, 0.1772453850905516E+01, 0.1489192248812817E+01, 0.1164229713725303E+01, 0.1000000000000000E+01, 0.9513507698668732E+00, 0.9181687423997606E+00, 0.8974706963062772E+00, 0.8872638175030753E+00, 0.8862269254527580E+00, 0.8935153492876903E+00, 0.9086387328532904E+00, 0.9313837709802427E+00, 0.9617658319073874E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.6000000000000000E+01, 0.3628800000000000E+06, 0.1216451004088320E+18, 0.8841761993739702E+31 }; static double x_vec[N_MAX] = { -0.50E+00, -0.01E+00, 0.01E+00, 0.10E+00, 0.20E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.80E+00, 1.00E+00, 1.10E+00, 1.20E+00, 1.30E+00, 1.40E+00, 1.50E+00, 1.60E+00, 1.70E+00, 1.80E+00, 1.90E+00, 2.00E+00, 3.00E+00, 4.00E+00, 10.00E+00, 20.00E+00, 30.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_01_pdf_values ( int &n_data, double &alpha, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_01_pdf_values() returns some values of the standard Gamma PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &ALPHA, the shape parameter. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double alpha_vec[N_MAX] = { 1.092091484911879, 4.147546169663503, 2.076535407379806, 1.287888961910225, 0.2191449888955355, 0.3086361453280091, 2.006531407488083, 3.986434770531281, 4.487520304498656, 0.472723751058401 }; static double fx_vec[N_MAX] = { 0.00009260811963612823, 0.1260335478747823, 0.1363536772414351, 0.5114450139194701, 0.0001230139468263628, 0.001870342832511005, 0.004476000451227789, 0.0, 0.2056668486524041, 0.0 }; static double x_vec[N_MAX] = { 9.541334553343761, 5.39780214905239, 0.1942467166183289, 0.6545463320909413, 6.156639979175331, 4.220159083225351, 7.424071607424807, -0.4806971028367454, 3.18289954879574, -0.3570226383736496 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; alpha = 0.0; x = 0.0; fx = 0.0; } else { alpha = alpha_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_cdf_values ( int &n_data, double &mu, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_cdf_values() returns some values of the Gamma CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = GammaDistribution [ mu, sigma ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.8646647167633873E+00, 0.9816843611112658E+00, 0.9975212478233336E+00, 0.9996645373720975E+00, 0.6321205588285577E+00, 0.4865828809674080E+00, 0.3934693402873666E+00, 0.3296799539643607E+00, 0.4421745996289254E+00, 0.1911531694619419E+00, 0.6564245437845009E-01, 0.1857593622214067E-01 }; static double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double sigma_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_inc_p_values ( int &n_data, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_inc_p_values(): values of normalized incomplete Gamma function P(A,X). // // Discussion: // // The (normalized) incomplete Gamma function is defined as: // // P(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. // // With this definition, for all A and X, // // 0 <= P(A,X) <= 1 // // and // // P(A,oo) = 1.0 // // In Mathematica, the function can be evaluated by: // // 1 - GammaRegularized[A,X] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2022 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // Iint &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, the parameter of the function. // // double &X, the argument of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; static double fx_vec[N_MAX] = { 0.7382350532339351E+00, 0.9083579897300343E+00, 0.9886559833621947E+00, 0.3014646416966613E+00, 0.7793286380801532E+00, 0.9918490284064973E+00, 0.9516258196404043E-01, 0.6321205588285577E+00, 0.9932620530009145E+00, 0.7205974576054322E-01, 0.5891809618706485E+00, 0.9915368159845525E+00, 0.1018582711118352E-01, 0.4421745996289254E+00, 0.9927049442755639E+00, 0.4202103819530612E-01, 0.9796589705830716E+00, 0.9226039842296429E+00, 0.4470785799755852E+00, 0.7444549220718699E+00 }; static double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_inc_q_values ( int &n_data, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_inc_q_values(): values of normalized incomplete Gamma function Q(A,X). // // Discussion: // // The (normalized) incomplete Gamma function is defined as: // // Q(A,X) = 1/Gamma(A) * Integral ( X <= T < oo ) T^(A-1) * exp(-T) dT. // // With this definition, for all A and X, // // 0 <= Q(A,X) <= 1 // // and // // Q(A,oo) = 0.0 // // In Mathematica, the function can be evaluated by: // // GammaRegularized[A,X] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, the parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; static double fx_vec[N_MAX] = { 0.2617649467660649E+00, 0.09164201026996572E+00, 0.01134401663780527E+00, 0.6985353583033387E+00, 0.2206713619198468E+00, 0.008150971593502700E+00, 0.9048374180359596E+00, 0.3678794411714423E+00, 0.006737946999085467E+00, 0.9279402542394568E+00, 0.4108190381293515E+00, 0.008463184015447498E+00, 0.9898141728888165E+00, 0.5578254003710746E+00, 0.007295055724436130E+00, 0.9579789618046939E+00, 0.02034102941692837E+00, 0.07739601577035708E+00, 0.5529214200244148E+00, 0.2555450779281301E+00 }; static double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_inc_tricomi_values ( int &n_data, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_inc_tricomi_values(): values of Tricomi's incomplete Gamma function. // // Discussion: // // Tricomi's incomplete Gamma function is defined as: // // 1/Gamma(A) * 1/X^A * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, the parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; static double fx_vec[N_MAX] = { 1.048292641463504E+00, 1.024577737369574E+00, 0.9493712443185374E+00, 1.100793230316492E+00, 0.8998911979655218E+00, 0.5301656062431039E+00, 0.9516258196404043E+00, 0.6321205588285577E+00, 0.1986524106001829E+00, 0.9071784510537487E+00, 0.5891809618706485E+00, 0.1688269752193589E+00, 0.4527034271637121E+00, 0.1965220442795224E+00, 0.02025928457705232E+00, 0.0001721181724479739E+00, 3.280858070850586E-07, 5.244396471821590E-14, 2.013462926183376E-37, 1.230623887499875E-68 }; static double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_inc_values ( int &n_data, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_inc_values() returns some values of the incomplete Gamma function. // // Discussion: // // The incomplete Gamma function is defined as: // // Integral ( X <= T < oo ) T^(A-1) * exp(-T) dT. // // In Mathematica, the function can be evaluated by: // // Gamma[A,X] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2022 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, the parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; static double fx_vec[N_MAX] = { 2.490302836300570E+00, 0.8718369702247978E+00, 0.1079213896175866E+00, 1.238121685818417E+00, 0.3911298052193973E+00, 0.01444722098952533E+00, 0.9048374180359596E+00, 0.3678794411714423E+00, 0.006737946999085467E+00, 0.8827966752611692E+00, 0.3908330082003269E+00, 0.008051456628620993E+00, 0.9898141728888165E+00, 0.5578254003710746E+00, 0.007295055724436130E+00, 114.9574754165633E+00, 2.440923530031405E+00, 280854.6620274718E+00, 8.576480283455533E+24, 2.085031346403364E+47 }; static double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_log_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_log_values() returns some values of the Log Gamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[Gamma[x]] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.1524063822430784E+01, 0.7966778177017837E+00, 0.3982338580692348E+00, 0.1520596783998375E+00, 0.0000000000000000E+00, -0.4987244125983972E-01, -0.8537409000331584E-01, -0.1081748095078604E+00, -0.1196129141723712E+00, -0.1207822376352452E+00, -0.1125917656967557E+00, -0.9580769740706586E-01, -0.7108387291437216E-01, -0.3898427592308333E-01, 0.00000000000000000E+00, 0.69314718055994530E+00, 0.17917594692280550E+01, 0.12801827480081469E+02, 0.39339884187199494E+02, 0.71257038967168009E+02 }; static double x_vec[N_MAX] = { 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 1.00E+00, 1.10E+00, 1.20E+00, 1.30E+00, 1.40E+00, 1.50E+00, 1.60E+00, 1.70E+00, 1.80E+00, 1.90E+00, 2.00E+00, 3.00E+00, 4.00E+00, 10.00E+00, 20.00E+00, 30.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gamma_pdf_values ( int &n_data, double &beta, double &alpha, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gamma_pdf_values() returns some values of a Gamma PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &BETA, the rate parameter. // // Output, double &ALPHA, the shape parameter. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double alpha_vec[N_MAX] = { 4.781587882544648, 2.076535407379806, 0.549783967662353, 0.3086361453280091, 3.773367432107051, 4.487520304498656, 0.06808445791730976, 0.6155195788227712, 4.562418534907164, 4.114436583429598 }; static double beta_vec[N_MAX] = { 1.092091484911879, 2.808477213834471, 1.287888961910225, 3.169828561512062, 2.006531407488083, 0.009191855792026001, 0.472723751058401, 4.204237253278341, 1.301514988836825, 1.758143299519481 }; static double fx_vec[N_MAX] = { 0.1672017697220646, 0.8522122814089312, 2.122272611165834, 0.00006993771842317114, 0.01679379733182281, 0.0000000006687464259463117, 0.001295436045931343, 0.0, 0.01189893036865762, 0.3658836103539945 }; static double x_vec[N_MAX] = { 4.942957250382744, 0.2099361564793942, 0.07173978623046406, 2.587141553904492, 4.743179115458788, 1.974664495479389, 5.126400502735112, -0.1534233427414219, 0.5047170879434957, 1.456220075613112 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; beta = 0.0; alpha = 0.0; x = 0.0; fx = 0.0; } else { beta = beta_vec[n_data-1]; alpha = alpha_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gcd_values ( int &n_data, int &m, int &n, int &f ) //****************************************************************************80 // // Purpose: // // gcd_values() returns values of the greatest common divisor function. // // Discussion: // // f = gcd(m,n) if f divides m and n evenly, and no larger integer does. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 December 2022 // // Author: // // John Burkardt // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. The routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &M, &N, the arguments of the function. // // int &F, the value of the function. // { # define N_MAX 10 static int f_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; static int m_vec[N_MAX] = { 17, 4, 291, 100, 55, 30, 2058, 24, 326880, 65610 }; static int n_vec[N_MAX] = { 35, 138322, 294, 64, 625, 66, 679, 40, 131769, 146410 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; m = 0; n = 0; f = 0; } else { m = m_vec[n_data-1]; n = n_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gegenbauer_poly_values ( int &n_data, int &n, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gegenbauer_poly_values() returns some values of the Gegenbauer polynomials. // // Discussion: // // The Gegenbauer polynomials are also known as the "spherical // polynomials" or "ultraspherical polynomials". // // In Mathematica, the function can be evaluated by: // // GegenbauerC[n,m,x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order parameter of the function. // // Output, double &A, the real parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 38 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 5.0E+00, 6.0E+00, 7.0E+00, 8.0E+00, 9.0E+00, 10.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00, 3.0E+00 }; static double fx_vec[N_MAX] = { 1.0000000000E+00, 0.2000000000E+00, -0.4400000000E+00, -0.2800000000E+00, 0.2320000000E+00, 0.3075200000E+00, -0.0805760000E+00, -0.2935168000E+00, -0.0395648000E+00, 0.2459712000E+00, 0.1290720256E+00, 0.0000000000E+00, -0.3600000000E+00, -0.0800000000E+00, 0.8400000000E+00, 2.4000000000E+00, 4.6000000000E+00, 7.4400000000E+00, 10.9200000000E+00, 15.0400000000E+00, 19.8000000000E+00, 25.2000000000E+00, -9.0000000000E+00, -0.1612800000E+00, -6.6729600000E+00, -8.3750400000E+00, -5.5267200000E+00, 0.0000000000E+00, 5.5267200000E+00, 8.3750400000E+00, 6.6729600000E+00, 0.1612800000E+00, -9.0000000000E+00, -15.4252800000E+00, -9.6969600000E+00, 22.4409600000E+00, 100.8892800000E+00, 252.0000000000E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, -0.50E+00, -0.40E+00, -0.30E+00, -0.20E+00, -0.10E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; a = 0.0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void geometric_cdf_values ( int &n_data, int &x, double &p, double &cdf ) //****************************************************************************80 // // Purpose: // // geometric_cdf_values() returns values of the geometric CDF. // // Discussion: // // The geometric or Pascal probability density function gives the // probability that the first success will happen on the X-th Bernoulli // trial, given that the probability of a success on a single trial is P. // // The value of CDF ( X, P ) is the probability that the first success // will happen on or before the X-th trial. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = GeometricDistribution [ p ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger and Stephen Kokoska, // CRC Standard Probability and Statistics Tables and Formulae, // Chapman and Hall / CRC Press, 2000. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &X, the number of trials. // // Output, double &P, the probability of success // on one trial. // // Output, double &CDF, the cumulative density function. // { # define N_MAX 14 static double cdf_vec[N_MAX] = { 0.1900000000000000E+00, 0.2710000000000000E+00, 0.3439000000000000E+00, 0.6861894039100000E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.9141006540800000E+00, 0.7599000000000000E+00, 0.8704000000000000E+00, 0.9375000000000000E+00, 0.9843750000000000E+00, 0.9995117187500000E+00, 0.9999000000000000E+00 }; static double p_vec[N_MAX] = { 0.1E+00, 0.1E+00, 0.1E+00, 0.1E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.9E+00 }; static int x_vec[N_MAX] = { 1, 2, 3, 10, 1, 2, 3, 10, 3, 3, 3, 5, 10, 3 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0; p = 0.0; cdf = 0.0; } else { x = x_vec[n_data-1]; p = p_vec[n_data-1]; cdf = cdf_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void goodwin_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // goodwin_values() returns some values of the Goodwin and Staton function. // // Discussion: // // The function is defined by: // // GOODWIN(x) = Integral ( 0 <= t < +oo ) exp ( -t^2 ) / ( t + x ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.59531540040441651584E+01, 0.45769601268624494109E+01, 0.32288921331902217638E+01, 0.19746110873568719362E+01, 0.96356046208697728563E+00, 0.60513365250334458174E+00, 0.51305506459532198016E+00, 0.44598602820946133091E+00, 0.37344458206879749357E+00, 0.35433592884953063055E+00, 0.33712156518881920994E+00, 0.29436170729362979176E+00, 0.25193499644897222840E+00, 0.22028778222123939276E+00, 0.19575258237698917033E+00, 0.17616303166670699424E+00, 0.16015469479664778673E+00, 0.14096116876193391066E+00, 0.13554987191049066274E+00, 0.11751605060085098084E+00 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.2500000000E+00, 1.5000000000E+00, 1.8750000000E+00, 2.0000000000E+00, 2.1250000000E+00, 2.5000000000E+00, 3.0000000000E+00, 3.5000000000E+00, 4.0000000000E+00, 4.5000000000E+00, 5.0000000000E+00, 5.7500000000E+00, 6.0000000000E+00, 7.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void gud_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // gud_values() returns some values of the Gudermannian function. // // Discussion: // // The Gudermannian function relates the hyperbolic and trigonomentric // functions. For any argument X, there is a corresponding value // GD so that // // SINH(X) = TAN(GD). // // This value GD is called the Gudermannian of X and symbolized // GD(X). The inverse Gudermannian function is given as input a value // GD and computes the corresponding value X. // // GD(X) = 2 * arctan ( exp ( X ) ) - PI / 2 // // In Mathematica, the function can be evaluated by: // // 2 * Atan[Exp[x]] - Pi/2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 13 static double fx_vec[N_MAX] = { -0.1301760336046015E+01, -0.8657694832396586E+00, 0.0000000000000000E+00, 0.9983374879348662E-01, 0.1986798470079397E+00, 0.4803810791337294E+00, 0.8657694832396586E+00, 0.1131728345250509E+01, 0.1301760336046015E+01, 0.1406993568936154E+01, 0.1471304341117193E+01, 0.1510419907545700E+01, 0.1534169144334733E+01 }; static double x_vec[N_MAX] = { -2.0E+00, -1.0E+00, 0.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 1.5E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void harmonic_values ( int &n_data, int &n, double &h ) //****************************************************************************80 // // Purpose: // // harmonic_values() returns some values of the Harmonic number sequence. // // Discussion: // // H(N) = sum ( 1 <= I <= N ) 1 / I // // In Mathematica, the function can be evaluated by: // // HarmonicNumber[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 May 2022 // // Author: // // John Burkardt // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the index of the Harmonic number. // // double &H, the value of the Harmonic number. // { # define N_MAX 40 static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 }; static double h_vec[N_MAX] = { 1.000000000000000, 1.500000000000000, 1.833333333333333, 2.083333333333333, 2.283333333333333, 2.450000000000000, 2.592857142857143, 2.717857142857143, 2.828968253968254, 2.928968253968254, 3.019877344877345, 3.103210678210678, 3.180133755133755, 3.251562326562327, 3.318228993228993, 3.380728993228993, 3.439552522640758, 3.495108078196313, 3.547739657143682, 3.597739657143682, 3.645358704762730, 3.690813250217275, 3.734291511086840, 3.775958177753507, 3.815958177753507, 3.854419716215045, 3.891456753252082, 3.927171038966368, 3.961653797587058, 3.994987130920391, 4.027245195436520, 4.058495195436520, 4.088798225739550, 4.118209990445433, 4.146781419016861, 4.174559196794639, 4.201586223821666, 4.227902013295350, 4.253543038936376, 4.278543038936376 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; h = 0.0; } else { n = n_vec[n_data-1]; h = h_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hermite_function_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hermite_function_values() returns some values of the Hermite function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Hf(n,x) = HermiteH[n,x] // * Exp [ -1/2 * x^2] / Sqrt [ 2^n * n! * Sqrt[Pi] ] // // The Hermite functions are orthonormal: // // Integral ( -oo < x < +oo ) Hf(m,x) Hf(n,x) dx = delta ( m, n ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 February 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the polynomial. // // Output, double &X, the point where the polynomial is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 23 static double fx_vec[N_MAX] = { 0.7511255444649425E+00, 0.0000000000000000E+00, -0.5311259660135985E+00, 0.0000000000000000E+00, 0.4599685791773266E+00, 0.0000000000000000E+00, 0.4555806720113325E+00, 0.6442883651134752E+00, 0.3221441825567376E+00, -0.2630296236233334E+00, -0.4649750762925110E+00, -0.5881521185179581E-01, 0.3905052515434106E+00, 0.2631861423064045E+00, -0.2336911435996523E+00, -0.3582973361472840E+00, 0.6146344487883041E-01, 0.3678312067984882E+00, 0.9131969309166278E-01, 0.4385750950032321E+00, -0.2624689527931006E-01, 0.5138426125477819E+00, 0.9355563118061758E-01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 0.5E+00, 2.0E+00, 3.0E+00, 4.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hermite_poly_phys_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hermite_poly_phys_values() returns some values of the physicist's Hermite polynomial. // // Discussion: // // In Mathematica, the function can be evaluated by: // // HermiteH[n,x] // // Differential equation: // // Y'' - 2 X Y' + 2 N Y = 0; // // First terms: // // 1 // 2 X // 4 X^2 - 2 // 8 X^3 - 12 X // 16 X^4 - 48 X^2 + 12 // 32 X^5 - 160 X^3 + 120 X // 64 X^6 - 480 X^4 + 720 X^2 - 120 // 128 X^7 - 1344 X^5 + 3360 X^3 - 1680 X // 256 X^8 - 3584 X^6 + 13440 X^4 - 13440 X^2 + 1680 // 512 X^9 - 9216 X^7 + 48384 X^5 - 80640 X^3 + 30240 X // 1024 X^10 - 23040 X^8 + 161280 X^6 - 403200 X^4 + 302400 X^2 - 30240 // // Recursion: // // H(0,X) = 1, // H(1,X) = 2*X, // H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X) // // Norm: // // Integral ( -oo < X < +oo ) exp ( - X^2 ) * H(N,X)^2 dX // = sqrt ( PI ) * 2^N * N! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 February 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the polynomial. // // Output, double &X, the point where the polynomial is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+02, 0.9800000000000000E+02, 0.9400000000000000E+03, 0.8812000000000000E+04, 0.8060000000000000E+05, 0.7178800000000000E+06, 0.6211600000000000E+07, 0.5206568000000000E+08, 0.4212712000000000E+09, 0.3275529760000000E+10, 0.2432987360000000E+11, 0.1712370812800000E+12, 0.0000000000000000E+00, 0.4100000000000000E+02, -0.8000000000000000E+01, 0.3816000000000000E+04, 0.3041200000000000E+07 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 0.0E+00, 0.5E+00, 1.0E+00, 3.0E+00, 1.0E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hermite_poly_prob_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hermite_poly_prob_values(): values of the probabilist's Hermite polynomial. // // Discussion: // // In Mathematica, the function can be evaluated by: // // He(n,x) = HermiteH[n,x/Sqrt[2]] / Sqrt [ 2^n ] // // First terms: // // 1 // X // X^2 - 1 // X^3 - 3 X // X^4 - 6 X^2 + 3 // X^5 - 10 X^3 + 15 X // X^6 - 15 X^4 + 45 X^2 - 15 // X^7 - 21 X^5 + 105 X^3 - 105 X // X^8 - 28 X^6 + 210 X^4 - 420 X^2 + 105 // X^9 - 36 X^7 + 378 X^5 - 1260 X^3 + 945 X // X^10 - 45 X^8 + 630 X^6 - 3150 X^4 + 4725 X^2 - 945 // // Recursion: // // He(0,X) = 1, // He(1,X) = X, // He(N,X) = X * He(N-1,X) - (N-1) * He(N-2,X) // // Norm: // // Integral ( -oo < X < +oo ) exp ( - 0.5 * X^2 ) * He(M,X) He(N,X) dX // = sqrt ( 2 * pi ) * N! * delta ( M, N ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 February 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the polynomial. // // Output, double &X, the point where the polynomial is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { 1.000000000000000E+00, 5.000000000000000E+00, 24.00000000000000E+00, 110.0000000000000E+00, 478.0000000000000E+00, 1950.000000000000E+00, 7360.000000000000E+00, 25100.00000000000E+00, 73980.00000000000E+00, 169100.0000000000E+00, 179680.0000000000E+00, -792600.0000000000E+00, -5939480.000000000E+00, 0.000000000000000E+00, 6.281250000000000E+00, 6.000000000000000E+00, 18.00000000000000E+00, 90150.00000000000E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 0.0E+00, 0.5E+00, 1.0E+00, 3.0E+00, 1.0E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hyper_1f1_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hyper_1f1_values() returns some values of the hypergeometric function 1F1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // fx = Hypergeometric1F1 [ a, b, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B: the parameters of the function. // // double &X: the argument. // // double &FX: the value of the function. // { # define N_MAX 24 static double a_vec[N_MAX] = { -2.500, -0.500, 0.500, 2.500, -2.500, -0.500, 0.500, 2.500, -2.500, -0.500, 0.500, 2.500, 0.825, 1.100, 1.650, 3.300, 0.825, 1.100, 1.650, 3.300, 0.825, 1.100, 1.650, 3.300 }; static double b_vec[N_MAX] = { 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7 }; static double fx_vec[N_MAX] = { 0.81879926689265186854, 0.88283984828032972070, 1.1245023764952626690, 1.2101049301639599598, 0.12723045536781567174, 0.12326016871544045107, 2.3297954665128293051, 3.3890020264468009733, -0.18819510282516768874, -1.0764203806547022727, 5.7521824680907968433, 9.9998567403304086593, 1.0317208964319891384, 1.0424867029249952040, 1.0643112000949092012, 1.1321844369742336326, 1.2328402688568452181, 1.3200654482027340732, 1.5104811522310825217, 2.2307520785940524365, 1.5197286298183137741, 1.7364938170250847619, 2.2492330307668135926, 4.6377737119178965298 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 1.55, 1.55, 1.55, 1.55, 2.85, 2.85, 2.85, 2.85, 0.25, 0.25, 0.25, 0.25, 1.55, 1.55, 1.55, 1.55, 2.85, 2.85, 2.85, 2.85 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hyper_2f1_values ( int &n_data, double &a, double &b, double &c, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hyper_2f1_values() returns some values of the hypergeometric function 2F1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // fx = Hypergeometric2F1 [ a, b, c, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 September 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, &C: the parameters. // // double &X: the argument. // // double &FX: the value of the function. // { # define N_MAX 24 static double a_vec[N_MAX] = { -2.5, -0.5, 0.5, 2.5, -2.5, -0.5, 0.5, 2.5, -2.5, -0.5, 0.5, 2.5, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3 }; static double b_vec[N_MAX] = { 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7 }; static double c_vec[N_MAX] = { 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, -5.5, -0.5, 0.5, 4.5, -5.5, -0.5, 0.5, 4.5, -5.5, -0.5, 0.5, 4.5 }; static double fx_vec[N_MAX] = { 0.72356129348997784913, 0.97911109345277961340, 1.0216578140088564160, 1.4051563200112126405, 0.46961431639821611095, 0.95296194977446325454, 1.0512814213947987916, 2.3999062904777858999, 0.29106095928414718320, 0.92536967910373175753, 1.0865504094806997287, 5.7381565526189046578, 15090.669748704606754, -104.31170067364349677, 21.175050707768812938, 4.1946915819031922850, 1.0170777974048815592E+10, -24708.635322489155868, 1372.2304548384989560, 58.092728706394652211, 5.8682087615124176162E+18, -4.4635010147295996680E+08, 5.3835057561295731310E+06, 20396.913776019659426 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 0.55, 0.55, 0.55, 0.55, 0.85, 0.85, 0.85, 0.85, 0.25, 0.25, 0.25, 0.25, 0.55, 0.55, 0.55, 0.55, 0.85, 0.85, 0.85, 0.85 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; c = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; c = c_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hyper_2f1_complex_values ( int &n_data, double &a, double &b, double &c, complex &z, complex &fz ) //****************************************************************************80 // // Purpose: // // hyper_2f1_complex_values() returns some values of the hypergeometric function 2F1. // // Discussion: // // In Mathematica, the function can be evaluated by: // // fz = Hypergeometric2F1 [ a, b, c, z ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 December 2023 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &A, &B, &C: the parameters. // // complex &Z: the argument. // // complex &FZ: the value of the function. // { # define N_MAX 15 static double a_vec[N_MAX] = { 3.2, 3.2, -5.0, 3.3, -7.0, 4.3, 3.3, 3.5, 3.3, 7.0, 5.0, 3.5, 2.1, 8.7, 8.7 }; static double b_vec[N_MAX] = { 1.8, -1.8, 3.3, -6.0, 3.3, -8.0, 5.8, -2.4, 4.3, 5.0, 7.0, 1.2, 5.4, 3.2, 2.7 }; static double c_vec[N_MAX] = { 6.7, 6.7, 6.7, 3.7, -3.7, -3.7, 6.7, 6.7, 6.7, 4.1, 4.1, 9.7, 9.7, 6.7, 6.7 }; static complex fz_vec[N_MAX] = { complex ( 5.468999154361234, +0.00000000 ), complex ( 0.3375063477462785, +0.00000000 ), complex ( 116.8274991533609, +603.8909562709345 ), complex ( 17620.41819334182, +38293.80901310932 ), complex (-11772775115.27448, -14382285977.20268 ), complex ( 1316118577866.058, -101298889382.4362 ), complex ( 1.733055678355656, +0.6340102904953357 ), complex ( 0.6476224071999852, -0.5211050690999773 ), complex (-1.483008322270093, +8.374426179451589 ), complex (-0.004037609523971226, -0.002956632645480181 ), complex (-0.004037609523971226, -0.002956632645480181 ), complex ( 1.034313610729953, +0.5447389238499308 ), complex ( 0.6885043978280027, +1.227418679098749 ), complex (-0.9004649679297319, -1.11988994714304 ), complex (-0.4608388640599718, -0.5457569650549665 ) }; static complex z_vec[N_MAX] = { complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 5.2, 4.8 ), complex ( 5.2, -4.8 ), complex ( 5.2, -4.8 ), complex ( 5.2, 4.8 ), complex ( 0.2, 0.1 ), complex ( 0.2, 0.5 ), complex ( 0.8, 0.3 ), complex ( 3.0, -1.0 ), complex ( 3.0, -1.0 ), complex ( 0.6, 0.9 ), complex ( 0.5, 0.7 ), complex ( 0.5, 0.7 ), complex ( 0.6, 0.9 ) }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; c = 0.0; z = 0.0; fz = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; c = c_vec[n_data-1]; z = z_vec[n_data-1]; fz = fz_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hypergeometric_cdf_values ( int &n_data, int &sam, int &suc, int &pop, int &n, double &fx ) //****************************************************************************80 // // Purpose: // // hypergeometric_cdf_values() returns some values of the hypergeometric CDF. // // Discussion: // // CDF(X)(A,B) is the probability of at most X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = HypergeometricDistribution [ sam, suc, pop ] // CDF [ dist, n ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &SAM, int &SUC, int &POP, the sample size, // success size, and population parameters of the function. // // Output, int &N, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.6001858177500578E-01, 0.2615284665839845E+00, 0.6695237889132748E+00, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5332595856827856E+00, 0.1819495964117640E+00, 0.4448047017527730E-01, 0.9999991751316731E+00, 0.9926860896560750E+00, 0.8410799901444538E+00, 0.3459800113391901E+00, 0.0000000000000000E+00, 0.2088888139634505E-02, 0.3876752992448843E+00, 0.9135215248834896E+00 }; static int n_vec[N_MAX] = { 7, 8, 9, 10, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0 }; static int pop_vec[N_MAX] = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 90, 200, 1000, 10000 }; static int sam_vec[N_MAX] = { 10, 10, 10, 10, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10 }; static int suc_vec[N_MAX] = { 90, 90, 90, 90, 90, 90, 90, 90, 10, 30, 50, 70, 90, 90, 90, 90 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; sam = 0; suc = 0; pop = 0; n = 0; fx = 0.0; } else { sam = sam_vec[n_data-1]; suc = suc_vec[n_data-1]; pop = pop_vec[n_data-1]; n = n_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hypergeometric_pdf_values ( int &n_data, int &sam, int &suc, int &pop, int &n, double &fx ) //****************************************************************************80 // // Purpose: // // hypergeometric_pdf_values() returns some values of the hypergeometric PDF. // // Discussion: // // CDF(X)(A,B) is the probability of X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // dist = HypergeometricDistribution [ sam, suc, pop ] // PDF [ dist, n ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 January 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &SAM, int &SUC, int &POP, the sample size, // success size, and population parameters of the function. // // Output, int &N, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.05179370533242827E+00, 0.2015098848089788E+00, 0.4079953223292903E+00, 0.3304762110867252E+00, 0.5223047493549780E+00, 0.3889503452643453E+00, 0.1505614239732950E+00, 0.03927689321042477E+00, 0.00003099828465518108E+00, 0.03145116093938197E+00, 0.2114132170316862E+00, 0.2075776621999210E+00, 0.0000000000000000E+00, 0.002088888139634505E+00, 0.3876752992448843E+00, 0.9135215248834896E+00 }; static int n_vec[N_MAX] = { 7, 8, 9, 10, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0 }; static int pop_vec[N_MAX] = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 90, 200, 1000, 10000 }; static int sam_vec[N_MAX] = { 10, 10, 10, 10, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10 }; static int suc_vec[N_MAX] = { 90, 90, 90, 90, 90, 90, 90, 90, 10, 30, 50, 70, 90, 90, 90, 90 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; sam = 0; suc = 0; pop = 0; n = 0; fx = 0.0; } else { sam = sam_vec[n_data-1]; suc = suc_vec[n_data-1]; pop = pop_vec[n_data-1]; n = n_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hypergeometric_u_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // hypergeometric_u_values(): some values of the hypergeometric function U(a,b,x). // // Discussion: // // In Mathematica, the function can be evaluated by: // // fx = HypergeometricU [ a, b, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2011 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, &X, the parameters of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 24 static double a_vec[N_MAX] = { -2.500, -0.500, 0.500, 2.500, -2.500, -0.500, 0.500, 2.500, -2.500, -0.500, 0.500, 2.500, 0.825, 1.100, 1.650, 3.300, 0.825, 1.100, 1.650, 3.300, 0.825, 1.100, 1.650, 3.300 }; static double b_vec[N_MAX] = { 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 3.3, 1.1, 1.1, 3.3, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.7 }; static double fx_vec[N_MAX] = { -68.693628728078601389, -0.0029710551374761070801, 1.5008631742177797301, 20.614688244200596134, 7.4563815469305551938, 1.0155793767749293733, 0.73446538936622668912, 0.28046404941879399225, 3.4508153741446547607, 1.5156637368753063495, 0.56042118587934993510, 0.064897147735134223341, 223432.02356977463356, 263079.25980740811495, 269802.90319351274132, 82809.311335606553425, 26.465684783131844524, 28.093506172516056560, 23.889164624518872504, 4.5338847857070388229, 3.0224469362694842535, 2.8040650913713359934, 1.9262578111480172682, 0.23020518115860909098 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 1.55, 1.55, 1.55, 1.55, 2.85, 2.85, 2.85, 2.85, 0.25, 0.25, 0.25, 0.25, 1.55, 1.55, 1.55, 1.55, 2.85, 2.85, 2.85, 2.85 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void i0ml0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // i0ml0_values() returns some values of the I0ML0 function. // // Discussion: // // The function is defined by: // // I0ML0(x) = I0(x) - L0(x) // // I0(x) is the modified Bessel function of the first kind of order 0, // L0(x) is the modified Struve function of order 0. // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.99875755515461749793E+00, 0.99011358230706643807E+00, 0.92419435310023947018E+00, 0.73624267134714273902E+00, 0.55582269181411744686E+00, 0.34215154434462160628E+00, 0.17087174888774706539E+00, 0.81081008709219208918E-01, 0.53449421441089580702E-01, 0.39950321008923244846E-01, 0.39330637437584921392E-01, 0.37582274342808670750E-01, 0.31912486554480390343E-01, 0.25506146883504738403E-01, 0.21244480317825292412E-01, 0.15925498348551684335E-01, 0.12737506927242585015E-01, 0.84897750814784916847E-02, 0.63668349178454469153E-02, 0.50932843163122551114E-02 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0156250000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, 4.0000000000E+00, 8.0000000000E+00, 12.0000000000E+00, 16.0000000000E+00, 16.2500000000E+00, 17.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00, 30.0000000000E+00, 40.0000000000E+00, 50.0000000000E+00, 75.0000000000E+00, 100.0000000000E+00, 125.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void i1ml1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // i1ml1_values() returns some values of the I1ML1 function. // // Discussion: // // The function is defined by: // // I1ML1(x) = I1(x) - L1(x) // // I1(x) is the modified Bessel function of the first kind of order 1, // L1(x) is the modified Struve function of order 1. // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.97575346155386267134E-03, 0.77609293280609272733E-02, 0.59302966404545373770E-01, 0.20395212276737365307E+00, 0.33839472293667639038E+00, 0.48787706726961324579E+00, 0.59018734196576517506E+00, 0.62604539530312149476E+00, 0.63209315274909764698E+00, 0.63410179313235359215E+00, 0.63417966797578128188E+00, 0.63439268632392089434E+00, 0.63501579073257770690E+00, 0.63559616677359459337E+00, 0.63591001826697110312E+00, 0.63622113181751073643E+00, 0.63636481702133606597E+00, 0.63650653499619902120E+00, 0.63655609126300261851E+00, 0.63657902087183929223E+00 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0156250000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, 4.0000000000E+00, 8.0000000000E+00, 12.0000000000E+00, 16.0000000000E+00, 16.2500000000E+00, 17.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00, 30.0000000000E+00, 40.0000000000E+00, 50.0000000000E+00, 75.0000000000E+00, 100.0000000000E+00, 125.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void i4_fall_values ( int &n_data, int &m, int &n, int &fmn ) //****************************************************************************80 // // Purpose: // // i4_fall_values() returns values of the integer falling factorial function. // // Discussion: // // The definition of the falling factorial function is // // (m)_n = (m)! / (m-n)! // = ( m ) * ( m - 1 ) * ( m - 2 ) * ( m - n + 1 ) // = Gamma ( m + 1 ) / Gamma ( m - n + 1 ) // // We assume 0 <= N <= M. // // In Mathematica, the function can be evaluated by: // // FactorialPower[m,n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 December 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &M, &N, the arguments of the function. // // Output, int &FMN, the value of the function. // { # define N_MAX 15 static int fmn_vec[N_MAX] = { 1, 5, 20, 60, 120, 120, 0, 1, 10, 4000, 90, 4896, 24, 912576, 0 }; static int m_vec[N_MAX] = { 5, 5, 5, 5, 5, 5, 5, 50, 10, 4000, 10, 18, 4, 98, 1 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 2, 3, 4, 3, 7 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; m = 0; n = 0; fmn = 0; } else { m = m_vec[n_data-1]; n = n_vec[n_data-1]; fmn = fmn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void i4_gpf_values ( int &n_data, int &n, int &gpf ) //****************************************************************************80 // // Purpose: // // i4_gpf_values() returns values of the greatest prime factor function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2022 // // Author: // // John Burkardt // // Input: // // int N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int N, a positive integer. // // int GPF, the greatest prime factor of N. // { # define N_MAX 86 static int gpf_vec[N_MAX] = { 1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 7, 3, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 7, 5, 17, 13, 53, 3, 11, 7, 19, 29, 59, 5, 61, 31, 7, 2, 13, 11, 67, 17, 23, 7, 71, 3, 73, 37, 5, 19, 11, 13, 79, 5, 3, 41, 83, 7, 17, 43 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; gpf = 0; } else { n = n_vec[n_data-1]; gpf = gpf_vec[n_data-1]; } return; #undef N_MAX } //****************************************************************************80 void i4_rise_values ( int &n_data, int &m, int &n, int &fmn ) //****************************************************************************80 // // Purpose: // // i4_rise_values() returns values of the integer rising factorial function. // // Discussion: // // The integer rising factorial function is sometimes symbolized by (m)_n. // // The definition is // // (m)_n = (m-1+n)! / (m-1)! // = ( m ) * ( m + 1 ) * ( m + 2 ) * ( m - 1 + n ) // = Gamma ( m + n ) / Gamma ( m ) // // We assume 0 <= N <= M. // // In Mathematica, the function can be evaluated by: // // Pochhammer[m,n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 December 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &M, &N, the arguments of the function. // // Output, int &FMN, the value of the function. // { # define N_MAX 15 static int fmn_vec[N_MAX] = { 1, 5, 30, 210, 1680, 15120, 151200, 1, 10, 4000, 110, 6840, 840, 970200, 5040 }; static int m_vec[N_MAX] = { 5, 5, 5, 5, 5, 5, 5, 50, 10, 4000, 10, 18, 4, 98, 1 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 0, 1, 1, 2, 3, 4, 3, 7 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; m = 0; n = 0; fmn = 0; } else { m = m_vec[n_data-1]; n = n_vec[n_data-1]; fmn = fmn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void int_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // int_values() returns some values of the "integer part" function. // // Discussion: // // INT(X) = returns the integer part of a real number. // // The result is returned as a real number. // // The result is computed by rounding the absolute value of the // input towards 0, and then restoring the sign. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2011 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output double FX, the value of the function. // { # define N_MAX 25 static double fx_vec[N_MAX] = { -2.00E+00, -1.00E+00, -1.00E+00, -1.00E+00, -1.00E+00, -1.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00 }; static double x_vec[N_MAX] = { -2.01E+00, -1.99E+00, -1.50E+00, -1.10E+00, -1.01E+00, -1.00E+00, -0.99E+00, -0.90E+00, -0.51E+00, -0.50E+00, -0.49E+00, -0.01E+00, 0.00E+00, 0.01E+00, 0.49E+00, 0.50E+00, 0.51E+00, 0.90E+00, 0.99E+00, 1.00E+00, 1.01E+00, 1.10E+00, 1.50E+00, 1.99E+00, 2.01E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void inverse_chi_square_pdf_values ( int &n_data, double &df, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // inverse_chi_square_pdf_values() returns values of the inverse Chi-Square PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &DF, the degrees of freedom. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double df_vec[N_MAX] = { 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 3.0, 3.0, 3.0, 3.0, 10.0, 10.0, 10.0 }; static double fx_vec[N_MAX] = { 0.08500366602520342, 0.3368973499542734, 0.3661245640481622, 1.026062482798735, 0.4518059816704532, 0.8953274901880941, 1.129514954176133, 1.119159362735118, 0.2419707245191433, 0.3032653298563167, 0.2419707245191433, 0.1516326649281584, 0.08065690817304778, 0.05492391118346530, 0.02166329508030457, 0.01100204146138436, 0.006457369034861447, 0.004162370481945731, 0.0007897534631674914, 0.00001584474249412852, 1.511920090468204E-06 }; static double x_vec[N_MAX] = { 0.10, 0.10, 0.20, 0.20, 0.40, 0.40, 0.40, 0.40, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 1.00, 2.00, 3.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; df = 0.0; x = 0.0; fx = 0.0; } else { df = df_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void inverse_gamma_pdf_values ( int &n_data, double &alpha, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // inverse_gamma_pdf_values() returns values of the inverse Gamma PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &ALPHA, &BETA, the parameters. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double alpha_vec[N_MAX] = { 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 3.00, 4.00, 5.00 }; static double beta_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 2.00, 3.00, 4.00, 5.00, 2.00, 2.00, 2.00, 2.00 }; static double fx_vec[N_MAX] = { 0.3032653298563167, 0.09735009788392561, 0.04702676249392300, 0.02757802820576861, 0.1839397205857212, 0.1673476201113224, 0.1353352832366127, 0.1026062482798735, 0.07606179541223586, 0.02535393180407862, 0.005634207067573026, 0.0009390345112621711 }; static double x_vec[N_MAX] = { 1.00, 2.00, 3.00, 4.00, 2.00, 2.00, 2.00, 2.00, 3.00, 3.00, 3.00, 3.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; alpha = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { alpha = alpha_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void is_prime_values ( int &n_data, int &n, bool &tf ) //****************************************************************************80 // // Purpose: // // is_prime_values() returns values of the is_prime() function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 December 2022 // // Author: // // John Burkardt // // Input: // // int n_data: The user sets N_DATA to 0 before the first call. // // Output: // // int n_data: On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int n: a positive integer. // // bool tf: true if n is a prime. // { # define N_MAX 22 static int n_vec[N_MAX] = { 1, 2, 12, 3, 91, 53, 437, 311, 1333, 719, 16483, 7919, 223609, 81799, 873599, 800573, 5693761, 7559173, 90166053, 69600977, 6110601, 145253029 }; static int tf_vec[N_MAX] = { false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true, false, true }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; tf = false; } else { n = n_vec[n_data-1]; tf = tf_vec[n_data-1]; } return; #undef N_MAX } //****************************************************************************80 void jacobi_cn_values ( int &n_data, double &u, double &a, double &k, double &m, double &fx ) //****************************************************************************80 // // Purpose: // // jacobi_cn_values() returns values of the Jacobi elliptic function CN(U,M). // // Discussion: // // In Mathematica, the function can be evaluated by: // // JacobiCN[ u, m ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2020 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &U the argument of the function. // // double &A, &K, &M, the parameters of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double m_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double fx_vec[N_MAX] = { 0.9950041652780258E+00, 0.9800665778412416E+00, 0.8775825618903727E+00, 0.5403023058681397E+00, -0.4161468365471424E+00, 0.9950124626090582E+00, 0.9801976276784098E+00, 0.8822663948904403E+00, 0.5959765676721407E+00, -0.1031836155277618E+00, 0.9950207489532265E+00, 0.9803279976447253E+00, 0.8868188839700739E+00, 0.6480542736638854E+00, 0.2658022288340797E+00, 0.3661899347368653E-01, 0.9803279976447253E+00, 0.8868188839700739E+00, 0.6480542736638854E+00, 0.2658022288340797E+00 }; static double u_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 4.0E+00, -0.2E+00, -0.5E+00, -1.0E+00, -2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; k = 0.0; m = 0.0; u = 0.0; fx = 0.0; } else { m = m_vec[n_data-1]; k = sqrt ( m ); a = asin ( k ); u = u_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jacobi_dn_values ( int &n_data, double &u, double &a, double &k, double &m, double &fx ) //****************************************************************************80 // // Purpose: // // jacobi_dn_values() returns values of the Jacobi elliptic function DN(U,M). // // Discussion: // // In Mathematica, the function can be evaluated by: // // JacobiDN[ u, m ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2020 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &U the argument of the function. // // double &A, &K, &M, the parameters of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double m_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.9975093485144243E+00, 0.9901483195224800E+00, 0.9429724257773857E+00, 0.8231610016315963E+00, 0.7108610477840873E+00, 0.9950207489532265E+00, 0.9803279976447253E+00, 0.8868188839700739E+00, 0.6480542736638854E+00, 0.2658022288340797E+00, 0.3661899347368653E-01, 0.9803279976447253E+00, 0.8868188839700739E+00, 0.6480542736638854E+00, 0.2658022288340797E+00 }; static double u_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 4.0E+00, -0.2E+00, -0.5E+00, -1.0E+00, -2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; k = 0.0; m = 0.0; u = 0.0; fx = 0.0; } else { m = m_vec[n_data-1]; k = sqrt ( m ); a = asin ( k ); u = u_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jacobi_poly_values ( int &n_data, int &n, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // jacobi_poly_values() returns some values of the Jacobi polynomial. // // Discussion: // // In Mathematica, the function can be evaluated by: // // JacobiP[ n, a, b, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 May 2018 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the degree of the polynomial. // // Output, double &A, &B, parameters of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 26 static double a_vec[N_MAX] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static double b_vec[N_MAX] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.2500000000000000E+00, -0.3750000000000000E+00, -0.4843750000000000E+00, -0.1328125000000000E+00, 0.2753906250000000E+00, -0.1640625000000000E+00, -0.1174804687500000E+01, -0.2361328125000000E+01, -0.2616210937500000E+01, 0.1171875000000000E+00, 0.4218750000000000E+00, 0.5048828125000000E+00, 0.5097656250000000E+00, 0.4306640625000000E+00, -0.6000000000000000E+01, 0.3862000000000000E-01, 0.8118400000000000E+00, 0.3666000000000000E-01, -0.4851200000000000E+00, -0.3125000000000000E+00, 0.1891200000000000E+00, 0.4023400000000000E+00, 0.1216000000000000E-01, -0.4396200000000000E+00, 0.1000000000000000E+01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, -1.0E+00, -0.8E+00, -0.6E+00, -0.4E+00, -0.2E+00, 0.0E+00, 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jacobi_sn_values ( int &n_data, double &u, double &a, double &k, double &m, double &fx ) //****************************************************************************80 // // Purpose: // // jacobi_sn_values() returns values of the Jacobi elliptic function SN(U,M). // // Discussion: // // In Mathematica, the function can be evaluated by: // // JacobiSN[ u, m ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2020 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &U the argument of the function. // // double &A, &K, &M, the parameters of the function. // // double &FX, the value of the function. // { # define N_MAX 20 static double m_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double fx_vec[N_MAX] = { 0.9983341664682815E-01, 0.1986693307950612E+00, 0.4794255386042030E+00, 0.8414709848078965E+00, 0.9092974268256817E+00, 0.9975068547462484E-01, 0.1980217429819704E+00, 0.4707504736556573E+00, 0.8030018248956439E+00, 0.9946623253580177E+00, 0.9966799462495582E-01, 0.1973753202249040E+00, 0.4621171572600098E+00, 0.7615941559557649E+00, 0.9640275800758169E+00, 0.9993292997390670E+00, -0.1973753202249040E+00, -0.4621171572600098E+00, -0.7615941559557649E+00, -0.9640275800758169E+00 }; static double u_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 0.1E+00, 0.2E+00, 0.5E+00, 1.0E+00, 2.0E+00, 4.0E+00, -0.2E+00, -0.5E+00, -1.0E+00, -2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; k = 0.0; m = 0.0; u = 0.0; fx = 0.0; } else { m = m_vec[n_data-1]; k = sqrt ( m ); a = asin ( k ); u = u_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jed_ce_values ( int &n_data, double &jed, int &y, int &m, int &d, double &f ) //****************************************************************************80 // // Purpose: // // jed_ce_values() returns the Common Era dates for Julian Ephemeris Dates. // // Discussion: // // The JED (Julian Ephemeris Date) is a calendrical system which counts days, // starting from noon on 1 January 4713 BCE. // // The CE or Common Era is the day, month and year under the // hybrid Julian/Gregorian Calendar, with a transition from Julian // to Gregorian. The day after 04 October 1582 was 15 October 1582. // // The year before 1 AD or CE is 1 BC or BCE. In this data set, // years BC/BCE are indicated by a negative year value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 May 2006 // // Author: // // John Burkardt // // Reference: // // Edward Reingold and Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &JED, the Julian Ephemeris Date. // // Output, int &Y, &M, &D, the Common Era date. // // Output, double &F, the fractional part of the day. // { # define N_MAX 51 static int d_vec[N_MAX] = { 1, 2, 26, 8, 6, 18, 8, 9, 1, 26, 26, 1, 1, 29, 31, 1, 3, 3, 29, 24, 24, 29, 3, 11, 12, 24, 19, 15, 16, 16, 21, 17, 9, 4, 15, 4, 13, 14, 18, 22, 21, 24, 17, 31, 1, 6, 25, 1, 9, 23, 1 }; static double f_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.50, 0.50, 0.00, 0.50, 0.50, 0.00, 0.00, 0.00, 0.00, 0.00, 0.81, 0.00, 0.00, 0.00, 0.00, 0.33, 0.00, 0.50 }; static double jed_vec[N_MAX] = { 0.00, 1.00, 259261.00, 347998.50, 584282.50, 588465.75, 758325.50, 1438178.50, 1446389.50, 1448637.50, 1448637.50, 1607708.50, 1607738.50, 1713262.50, 1721422.50, 1721423.50, 1721425.50, 1721425.50, 1724220.50, 1741959.50, 1749994.50, 1825029.50, 1862836.50, 1922867.50, 1936747.50, 1940351.50, 1948320.50, 1948438.50, 1948439.50, 1952062.50, 1952067.50, 2114872.50, 2289425.50, 2299160.00, 2299161.00, 2333269.50, 2361221.00, 2361222.00, 2372547.50, 2375839.50, 2394646.50, 2394710.50, 2400000.50, 2415020.31, 2440587.50, 2444244.50, 2450138.50, 2451544.50, 2453073.83, 2456284.50, 2913943.00 }; static int m_vec[N_MAX] = { 1, 1, 10, 10, 9, 2, 3, 7, 1, 2, 2, 9, 10, 8, 12, 1, 1, 1, 8, 3, 3, 8, 3, 7, 7, 5, 3, 7, 7, 6, 6, 3, 2, 10, 10, 3, 9, 9, 9, 9, 3, 5, 11, 12, 1, 1, 2, 1, 3, 12, 1 }; static int y_vec[N_MAX] = { -4713, -4713, -4004, -3761, -3114, -3102, -2637, -776, -753, -747, -747, -312, -312, -23, -1, 1, 1, 1, 8, 57, 79, 284, 388, 552, 590, 600, 622, 622, 622, 632, 632, 1078, 1556, 1582, 1582, 1676, 1752, 1752, 1783, 1792, 1844, 1844, 1858, 1899, 1970, 1980, 1996, 2000, 2004, 2012, 3266 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; jed = 0.0; y = 0; m = 0; d = 0; f = 0.0; } else { jed = jed_vec[n_data-1]; y = y_vec[n_data-1]; m = m_vec[n_data-1]; d = d_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jed_mjd_values ( int &n_data, double &jed, double &mjd ) //****************************************************************************80 // // Purpose: // // jed_mjd_values() returns the MJD for Julian Ephemeris Dates. // // Discussion: // // The JED (Julian Ephemeris Date) is a calendrical system which counts days, // starting from noon on 1 January 4713 BCE. // // The MJD (Modified Julian Day) counts days starting from midnight, // 17 November 1858. This essentially subtracts 2400000.5 days from the JED. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 June 2004 // // Author: // // John Burkardt // // Reference: // // Edward Reingold and Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &JED, the Julian Ephemeris Date. // // Output, double &MJD, the Modified Julian Ephemeris Date. // { # define N_MAX 33 static double jed_vec[N_MAX] = { 1507231.5E+00, 1660037.5E+00, 1746893.5E+00, 1770641.5E+00, 1892731.5E+00, 1931579.5E+00, 1974851.5E+00, 2091164.5E+00, 2121509.5E+00, 2155779.5E+00, 2174029.5E+00, 2191584.5E+00, 2195261.5E+00, 2229274.5E+00, 2245580.5E+00, 2266100.5E+00, 2288542.5E+00, 2290901.5E+00, 2323140.5E+00, 2334848.5E+00, 2348020.5E+00, 2366978.5E+00, 2385648.5E+00, 2392825.5E+00, 2416223.5E+00, 2425848.5E+00, 2430266.5E+00, 2430833.5E+00, 2431004.5E+00, 2448698.5E+00, 2450138.5E+00, 2465737.5E+00, 2486076.5E+00 }; static double mjd_vec[N_MAX] = { -892769.0E+00, -739963.0E+00, -653107.0E+00, -629359.0E+00, -507269.0E+00, -468421.0E+00, -425149.0E+00, -308836.0E+00, -278491.0E+00, -244221.0E+00, -225971.0E+00, -208416.0E+00, -204739.0E+00, -170726.0E+00, -154420.0E+00, -133900.0E+00, -111458.0E+00, -109099.0E+00, -76860.0E+00, -65152.0E+00, -51980.0E+00, -33022.0E+00, -14352.0E+00, -7175.0E+00, 16223.0E+00, 25848.0E+00, 30266.0E+00, 30833.0E+00, 31004.0E+00, 48698.0E+00, 50138.0E+00, 65737.0E+00, 86076.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; jed = 0.0; mjd = 0.0; } else { jed = jed_vec[n_data-1]; mjd = mjd_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jed_rd_values ( int &n_data, double &jed, double &rd ) //****************************************************************************80 // // Purpose: // // jed_rd_values() returns the RD for Julian Ephemeris Dates. // // Discussion: // // The JED (Julian Ephemeris Date) is a calendrical system which counts days, // starting from noon on 1 January 4713 BCE. // // The RD is the Reingold Dershowitz Date, which counts days from // midnight, 1 January year 1 in the Gregorian calendar. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 June 2004 // // Author: // // John Burkardt // // Reference: // // Edward Reingold and Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &JED, the Julian Ephemeris Date. // // Output, double &RD, the Reingold Dershowitz Date. // { # define N_MAX 33 static double jed_vec[N_MAX] = { 1507231.5E+00, 1660037.5E+00, 1746893.5E+00, 1770641.5E+00, 1892731.5E+00, 1931579.5E+00, 1974851.5E+00, 2091164.5E+00, 2121509.5E+00, 2155779.5E+00, 2174029.5E+00, 2191584.5E+00, 2195261.5E+00, 2229274.5E+00, 2245580.5E+00, 2266100.5E+00, 2288542.5E+00, 2290901.5E+00, 2323140.5E+00, 2334848.5E+00, 2348020.5E+00, 2366978.5E+00, 2385648.5E+00, 2392825.5E+00, 2416223.5E+00, 2425848.5E+00, 2430266.5E+00, 2430833.5E+00, 2431004.5E+00, 2448698.5E+00, 2450138.5E+00, 2465737.5E+00, 2486076.5E+00 }; static double rd_vec[N_MAX] = { -214193.0E+00, -61387.0E+00, 25469.0E+00, 49217.0E+00, 171307.0E+00, 210155.0E+00, 253427.0E+00, 369740.0E+00, 400085.0E+00, 434355.0E+00, 452605.0E+00, 470160.0E+00, 473837.0E+00, 507850.0E+00, 524156.0E+00, 544676.0E+00, 567118.0E+00, 569477.0E+00, 601716.0E+00, 613424.0E+00, 626596.0E+00, 645554.0E+00, 664224.0E+00, 671401.0E+00, 694799.0E+00, 704424.0E+00, 708842.0E+00, 709409.0E+00, 709580.0E+00, 727274.0E+00, 728714.0E+00, 744313.0E+00, 764652.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; jed = 0.0; rd = 0.0; } else { jed = jed_vec[n_data-1]; rd = rd_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void jed_weekday_values ( int &n_data, double &jed, int &weekday ) //****************************************************************************80 // // Purpose: // // jed_weekday_values() returns the day of the week for Julian Ephemeris Dates. // // Discussion: // // The JED (Julian Ephemeris Date) is a calendrical system which counts days, // starting from noon on 1 January 4713 BCE. // // Weekdays are numbered as follows: // // 1 Sunday // 2 Monday // 3 Tuesday // 4 Wednesday // 5 Thursday // 6 Friday // 7 Saturday // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2004 // // Author: // // John Burkardt // // Reference: // // Edward Reingold and Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &JED, the Julian Ephemeris Date. // // Output, int &WEEKDAY, the day of the week. // { # define N_MAX 33 static double jed_vec[N_MAX] = { 1507231.5E+00, 1660037.5E+00, 1746893.5E+00, 1770641.5E+00, 1892731.5E+00, 1931579.5E+00, 1974851.5E+00, 2091164.5E+00, 2121509.5E+00, 2155779.5E+00, 2174029.5E+00, 2191584.5E+00, 2195261.5E+00, 2229274.5E+00, 2245580.5E+00, 2266100.5E+00, 2288542.5E+00, 2290901.5E+00, 2323140.5E+00, 2334848.5E+00, 2348020.5E+00, 2366978.5E+00, 2385648.5E+00, 2392825.5E+00, 2416223.5E+00, 2425848.5E+00, 2430266.5E+00, 2430833.5E+00, 2431004.5E+00, 2448698.5E+00, 2450138.5E+00, 2465737.5E+00, 2486076.5E+00 }; static int weekday_vec[N_MAX] = { 1, 4, 4, 1, 4, 2, 7, 1, 1, 6, 7, 6, 1, 1, 4, 7, 7, 7, 4, 1, 6, 1, 2, 4, 1, 1, 2, 2, 5, 3, 1, 4, 1 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; jed = 0.0; weekday = 0; } else { jed = jed_vec[n_data-1]; weekday = weekday_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void kei0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // kei0_values() returns some values of the Kelvin KEI function of order NU = 0. // // Discussion: // // The function is defined by: // // KER(NU,X) + i * KEI(NU,X) = exp(-nu*Pi*I/2) * K(NU,X*exp(PI*I/4)) // // where K(NU,X) is the K Bessel function. // // In Mathematica, KEI(NU,X) can be defined by: // // Im [ Exp [ -NU * Pi * I / 2 ] * BesselK [ NU, X * Exp[ Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 0.0000000000000000, -0.6715816950943676, -0.4949946365187199, -0.3313955623385585, -0.2024000677647043, -0.1106960991556749, -0.05112188404598678, -0.01600256851827124, 0.002198399294972520, 0.009720918540151990, 0.01118758650986964 }; static double x_vec[N_MAX] = { 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void kei1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // kei1_values() returns some values of the Kelvin KEI function of order NU = 1. // // Discussion: // // The function is defined by: // // KER(NU,X) + i * KEI(NU,X) = exp(-nu*Pi*I/2) * K(NU,X*exp(PI*I/4)) // // where K(NU,X) is the K Bessel function. // // In Mathematica, KEI(NU,X) can be defined by: // // Im [ Exp [ -NU * Pi * I / 2 ] * BesselK [ NU, X * Exp[ Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { -1.051182085412523, -0.2419959664297382, 0.001008680985009855, 0.08004939780706674, 0.09331378813535750, 0.08027022252392219, 0.05937625647622691, 0.03916601076917133, 0.02300216024690250, 0.01157775439325247 }; static double x_vec[N_MAX] = { 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ker0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ker0_values() returns some values of the Kelvin KER function of order NU = 0. // // Discussion: // // The function is defined by: // // KER(NU,X) + i * KEI(NU,X) = exp(-nu*Pi*I/2) * K(NU,X*exp(PI*I/4)) // // where K(NU,X) is the K Bessel function. // // In Mathematica, KER(NU,X) can be defined by: // // Re [ Exp [ -NU * Pi * I / 2 ] * BesselK [ NU, X * Exp[ Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { 0.8559058721186342, 0.2867062087283160, 0.05293491548771044, -0.04166451399150953, -0.06968797258904534, -0.06702923330379870, -0.05263927724224119, -0.03617884789954761, -0.02199987504667382, -0.01151172719949066 }; static double x_vec[N_MAX] = { 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void ker1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // ker1_values() returns some values of the Kelvin KER function of order NU = 1. // // Discussion: // // The function is defined by: // // KER(NU,X) + i * KEI(NU,X) = exp(-nu*Pi*I/2) * K(NU,X*exp(PI*I/4)) // // where K(NU,X) is the K Bessel function. // // In Mathematica, KER(NU,X) can be defined by: // // Re [ Exp [ -NU * Pi * I / 2 ] * BesselK [ NU, X * Exp[ Pi * I / 4 ] ] ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2006 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { -1.522403406532090, -0.7403222768419827, -0.4170442851662574, -0.2308059295181230, -0.1172561358598705, -0.04989830778751491, -0.01272324936181659, 0.005351296460277448, 0.01209090413515866, 0.01273739048421857 }; static double x_vec[N_MAX] = { 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void laguerre_associated_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // laguerre_associated_values() returns some values of the associated Laguerre polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // LaguerreL[n,m,x] // // The associated Laguerre polynomials may be generalized so that the // parameter M is allowed to take on arbitrary nonint *values. // The resulting function is known as the generalized Laguerre function. // // The polynomials satisfy the differential equation: // // X * Y'' + (M+1-X) * Y' + (N-M) * Y = 0; // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, int &M, the parameter. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.1625000000000000E+01, 0.1479166666666667E+01, 0.1148437500000000E+01, 0.4586666666666667E+00, 0.2878666666666667E+01, 0.8098666666666667E+01, 0.1711866666666667E+02, 0.1045328776041667E+02, 0.1329019368489583E+02, 0.5622453647189670E+02, 0.7484729341779436E+02, 0.3238912982762806E+03, 0.4426100000097533E+03, 0.1936876572288250E+04 }; static int m_vec[N_MAX] = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 2, 2, 3, 3, 4, 4, 5 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 1, 2, 3, 4, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10 }; static double x_vec[N_MAX] = { 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void laguerre_general_values ( int &n_data, int &n, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // laguerre_general_values() returns some values of the generalized Laguerre function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // LaguerreL[n,a,x] // // The functions satisfy the following differential equation: // // X * Y'' + (ALPHA+1-X) * Y' + N * Y = 0; // // Function values can be generated by the recursion: // // L(0,ALPHA)(X) = 1 // L(1,ALPHA)(X) = 1+ALPHA-X // // L(N,ALPHA)(X) = ( (2*N-1+ALPHA-X) * L(N-1,ALPHA)(X) // - (N-1+ALPHA) * L(N-2,ALPHA)(X) ) / N // // The parameter ALPHA is required to be greater than -1. // // For ALPHA = 0, the generalized Laguerre function L(N,ALPHA)(X) // is equal to the Laguerre polynomial L(N)(X). // // For ALPHA integral, the generalized Laguerre function // L(N,ALPHA)(X) equals the associated Laguerre polynomial L(N,ALPHA)(X). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &A, the parameter. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double a_vec[N_MAX] = { 0.00E+00, 0.25E+00, 0.50E+00, 0.75E+00, 1.50E+00, 2.50E+00, 5.00E+00, 1.20E+00, 1.20E+00, 1.20E+00, 1.20E+00, 1.20E+00, 1.20E+00, 5.20E+00, 5.20E+00, 5.20E+00, 5.20E+00, 5.20E+00, 5.20E+00, 5.20E+00 }; static double fx_vec[N_MAX] = { 0.3726399739583333E-01, 0.3494791666666667E+00, 0.8710042317708333E+00, 0.1672395833333333E+01, 0.6657625325520833E+01, 0.2395726725260417E+02, 0.2031344319661458E+03, 0.1284193996800000E+02, 0.5359924801587302E+01, 0.9204589064126984E+00, -0.1341585114857143E+01, -0.2119726307555556E+01, -0.1959193658349206E+01, 0.1000000000000000E+01, 0.5450000000000000E+01, 0.1720125000000000E+02, 0.4110393750000000E+02, 0.8239745859375000E+02, 0.1460179186171875E+03, 0.2359204608298828E+03 }; static int n_vec[N_MAX] = { 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 0, 1, 2, 3, 4, 5, 6 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 1.00E+00, 0.75E+00, 0.75E+00, 0.75E+00, 0.75E+00, 0.75E+00, 0.75E+00, 0.75E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; a = 0.0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void laguerre_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // laguerre_polynomial_values() returns some values of the Laguerre polynomial. // // Discussion: // // In Mathematica, the function can be evaluated by: // // LaguerreL[n,x] // // Differential equation: // // X * Y'' + (1-X) * Y' + N * Y = 0; // // First terms: // // 1 // -X + 1 // ( X^2 - 4 X + 2 ) / 2 // ( -X^3 + 9 X^2 - 18 X + 6 ) / 6 // ( X^4 - 16 X^3 + 72 X^2 - 96 X + 24 ) / 24 // ( -X^5 + 25 X^4 - 200 X^3 + 600 X^2 - 600 x + 120 ) / 120 // ( X^6 - 36 X^5 + 450 X^4 - 2400 X^3 + 5400 X^2 - 4320 X + 720 ) / 720 // ( -X^7 + 49 X^6 - 882 X^5 + 7350 X^4 - 29400 X^3 // + 52920 X^2 - 35280 X + 5040 ) / 5040 // // Recursion: // // L(0)(X) = 1, // L(1)(X) = 1-X, // N * L(N)(X) = (2*N-1-X) * L(N-1)(X) - (N-1) * L(N-2)(X) // // Orthogonality: // // Integral ( 0 <= X < +oo ) exp ( - X ) * L(N)(X) * L(M)(X) dX // = 0 if N /= M // = 1 if N == M // // Special values: // // L(N)(0) = 1. // // Relations: // // L(N)(X) = (-1)^N / N! * exp ( x ) * (d/dx)^n ( exp ( - x ) * x^n ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the polynomial. // // Output, double &X, the point where the polynomial is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 17 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.0000000000000000E+00, -0.5000000000000000E+00, -0.6666666666666667E+00, -0.6250000000000000E+00, -0.4666666666666667E+00, -0.2569444444444444E+00, -0.4047619047619048E-01, 0.1539930555555556E+00, 0.3097442680776014E+00, 0.4189459325396825E+00, 0.4801341790925124E+00, 0.4962122235082305E+00, -0.4455729166666667E+00, 0.8500000000000000E+00, -0.3166666666666667E+01, 0.3433333333333333E+02 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 0.5E+00, 3.0E+00, 5.0E+00, 1.0E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void lambert_w_values ( int &n_data, double &x, double &fx, int &b ) //****************************************************************************80 // // Purpose: // // lambert_w_values() returns some values of the Lambert W function. // // Discussion: // // The function W(X) is defined implicitly by: // // W(X) * e^W(X) = X // // The function is defined for -1/e <= x. // // There are two branches, joining at -1/e = x. // The lower branch extends from -1/e <= x < 0 // The upper branch extends from -1/e <= x // // The function is also known as the "Omega" function. // // In Mathematica, the function can be evaluated by: // W = ProductLog [ X ] // // In MATLAB, // W = lambertw ( b, x ) // where b = -1 for lower branch, 0 for upper branch. // // In Python, // W = scipy.special.lambertw ( x, b ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2023 // // Author: // // John Burkardt // // Reference: // // Brian Hayes, // "Why W?", // The American Scientist, // Volume 93, March-April 2005, pages 104-108. // // Eric Weisstein, // "Lambert's W-Function", // CRC Concise Encyclopedia of Mathematics, // CRC Press, 1998. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &n_data: the user sets N_DATA to 0 before the first call. // // Output: // // int &n_data: on each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // double &x: the argument of the function. // // double &fx: the value of the function. // // int b: -1 (lower branch) or 0 (upper branch). // { # define N_MAX 41 static int branch_vec[N_MAX] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static double fx_vec[N_MAX] = { -4.889720169867429, -3.994308347002122, -3.439216483280204, -3.022313245324657, -2.678346990016661, -2.376421342062887, -2.097349210703492, -1.824388309032984, -1.531811608389612, -1.000000000000000, -0.608341284733432, -0.471671909743522, -0.374493134019498, -0.297083462446424, -0.231960952986534, -0.175356500529299, -0.125066982982524, -0.079678160511477, -0.038221241746799, 0.0000000000000000E+00, 0.3517337112491958E+00, 0.5671432904097839E+00, 0.7258613577662263E+00, 0.8526055020137255E+00, 0.9585863567287029E+00, 0.1000000000000000E+01, 0.1049908894964040E+01, 0.1130289326974136E+01, 0.1202167873197043E+01, 0.1267237814307435E+01, 0.1326724665242200E+01, 0.1381545379445041E+01, 0.1432404775898300E+01, 0.1479856830173851E+01, 0.1524345204984144E+01, 0.1566230953782388E+01, 0.1605811996320178E+01, 0.1745528002740699E+01, 0.3385630140290050E+01, 0.5249602852401596E+01, 0.1138335808614005E+02 }; static double x_vec[N_MAX] = { -0.036787944117144, -0.073575888234288, -0.110363832351433, -0.147151776468577, -0.183939720585721, -0.220727664702865, -0.257515608820010, -0.294303552937154, -0.331091497054298, -0.367879441171442, -0.331091497054298, -0.294303552937154, -0.257515608820010, -0.220727664702865, -0.183939720585721, -0.147151776468577, -0.110363832351433, -0.073575888234288, -0.036787944117144, 0.0000000000000000E+00, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.2718281828459045E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01, 0.4500000000000000E+01, 0.5000000000000000E+01, 0.5500000000000000E+01, 0.6000000000000000E+01, 0.6500000000000000E+01, 0.7000000000000000E+01, 0.7500000000000000E+01, 0.8000000000000000E+01, 0.1000000000000000E+02, 0.1000000000000000E+03, 0.1000000000000000E+04, 0.1000000000000000E+07 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; b = 0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; b = branch_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void laplace_cdf_values ( int &n_data, double &mu, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // laplace_cdf_values() returns some values of the Laplace CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = LaplaceDistribution [ mu, beta ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &BETA, the shape parameter. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double beta_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.8160602794142788E+00, 0.9323323583816937E+00, 0.9751064658160680E+00, 0.6967346701436833E+00, 0.6417343447131054E+00, 0.6105996084642976E+00, 0.5906346234610091E+00, 0.5000000000000000E+00, 0.3032653298563167E+00, 0.1839397205857212E+00, 0.1115650800742149E+00 }; static double mu_vec[N_MAX] = { 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.0000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01 }; static double x_vec[N_MAX] = { 0.0000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_associated_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_associated_values() returns values of associated Legendre functions. // // Discussion: // // The function considered is the associated Legendre polynomial P^M_N(X). // // In Mathematica, the function can be evaluated by: // // LegendreP [ n, m, x ] // // Differential equation: // // (1-X*X) * Y'' - 2 * X * Y + ( N (N+1) - (M*M/(1-X*X)) * Y = 0; // // First terms: // // M = 0 ( = Legendre polynomials of first kind P(N)(X) ) // // P00 = 1 // P10 = 1 X // P20 = ( 3 X^2 - 1)/2 // P30 = ( 5 X^3 - 3 X)/2 // P40 = ( 35 X^4 - 30 X^2 + 3)/8 // P50 = ( 63 X^5 - 70 X^3 + 15 X)/8 // P60 = (231 X^6 - 315 X^4 + 105 X^2 - 5)/16 // P70 = (429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 // // M = 1 // // P01 = 0 // P11 = 1 * SQRT(1-X*X) // P21 = 3 * SQRT(1-X*X) * X // P31 = 1.5 * SQRT(1-X*X) * (5*X*X-1) // P41 = 2.5 * SQRT(1-X*X) * (7*X*X*X-3*X) // // M = 2 // // P02 = 0 // P12 = 0 // P22 = 3 * (1-X*X) // P32 = 15 * (1-X*X) * X // P42 = 7.5 * (1-X*X) * (7*X*X-1) // // M = 3 // // P03 = 0 // P13 = 0 // P23 = 0 // P33 = 15 * (1-X*X)^1.5 // P43 = 105 * (1-X*X)^1.5 * X // // M = 4 // // P04 = 0 // P14 = 0 // P24 = 0 // P34 = 0 // P44 = 105 * (1-X*X)^2 // // Recursion: // // if N < M: // P(N,M) = 0; // if N = M: // P(N,M) = (2*M-1)!! * (1-X*X)^(M/2) where N!! means the product of // all the odd integers less than or equal to N. // if N = M+1: // P(N,M) = X*(2*M+1)*P(M,M) // if M+1 < N: // P(N,M) = ( X*(2*N-1)*P(N-1,M) - (N+M-1)*P(N-2,M) )/(N-M) // // Restrictions: // // -1 <= X <= 1 // 0 <= M <= N // // Special values: // // P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre // polynomial of the first kind equals the Legendre polynomial of the // first kind. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, -0.5000000000000000E+00, 0.0000000000000000E+00, 0.3750000000000000E+00, 0.0000000000000000E+00, -0.8660254037844386E+00, -0.1299038105676658E+01, -0.3247595264191645E+00, 0.1353164693413185E+01, -0.2800000000000000E+00, 0.1175755076535925E+01, 0.2880000000000000E+01, -0.1410906091843111E+02, -0.3955078125000000E+01, -0.9997558593750000E+01, 0.8265311444100484E+02, 0.2024442836815152E+02, -0.4237997531890869E+03, 0.1638320624828339E+04, -0.2025687389227225E+05 }; static int m_vec[N_MAX] = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 2, 2, 3, 3, 4, 4, 5 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 1, 2, 3, 4, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10 }; static double x_vec[N_MAX] = { 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_associated_normalized_sphere_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_associated_normalized_sphere_values(): normalized associated Legendre. // // Discussion: // // The function considered is the associated Legendre polynomial P^M_N(X). // // In Mathematica, the function can be evaluated by: // // LegendreP [ n, m, x ] // // The function is normalized for the sphere by dividing by // // sqrt ( 4 * pi * ( n + m )! / ( 2 * n + 1 ) / ( n - m )! ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.2820947917738781, 0.2443012559514600, -0.2992067103010745, -0.07884789131313000, -0.3345232717786446, 0.2897056515173922, -0.3265292910163510, -0.06997056236064664, 0.3832445536624809, -0.2709948227475519, -0.2446290772414100, 0.2560660384200185, 0.1881693403754876, -0.4064922341213279, 0.2489246395003027, 0.08405804426339821, 0.3293793022891428, -0.1588847984307093, -0.2808712959945307, 0.4127948151484925, -0.2260970318780046 }; static int m_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5 }; static int n_vec[N_MAX] = { 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_associated_normalized_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_associated_normalized_values(): normalized associated Legendre. // // Discussion: // // The function considered is the associated Legendre polynomial P^M_N(X). // // In Mathematica, the function can be evaluated by: // // LegendreP [ n, m, x ] // // The function is normalized by dividing by // // sqrt ( 2 * ( n + m )! / ( 2 * n + 1 ) / ( n - m )! ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.7071067811865475E+00, 0.6123724356957945E+00, -0.7500000000000000E+00, -0.1976423537605237E+00, -0.8385254915624211E+00, 0.7261843774138907E+00, -0.8184875533567997E+00, -0.1753901900050285E+00, 0.9606516343087123E+00, -0.6792832849776299E+00, -0.6131941618102092E+00, 0.6418623720763665E+00, 0.4716705890038619E+00, -0.1018924927466445E+01, 0.6239615396237876E+00, 0.2107022704608181E+00, 0.8256314721961969E+00, -0.3982651281554632E+00, -0.7040399320721435E+00, 0.1034723155272289E+01, -0.5667412129155530E+00 }; static int m_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5 }; static int n_vec[N_MAX] = { 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_function_q_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_function_q_values() returns values of the Legendre Q function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // LegendreQ[n,x] // // Differential equation: // // (1-X*X) Y'' - 2 X Y' + N (N+1) = 0; // // First terms: // // Q(0)(X) = 0.5 * log((1+X)/(1-X)) // Q(1)(X) = Q(0)(X)*X - 1 // Q(2)(X) = Q(0)(X)*(3*X*X-1)/4 - 1.5*X // Q(3)(X) = Q(0)(X)*(5*X*X*X-3*X)/4 - 2.5*X^2 + 2/3 // Q(4)(X) = Q(0)(X)*(35*X^4-30*X^2+3)/16 - 35/8 * X^3 + 55/24 * X // Q(5)(X) = Q(0)(X)*(63*X^5-70*X^3+15*X)/16 - 63/8*X^4 + 49/8*X^2 - 8/15 // // Recursion: // // Q(0) = 0.5 * log ( (1+X) / (1-X) ) // Q(1) = 0.5 * X * log ( (1+X) / (1-X) ) - 1.0 // // Q(N) = ( (2*N-1) * X * Q(N-1) - (N-1) * Q(N-2) ) / N // // Restrictions: // // -1 < X < 1 // // Special values: // // Note that the Legendre function Q(N)(X) is equal to the // associated Legendre function of the second kind, // Q(N,M)(X) with M = 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.2554128118829953E+00, -0.9361467970292512E+00, -0.4787614548274669E+00, 0.4246139251747229E+00, 0.5448396833845414E+00, -0.9451328261673470E-01, -0.4973516573531213E+00, -0.1499018843853194E+00, 0.3649161918783626E+00, 0.3055676545072885E+00, -0.1832799367995643E+00, 0.6666666666666667E+00, 0.6268672028763330E+00, 0.5099015515315237E+00, 0.3232754180589764E+00, 0.8026113738148187E-01, -0.1986547714794823E+00, -0.4828663183349136E+00, -0.7252886849144386E+00, -0.8454443502398846E+00, -0.6627096245052618E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_normalized_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_normalized_polynomial_values(): the normalized Legendre polynomials. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 March 2016 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.7071067811865475, 0.3061862178478972, -0.642337649721702, -0.6284815141846855, 0.3345637065282053, 0.7967179601799685, 0.06189376866246124, -0.766588850921089, -0.4444760242953344, 0.5450094674858101, 0.7167706229835538, 0.0000000000000000, -0.2759472322745781, -0.5238320341483518, -0.7155919752205163, -0.823164625090267, -0.8184875533567997, -0.6734983296193094, -0.360134523476992, 0.1496662954709581, 0.8839665576253438, 1.870828693386971 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_polynomial_values() returns values of the Legendre polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // LegendreP [ n, x ] // // Differential equation: // // (1-X*X) * P(N)(X)'' - 2 * X * P(N)(X)' + N * (N+1) = 0; // // First terms: // // P( 0)(X) = 1 // P( 1)(X) = 1 X // P( 2)(X) = ( 3 X^2 - 1)/2 // P( 3)(X) = ( 5 X^3 - 3 X)/2 // P( 4)(X) = ( 35 X^4 - 30 X^2 + 3)/8 // P( 5)(X) = ( 63 X^5 - 70 X^3 + 15 X)/8 // P( 6)(X) = ( 231 X^6 - 315 X^4 + 105 X^2 - 5)/16 // P( 7)(X) = ( 429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 // P( 8)(X) = ( 6435 X^8 - 12012 X^6 + 6930 X^4 - 1260 X^2 + 35)/128 // P( 9)(X) = (12155 X^9 - 25740 X^7 + 18018 X^5 - 4620 X^3 + 315 X)/128 // P(10)(X) = (46189 X^10-109395 X^8 + 90090 X^6 - 30030 X^4 + 3465 X^2 // -63 ) /256 // // Recursion: // // P(0)(X) = 1 // P(1)(X) = X // P(N)(X) = ( (2*N-1)*X*P(N-1)(X)-(N-1)*P(N-2)(X) ) / N // // P'(0)(X) = 0; // P'(1)(X) = 1 // P'(N)(X) = ( (2*N-1)*(P(N-1)(X)+X*P'(N-1)(X)-(N-1)*P'(N-2)(X) ) / N // // Formula: // // P(N)(X) = (1/2**N) * sum ( 0 <= M <= N/2 ) C(N,M) C(2N-2M,N) X^(N-2*M) // // Orthogonality: // // Integral ( -1 <= X <= 1 ) P(I)(X) * P(J)(X) dX // = 0 if I =/= J // = 2 / ( 2*I+1 ) if I = J. // // Approximation: // // A function F(X) defined on [-1,1] may be approximated by the series // // C0*P(0)(X) + C1*P(1)(X) + + CN*P(N)(X) // // where // // C(I) = (2*I+1)/(2) * Integral ( -1 <= X <= 1 ) F(X) P(I)(X) dx. // // Special values: // // P(N)(1) = 1. // P(N)(-1) = (-1)^N. // | P(N)(X) | <= 1 in [-1,1]. // // P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre // function of the first kind and order N equals the Legendre polynomial // of the first kind and order N. // // The N zeroes of P(N)(X) are the abscissas used for Gauss-Legendre // quadrature of the integral of a function F(X) with weight function 1 // over the interval [-1,1]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.2500000000000000E+00, -0.4062500000000000E+00, -0.3359375000000000E+00, 0.1577148437500000E+00, 0.3397216796875000E+00, 0.2427673339843750E-01, -0.2799186706542969E+00, -0.1524540185928345E+00, 0.1768244206905365E+00, 0.2212002165615559E+00, 0.0000000000000000E+00, -0.1475000000000000E+00, -0.2800000000000000E+00, -0.3825000000000000E+00, -0.4400000000000000E+00, -0.4375000000000000E+00, -0.3600000000000000E+00, -0.1925000000000000E+00, 0.8000000000000000E-01, 0.4725000000000000E+00, 0.1000000000000000E+01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void legendre_shifted_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // legendre_shifted_polynomial_values(): values of shifted Legendre polynomials. // // Discussion: // // If we denote the Legendre polynomial by P(n)(x), and the shifted // Legendre polynomial by P01(n)(x), then // // P01(n)(x) = P(n)(2*x-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2016 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.2500000000000000E+00, -0.4062500000000000E+00, -0.3359375000000000E+00, 0.1577148437500000E+00, 0.3397216796875000E+00, 0.2427673339843750E-01, -0.2799186706542969E+00, -0.1524540185928345E+00, 0.1768244206905365E+00, 0.2212002165615559E+00, 0.0000000000000000E+00, -0.1475000000000000E+00, -0.2800000000000000E+00, -0.3825000000000000E+00, -0.4400000000000000E+00, -0.4375000000000000E+00, -0.3600000000000000E+00, -0.1925000000000000E+00, 0.8000000000000000E-01, 0.4725000000000000E+00, 0.1000000000000000E+01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.625E+00, 0.50E+00, 0.55E+00, 0.60E+00, 0.65E+00, 0.70E+00, 0.75E+00, 0.80E+00, 0.85E+00, 0.90E+00, 0.95E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void lobatto_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // lobatto_polynomial_values() returns values of the completed Lobatto polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // n * LegendreP [ n - 1, x ] - n * x * LegendreP [ n, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 May 2013 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 31 static double fx_vec[N_MAX] = { 0.9375000000000000, 0.7031250000000000, -0.9667968750000000, -1.501464843750000, 0.3639221191406250, 2.001914978027344, 0.6597948074340820, -1.934441328048706, -1.769941113889217, 1.215243665501475, 0.000000000000000, 0.8692500000000000, 1.188000000000000, 1.109250000000000, 0.7680000000000000, 0.2812500000000000, -0.2520000000000000, -0.7507500000000000, -1.152000000000000, -1.410750000000000, -1.500000000000000, -1.410750000000000, -1.152000000000000, -0.7507500000000000, -0.2520000000000000, 0.2812500000000000, 0.7680000000000000, 1.109250000000000, 1.188000000000000, 0.8692500000000000, 0.000000000000000 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, -1.00, -0.90, -0.80, -0.70, -0.60, -0.50, -0.40, -0.30, -0.20, -0.10, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void lobatto_polynomial_derivative_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // lobatto_polynomial_derivative_values(): derivatives of the completed Lobatto polynomials. // // Discussion: // // In Mathematica, the function can be evaluated by: // // n * LegendreP [ n - 1, x ] - n * x * LegendreP [ n, x ] // // In Mathematica, the completed Lobatto polynomial can be evaluated by: // // n * LegendreP [ n - 1, x ] - n * x * LegendreP [ n, x ] // // The derivative is: // // n * D[LegendreP [ n - 1, x ], {x} ] // - n * LegendreP [ n, x ] // - n * x * D[LegendreP [ n, x ], {x}] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 November 2014 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 31 static double fx_vec[N_MAX] = { -0.5, 2.437500000000000, 4.031250000000000, -3.154296875000000, -10.19165039062500, -1.019622802734375, 15.67544555664063, 10.97668933868408, -15.91419786214828, -24.33202382177114, 12.00000000000000, 5.670000000000000, 0.9600000000000000, -2.310000000000000, -4.320000000000000, -5.250000000000000, -5.280000000000000, -4.590000000000000, -3.360000000000000, -1.770000000000000, 0.0, 1.770000000000000, 3.360000000000000, 4.590000000000000, 5.280000000000000, 5.250000000000000, 4.320000000000000, 2.310000000000000, -0.9600000000000000, -5.670000000000000, -12.00000000000000 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, -1.00, -0.90, -0.80, -0.70, -0.60, -0.50, -0.40, -0.30, -0.20, -0.10, 0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void lerch_values ( int &n_data, double &z, int &s, double &a, double &fx ) //****************************************************************************80 // // Purpose: // // lerch_values() returns some values of the Lerch transcendent function. // // Discussion: // // The Lerch function is defined as // // Phi(z,s,a) = Sum ( 0 <= k < +oo ) z^k / ( a + k )^s // // omitting any terms with ( a + k ) = 0. // // In Mathematica, the function can be evaluated by: // // LerchPhi[z,s,a] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &Z, the parameters of the function. // // Output, int &S, the parameters of the function. // // Output, double &A, the parameters of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double a_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 3.0E+00, 3.0E+00, 3.0E+00 }; static double fx_vec[N_MAX] = { 0.1644934066848226E+01, 0.1202056903159594E+01, 0.1000994575127818E+01, 0.1164481052930025E+01, 0.1074426387216080E+01, 0.1000492641212014E+01, 0.2959190697935714E+00, 0.1394507503935608E+00, 0.9823175058446061E-03, 0.1177910993911311E+00, 0.3868447922298962E-01, 0.1703149614186634E-04 }; static int s_vec[N_MAX] = { 2, 3, 10, 2, 3, 10, 2, 3, 10, 2, 3, 10 }; static double z_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.3333333333333333E+00, 0.3333333333333333E+00, 0.3333333333333333E+00, 0.1000000000000000E+00, 0.1000000000000000E+00, 0.1000000000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; z = 0.0; s = 0; a = 0.0; fx = 0.0; } else { z = z_vec[n_data-1]; s = s_vec[n_data-1]; a = a_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void linear_system_values ( int &n_data, int &nrow, int &ncol, int &nsys, double *a, double *x, double *b ) //****************************************************************************80 // // Purpose: // // linear_system_values() returns some linear systems. // // Discussion: // // Each call to this routine returns scalars NROW, NCOL and NSYS, // which give the dimensions of the linear system // // A(NROW,NCOL) * X(NCOL,NSYS) = B(NROW,NSYS) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &NROW, int NCOL, the number of rows and columns of A. // // Output, int &NSYS, the number of systems. // // Output, double **A[NROW*NCOL], the matrix. // // Output, double **X[NCOL*NSYS], the solutions of the linear system. // // Output, double **B[NROW*NSYS], the right hand sides. // { # define N_MAX 4 if ( a ) { delete [] a; } if ( b ) { delete [] b; } if ( x ) { delete [] x; } if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; nrow = 0; ncol = 0; nsys = 0; a = NULL; b = NULL; x = NULL; } else if ( n_data == 1 ) { nrow = 3; ncol = 3; nsys = 2; a = new double[(nrow)*(ncol)]; x = new double[(ncol)*(nsys)]; b = new double[(nrow)*(nsys)]; a[0+0*(nrow)] = 1.0; a[1+0*(nrow)] = 0.0; a[2+0*(nrow)] = 0.0; a[0+1*(nrow)] = 0.0; a[1+1*(nrow)] = 2.0; a[2+1*(nrow)] = 0.0; a[0+2*(nrow)] = 0.0; a[1+2*(nrow)] = 0.0; a[2+2*(nrow)] = 3.0; x[0+0*(ncol)] = 1.0; x[1+0*(ncol)] = 0.0; x[2+0*(ncol)] = 0.0; x[0+1*(ncol)] = 1.0; x[1+1*(ncol)] = 1.0; x[2+1*(ncol)] = 1.0; b[0+0*(nrow)] = 1.0; b[1+0*(nrow)] = 0.0; b[2+0*(nrow)] = 0.0; b[0+1*(nrow)] = 1.0; b[1+1*(nrow)] = 2.0; b[2+1*(nrow)] = 3.0; } else if ( n_data == 2 ) { nrow = 3; ncol = 3; nsys = 2; a = new double[(nrow)*(ncol)]; x = new double[(ncol)*(nsys)]; b = new double[(nrow)*(nsys)]; a[0+0*(nrow)] = 1.0; a[1+0*(nrow)] = 2.0; a[2+0*(nrow)] = 3.0; a[0+1*(nrow)] = 2.0; a[1+1*(nrow)] = 2.0; a[2+1*(nrow)] = 3.0; a[0+2*(nrow)] = 3.0; a[1+2*(nrow)] = 3.0; a[2+2*(nrow)] = 3.0; x[0+0*(ncol)] = 1.0; x[1+0*(ncol)] = 1.0; x[2+0*(ncol)] = 1.0; x[0+1*(ncol)] = 1.0; x[1+1*(ncol)] = 2.0; x[2+1*(ncol)] = 3.0; b[0+0*(nrow)] = 6.0; b[1+0*(nrow)] = 7.0; b[2+0*(nrow)] = 9.0; b[0+1*(nrow)] = 14.0; b[1+1*(nrow)] = 15.0; b[2+1*(nrow)] = 18.0; } else if ( n_data == 3 ) { nrow = 5; ncol = 5; nsys = 2; a = new double[(nrow)*(ncol)]; x = new double[(ncol)*(nsys)]; b = new double[(nrow)*(nsys)]; a[0+0*(nrow)] = 1.0; a[1+0*(nrow)] = 2.0; a[2+0*(nrow)] = 3.0; a[3+0*(nrow)] = 4.0; a[4+0*(nrow)] = 5.0; a[0+1*(nrow)] = 2.0; a[1+1*(nrow)] = 3.0; a[2+1*(nrow)] = 4.0; a[3+1*(nrow)] = 5.0; a[4+1*(nrow)] = 1.0; a[0+2*(nrow)] = 3.0; a[1+2*(nrow)] = 4.0; a[2+2*(nrow)] = 5.0; a[3+2*(nrow)] = 1.0; a[4+2*(nrow)] = 2.0; a[0+3*(nrow)] = 4.0; a[1+3*(nrow)] = 5.0; a[2+3*(nrow)] = 1.0; a[3+3*(nrow)] = 2.0; a[4+3*(nrow)] = 3.0; a[0+4*(nrow)] = 5.0; a[1+4*(nrow)] = 1.0; a[2+4*(nrow)] = 2.0; a[3+4*(nrow)] = 3.0; a[4+4*(nrow)] = 4.0; x[0+0*(ncol)] = 0.066667; x[1+0*(ncol)] = 0.066667; x[2+0*(ncol)] = 0.066667; x[3+0*(ncol)] = 0.066667; x[4+0*(ncol)] = 0.066667; x[0+1*(ncol)] = 1.0; x[1+1*(ncol)] = 0.0; x[2+1*(ncol)] = 0.0; x[3+1*(ncol)] = 0.0; x[4+1*(ncol)] = 0.0; b[0+0*(nrow)] = 1.0; b[1+0*(nrow)] = 1.0; b[2+0*(nrow)] = 1.0; b[3+0*(nrow)] = 1.0; b[4+0*(nrow)] = 1.0; b[0+1*(nrow)] = 1.0; b[1+1*(nrow)] = 2.0; b[2+1*(nrow)] = 3.0; b[3+1*(nrow)] = 4.0; b[4+1*(nrow)] = 5.0; } else if ( n_data == 4 ) { nrow = 5; ncol = 5; nsys = 2; a = new double[(nrow)*(ncol)]; x = new double[(ncol)*(nsys)]; b = new double[(nrow)*(nsys)]; a[0+0*(nrow)] = 1.4; a[1+0*(nrow)] = 1.6; a[2+0*(nrow)] = 3.8; a[3+0*(nrow)] = 4.6; a[4+0*(nrow)] = 2.6; a[0+1*(nrow)] = 2.1; a[1+1*(nrow)] = 1.5; a[2+1*(nrow)] = 8.0; a[3+1*(nrow)] = 8.2; a[4+1*(nrow)] = 2.9; a[0+2*(nrow)] = 2.1; a[1+2*(nrow)] = 1.1; a[2+2*(nrow)] = 9.6; a[3+2*(nrow)] = 8.4; a[4+2*(nrow)] = 0.1; a[0+3*(nrow)] = 7.4; a[1+3*(nrow)] = 0.7; a[2+3*(nrow)] = 5.4; a[3+3*(nrow)] = 0.4; a[4+3*(nrow)] = 9.6; a[0+4*(nrow)] = 9.6; a[1+4*(nrow)] = 5.0; a[2+4*(nrow)] = 8.8; a[3+4*(nrow)] = 8.0; a[4+4*(nrow)] = 7.7; x[0+0*(ncol)] = -5.313077; x[1+0*(ncol)] = 5.735670; x[2+0*(ncol)] = -2.507606; x[3+0*(ncol)] = -1.058741; x[4+0*(ncol)] = 0.999381; x[0+1*(ncol)] = 31.601006; x[1+1*(ncol)] = -28.594793; x[2+1*(ncol)] = 13.389395; x[3+1*(ncol)] = 2.780322; x[4+1*(ncol)] = -3.008797; b[0+0*(nrow)] = 1.1; b[1+0*(nrow)] = 1.6; b[2+0*(nrow)] = 4.7; b[3+0*(nrow)] = 9.1; b[4+0*(nrow)] = 0.1; b[0+1*(nrow)] = 4.0; b[1+1*(nrow)] = 9.3; b[2+1*(nrow)] = 8.4; b[3+1*(nrow)] = 0.4; b[4+1*(nrow)] = 4.1; } return; # undef N_MAX } //****************************************************************************80 void lobachevsky_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // lobachevsky_values() returns some values of the Lobachevsky function. // // Discussion: // // The function is defined by: // // LOBACHEVSKY(x) = Integral ( 0 <= t <= x ) -ln ( abs ( cos ( t ) ) dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.12417639065161393857E-08, 0.79473344770001088225E-07, 0.50867598186208834198E-05, 0.32603097901207200319E-03, 0.21380536815408214419E-01, 0.18753816902083824050E+00, 0.83051199971883645115E+00, 0.18854362426679034904E+01, 0.21315988986516411053E+01, 0.21771120185613427221E+01, 0.22921027921896650849E+01, 0.39137195028784495586E+01, 0.43513563983836427904E+01, 0.44200644968478185898E+01, 0.65656013133623829156E+01, 0.10825504661504599479E+02, 0.13365512855474227325E+02, 0.21131002685639959927E+02, 0.34838236589449117389E+02, 0.69657062437837394278E+02 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 7.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00, 100.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void log_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // log_values() returns some values of the natural logarithm function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -11.512925464970228420E+00, -4.6051701859880913680E+00, -2.3025850929940456840E+00, -1.6094379124341003746E+00, -1.2039728043259359926E+00, -0.91629073187415506518E+00, -0.69314718055994530942E+00, -0.51082562376599068321E+00, -0.35667494393873237891E+00, -0.22314355131420975577E+00, -0.10536051565782630123E+00, 0.00000000000000000000E+00, 0.69314718055994530942E+00, 1.0986122886681096914E+00, 1.1447298858494001741E+00, 1.6094379124341003746E+00, 2.3025850929940456840E+00, 2.9957322735539909934E+00, 4.6051701859880913680E+00, 18.631401766168018033E+00 }; static double x_vec[N_MAX] = { 1.0E-05, 1.0E-02, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 2.0E+00, 3.0E+00, 3.1415926535897932385E+00, 5.0E+00, 10.0E+00, 20.0E+00, 100.0E+00, 123456789.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void log_normal_cdf_values ( int &n_data, double &mu, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // log_normal_cdf_values() returns some values of the Log Normal CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = LogNormalDistribution [ mu, sigma ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.2275013194817921E-01, 0.2697049307349095E+00, 0.5781741008028732E+00, 0.7801170895122241E+00, 0.4390310097476894E+00, 0.4592655190218048E+00, 0.4694258497695908E+00, 0.4755320473858733E+00, 0.3261051056816658E+00, 0.1708799040927608E+00, 0.7343256357952060E-01, 0.2554673736161761E-01 }; static double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double sigma_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void log_series_cdf_values ( int &n_data, double &t, int &n, double &fx ) //****************************************************************************80 // // Purpose: // // log_series_cdf_values() returns some values of the log series CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = LogSeriesDistribution [ t ] // CDF [ dist, n ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &T, the parameter of the function. // // Output, int &N, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 29 static double fx_vec[N_MAX] = { 0.9491221581029903E+00, 0.9433541128559735E+00, 0.9361094611773272E+00, 0.9267370278044118E+00, 0.9141358246245129E+00, 0.8962840235449100E+00, 0.8690148741955517E+00, 0.8221011541254772E+00, 0.7213475204444817E+00, 0.6068261510845583E+00, 0.5410106403333613E+00, 0.4970679476476894E+00, 0.4650921887927060E+00, 0.4404842934597863E+00, 0.4207860535926143E+00, 0.4045507673897055E+00, 0.3908650337129266E+00, 0.2149757685421097E+00, 0.0000000000000000E+00, 0.2149757685421097E+00, 0.3213887739704539E+00, 0.3916213575531612E+00, 0.4437690508633213E+00, 0.4850700239649681E+00, 0.5191433267738267E+00, 0.5480569580144867E+00, 0.5731033910767085E+00, 0.5951442521714636E+00, 0.6147826594068904E+00 }; static int n_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; static double t_vec[N_MAX] = { 0.1000000000000000E+00, 0.1111111111111111E+00, 0.1250000000000000E+00, 0.1428571428571429E+00, 0.1666666666666667E+00, 0.2000000000000000E+00, 0.2500000000000000E+00, 0.3333333333333333E+00, 0.5000000000000000E+00, 0.6666666666666667E+00, 0.7500000000000000E+00, 0.8000000000000000E+00, 0.8333333333333333E+00, 0.8571485714857149E+00, 0.8750000000000000E+00, 0.8888888888888889E+00, 0.9000000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00, 0.9900000000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; t = 0.0; n = 0; fx = 0.0; } else { t = t_vec[n_data-1]; n = n_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void log10_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // log10_values() returns some values of the logarithm base 10 function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -5.0000000000000000000, -2.0000000000000000000, -1.0000000000000000000, -0.69897000433601880479, -0.52287874528033756270, -0.39794000867203760957, -0.30102999566398119521, -0.22184874961635636749, -0.15490195998574316929, -0.096910013008056414359, -0.045757490560675125410, 0.000000000000000000000, 0.30102999566398119521, 0.47712125471966243730, 0.49714987269413385435, 0.69897000433601880479, 1.0000000000000000000, 1.3010299956639811952, 2.0000000000000000000, 8.0915149771692704475 }; static double x_vec[N_MAX] = { 1.0E-05, 1.0E-02, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 2.0E+00, 3.0E+00, 3.1415926535897932385E+00, 5.0E+00, 10.0E+00, 20.0E+00, 100.0E+00, 123456789.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void logarithmic_integral_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // logarithmic_integral_values() returns values of the logarithmic integral LI(X). // // Discussion: // // The logarithmic integral is defined as: // // LI(X) = integral ( 0 <= T <= Z ) dT / log ( T ) // // The principal value of the integral is taken. There is a // branch cut discontinuity in the complex plane from -oo to +1. // // Abramowitz and Stegun assume 1 < X. // // In Mathematica, the function can be evaluated by: // // LogIntegral[x] // // There is a simple relationship with the exponential integral EI: // // LI(X) = EI(LN(X)) // // The function LI(X) provides a good approximation to PI(X), // the number of primes less than or equal to X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 28 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, -0.3238978959329102E-01, -0.8512648672879405E-01, -0.1574149028946895E+00, -0.2529494192126213E+00, -0.3786710430610880E+00, -0.5468514142104170E+00, -0.7809468775455607E+00, -0.1134011957382327E+01, -0.1775800683423525E+01, -0.2443622553873225E+01, -0.3124190050507211E+01, -0.2872935510329120E+01, -0.2164282524138207E+01, -0.1440351296279408E+01, -0.6864884538258716E+00, 0.1250649863152964E+00, 0.1045163780117493E+01, 0.2967585095039051E+01, 0.5253718299558931E+01, 0.8519716463711059E+01, 0.1360509217709172E+02, 0.2193466832805100E+02, 0.3604254831722944E+02, 0.6051306533791733E+02, 0.1037211171690373E+03, 0.1810780396816945E+03, 0.3211144156746837E+03 }; static double x_vec[N_MAX] = { 0.000000E+00, 0.100000E+00, 0.200000E+00, 0.300000E+00, 0.400000E+00, 0.500000E+00, 0.600000E+00, 0.700000E+00, 0.800000E+00, 0.900000E+00, 0.950000E+00, 0.975000E+00, 0.103125E+01, 0.106250E+01, 0.112500E+01, 0.125000E+01, 0.150000E+01, 0.200000E+01, 0.400000E+01, 0.800000E+01, 0.160000E+02, 0.320000E+02, 0.640000E+02, 0.128000E+03, 0.256000E+03, 0.512000E+03, 0.102400E+04, 0.204800E+04 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void logistic_cdf_values ( int &n_data, double &mu, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // logistic_cdf_values() returns some values of the Logistic CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = LogisticDistribution [ mu, beta ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &BETA, the shape parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double beta_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.8807970779778824E+00, 0.9820137900379084E+00, 0.9975273768433652E+00, 0.6224593312018546E+00, 0.5825702064623147E+00, 0.5621765008857981E+00, 0.5498339973124779E+00, 0.6224593312018546E+00, 0.5000000000000000E+00, 0.3775406687981454E+00, 0.2689414213699951E+00 }; static double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void mersenne_prime_values ( int &n_data, int &n ) //****************************************************************************80 // // Purpose: // // mersenne_prime_values() returns some indices of Mersenne primes. // // Discussion: // // A Mersenne number Mn = 2^n-1. // A Mersenne prime is a prime Mersenne number. // If Mn is a Mersenne prime, then the index n must also be prime. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 October 2024 // // Author: // // John Burkardt // // Input: // // integer n_data: the user sets N_data to 0 before the first call. // // Output: // // integer n_data: on each call, the routine increments N_data by 1, and // returns the corresponding data; when there is no more data, the // output value of N_data will be 0 again. // // integer n: the index of a Mersenne prime. // { # define N_MAX 52 static int n_vec[N_MAX] = { 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933, 136279841 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; n = 0; } else { n = n_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void mcnugget_number_values ( int &n_data, int &n, int &m ) //****************************************************************************80 // // Purpose: // // mertens_values() returns some values of the Mertens function. // // Discussion: // // A restaurant offers Chicken McNuggets, but only in packages of 6, 9 or 20. // // A customer wishes to buy exactly N McNuggets. // // Presumably, there are M distinct ways to do this. M is known as the // McNugget number of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 September 2022 // // Author: // // John Burkardt // // Reference: // // Scott Chapman, Chris O’Neill, // Factoring in the Chicken McNugget Monoid, // Mathematics Magazine, // Volume 91, Number 5, 2018, pages 323-336. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. The routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the number of Chicken McNuggets desired. // // int &M, the number of different ways of collecting N Chicken McNuggets. // { # define N_MAX 101 static int m_vec[N_MAX] = { 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 0, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 2, 2, 1, 1, 3, 0, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 4, 1, 3, 3, 2, 2, 5, 1, 3, 4, 2, 3, 5, 2, 3, 5, 2, 3, 6, 2, 4, 5, 3, 3, 7, 2, 5, 6, 3, 4, 7, 3, 5, 7, 3, 5, 8, 3, 6, 7, 4, 5, 9, 3, 7, 8, 5 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; n = 0; m = 0; } else { n = n_vec[n_data]; m = m_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void mertens_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // mertens_values() returns some values of the Mertens function. // // Discussion: // // The Mertens function M(N) is the sum from 1 to N of the Moebius // function MU. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 October 2007 // // Author: // // John Burkardt // // Reference: // // M Deleglise, J Rivat, // Computing the Summation of the Moebius Function, // Experimental Mathematics, // Volume 5, 1996, pages 291-295. // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45. // // Parameters: // // Input/output, int &N_DATA. // On input, if N_DATA is 0, the first test data is returned, and N_DATA // is set to 1. On each subsequent call, the input value of N_DATA is // incremented and that test data item is returned, if available. When // there is no more test data, N_DATA is set to 0. // // Output, int &N, the argument of the Mertens function. // // Output, int &C, the value of the Mertens function. // { # define N_MAX 15 static int c_vec[N_MAX] = { 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, 1, 2, -23 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 100, 1000, 10000 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data]; c = c_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 void mittag_leffler_ea_values ( int &n_data, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // mittag_leffler_ea_values(): values of one-parameter Mittag Leffler function. // // Discussion: // // E(alpha;z) = sum ( 0 <= k < oo ) z^k / Gamma ( alpha * k + 1 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 February 2017 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, the parameter of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 25 static double a_vec[N_MAX] = { 0.25, 0.25, 0.25, 0.25, 0.25, 1.75, 1.75, 1.75, 1.75, 1.75, 2.25, 2.25, 2.25, 2.25, 2.25, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 }; static double fx_vec[N_MAX] = { 1.0, 0.2525646348870172, 0.1427989464258737, 0.994231091392936E-01, 0.762370352397216E-01, 1.0, -0.2579027070618285, 0.2716853059670252, 0.1846579916604009E-01, -0.139707389642194, 1.0, -0.1022121843823497E+01, 0.1860844522589611E+01, 0.2644615445996891E+01, 0.7762512036620307, 0.6737946999045729E-02, -0.6172728764571668, 0.2010457248089053, 0.7922864454196143, 0.958340222567225, 0.993055607747429, 0.999007936794713, 0.999875992064687, 0.999986221340384, 0.999998622134038 }; static double x_vec[N_MAX] = { 1.0, 0.2525646348870172, 0.1427989464258737, 0.994231091392936E-01, 0.762370352397216E-01, 1.0, -0.2579027070618285, 0.2716853059670252, 0.1846579916604009E-01, -0.139707389642194, 1.0, -0.1022121843823497E+01, 0.1860844522589611E+01, 0.2644615445996891E+01, 0.7762512036620307, 0.6737946999045729E-02, -0.6172728764571668, 0.2010457248089053, 0.7922864454196143, 0.958340222567225, 0.993055607747429, 0.999007936794713, 0.999875992064687, 0.999986221340384, 0.999998622134038 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void mittag_leffler_eab_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // mittag_leffler_eab_values(): values of two-parameter Mittag Leffler function. // // Discussion: // // E(alpha,beta;z) = sum ( 0 <= k < oo ) z^k / Gamma ( alpha * k + beta ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2017 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, the parameters of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double a_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.5E+00, 1.5E+00, 1.5E+00, 3.0E+00, 3.0E+00, 3.0E+00, 1.5E+00, 1.5E+00, 1.5E+00, 1.5E+00, 2.0E+00, 2.5E+00, 2.0E+00, 2.0E+00, 2.0E+00 }; static double b_vec[N_MAX] = { 0.0E+00, 2.5E+00, 5.0E+00, 0.0E+00, 5.0E+00, 10.0E+00, 1.0E+00, 1.1E+00, 1.2E+00, 5.0E+00, 10.0E+00, 15.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 1.0E+00, 2.0E+00, 3.0E+00 }; static double fx_vec[N_MAX] = { -0.1947001957678512E+00, 0.6821152851737027E+00, 0.3966713294631294E-01, -0.7783327874361643E+00, 0.376189576668972E-01, 0.2653864659692168E-05, 0.5521129475536116E+00, 0.6561318862220054E+00, 0.7417555514147703E+00, 0.283627999653323E-01, 0.2382766080122566E-05, 0.1057337628882522E-10, 0.6524069073077504E-01, 0.4926693884523065E-01, 0.4440848516337653E-01, 0.217818355660857E+01, 0.1368298872008591E+01, 0.5890917783042855E+00 }; static double x_vec[N_MAX] = { -0.25E+00, -0.25E+00, -0.25E+00, -1.25E+00, -1.25E+00, -1.25E+00, -2.75E+00, -2.75E+00, -2.75E+00, -5.0E+00, -5.0E+00, -5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 2.0E+00, 2.0E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void moebius_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // moebius_values() returns some values of the Moebius function. // // Discussion: // // MU(N) is defined as follows: // // MU(N) = 1 if N = 1; // 0 if N is divisible by the square of a prime; // (-1)^K, if N is the product of K distinct primes. // // In Mathematica, the function can be evaluated by: // // MoebiusMu[n] // // First values: // // N MU(N) // // 1 1 // 2 -1 // 3 -1 // 4 0 // 5 -1 // 6 1 // 7 -1 // 8 0 // 9 0 // 10 1 // 11 -1 // 12 0 // 13 -1 // 14 1 // 15 1 // 16 0 // 17 -1 // 18 0 // 19 -1 // 20 0 // // Note: // // As special cases, MU(N) is -1 if N is a prime, and MU(N) is 0 // if N is a square, cube, etc. // // Formula: // // The Moebius function is related to Euler's totient function: // // PHI(N) = Sum ( D divides N ) MU(D) * ( N / D ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the Moebius function. // // Output, int &C, the value of the Moebius function. // { # define N_MAX 20 static int c_vec[N_MAX] = { 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void multinomial_pdf_sizes ( int &n_data, int &m ) //****************************************************************************80 // // Purpose: // // multinomial_pdf_sizes() returns sizes of some multinomial PDF data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, integer &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, integer &M, the size of the given problem. // { # define N_MAX 10 int m_vec[N_MAX] = { 2, 2, 2, 3, 5, 5, 5, 5, 5, 5 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; m = 0; } else { m = m_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void multinomial_pdf_values ( int &n_data, int m, int &n, double p[], int x[], double &pdf ) //****************************************************************************80 // // Purpose: // // multinomial_pdf_values() returns some values of the multinomial PDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 July 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Input, int M, the number of outcomes. // // Output, int &N, the number of trials. // // Output, double P[M], the probability of each outcome on one trial. // // Output, int X[M], the number of times each outcome occurred in // N trials. // // Output, double &PDF, the probability of X. // { # define N_MAX 10 int i; int n_vec[N_MAX] = { 3, 4, 3, 3, 3, 3, 3, 3, 3, 3 }; int offset[N_MAX] = { 0, 2, 4, 6, 9, 14, 19, 24, 29, 34 }; double p_vec[39] = { 0.7, 0.3, 0.7, 0.3, 0.5, 0.5, 0.6, 0.0, 0.4, 0.6, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1, 0.6, 0.1, 0.1, 0.1, 0.1 }; double pdf_vec[N_MAX] = { 0.441, 0.2646, 0.375, 0.0, 0.216, 0.108, 0.018, 0.036, 0.001, 0.006 }; int x_vec[39] = { 2, 1, 2, 2, 2, 1, 1, 1, 1, 3, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 1, 1, 1, 0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; p = NULL; x = NULL; pdf = 0.0; } else { n = n_vec[n_data-1]; for ( i = 0; i < m; i++ ) { p[i] = p_vec[i+offset[n_data-1]]; } for ( i = 0; i < m; i++ ) { x[i] = x_vec[i+offset[n_data-1]]; } pdf = pdf_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void negative_binomial_cdf_values ( int &n_data, int &f, int &s, double &p, double &cdf ) //****************************************************************************80 // // Purpose: // // negative_binomial_cdf_values() returns values of the negative binomial CDF. // // Discussion: // // Assume that a coin has a probability P of coming up heads on // any one trial. Suppose that we plan to flip the coin until we // achieve a total of S heads. If we let F represent the number of // tails that occur in this process, then the value of F satisfies // a negative binomial PDF: // // PDF(F,S,P) = Choose ( F from F+S-1 ) * P^S * (1-P)^F // // The negative binomial CDF is the probability that there are F or // fewer failures upon the attainment of the S-th success. Thus, // // CDF(F,S,P) = sum ( 0 <= G <= F ) PDF(G,S,P) // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = NegativeBinomialDistribution [ s, p ] // CDF [ dist, f ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2021 // // Author: // // John Burkardt // // Reference: // // F C Powell, // Statistical Tables for Sociology, Biology and Physical Sciences, // Cambridge University Press, 1982. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &F, the maximum number of failures. // // int &S, the number of successes. // // double &P, the probability of a success on one trial. // // double &CDF, the probability of at most F failures // before the S-th success. // { # define N_MAX 27 static double cdf_vec[N_MAX] = { 0.6367187500000000E+00, 0.3632812500000000E+00, 0.1445312500000000E+00, 0.5000000000000000E+00, 0.2265625000000000E+00, 0.6250000000000000E-01, 0.3437500000000000E+00, 0.1093750000000000E+00, 0.1562500000000000E-01, 0.1792000000000000E+00, 0.4096000000000000E-01, 0.4096000000000000E-02, 0.7047000000000000E-01, 0.1093500000000000E-01, 0.7290000000000000E-03, 0.9861587127990000E+00, 0.9149749500510000E+00, 0.7471846521450000E+00, 0.8499053647030009E+00, 0.5497160941090026E+00, 0.2662040052146710E+00, 0.6513215599000000E+00, 0.2639010709000000E+00, 0.7019082640000000E-01, 0.1000000000000000E+01, 0.1990000000000000E-01, 0.1000000000000000E-03 }; static int f_vec[N_MAX] = { 4, 3, 2, 3, 2, 1, 2, 1, 0, 2, 1, 0, 2, 1, 0, 11, 10, 9, 17, 16, 15, 9, 8, 7, 2, 1, 0 }; static double p_vec[N_MAX] = { 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.10E+00, 0.10E+00, 0.10E+00, 0.10E+00, 0.10E+00, 0.10E+00, 0.10E-01, 0.10E-01, 0.10E-01 }; static int s_vec[N_MAX] = { 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 1, 2, 3, 1, 2, 3, 1, 2, 3, 0, 1, 2 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; f = 0; s = 0; p = 0.0; cdf = 0.0; } else { f = f_vec[n_data-1]; s = s_vec[n_data-1]; p = p_vec[n_data-1]; cdf = cdf_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void nine_j_values ( int &n_data, double &j1, double &j2, double &j3, double &j4, double &j5, double &j6, double &j7, double &j8, double &j9, double &fx ) //****************************************************************************80 // // Purpose: // // nine_j_values() returns some values of the Wigner 9J function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &J1, &J2, &J3, &J4, &J5, &J6, &J7, &J8, &J9, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 9 static double fx_vec[N_MAX] = { 0.0004270039294528318, -0.001228915451058514, -0.0001944260688400887, 0.003338419923885592, -0.0007958936865080434, -0.004338208690251972, 0.05379143536399187, 0.006211299937499411, 0.03042903097250921 }; static double j1_vec[N_MAX] = { 1.0, 1.5, 2.0, 1.0, 1.5, 2.0, 0.5, 1.0, 1.5 }; static double j2_vec[N_MAX] = { 8.0, 8.0, 8.0, 3.0, 3.0, 3.0, 0.5, 0.5, 0.5 }; static double j3_vec[N_MAX] = { 7.0, 7.0, 7.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0 }; static double j4_vec[N_MAX] = { 6.5, 6.5, 6.5, 4.0, 4.0, 4.0, 2.0, 2.0, 2.0 }; static double j5_vec[N_MAX] = { 7.5, 7.5, 7.5, 1.5, 1.5, 1.5, 1.0, 1.0, 1.0 }; static double j6_vec[N_MAX] = { 7.5, 7.5, 7.5, 3.0, 3.0, 3.0, 1.5, 1.5, 1.5 }; static double j7_vec[N_MAX] = { 6.0, 6.0, 6.0, 3.5, 3.5, 3.5, 1.5, 1.5, 1.5 }; static double j8_vec[N_MAX] = { 10.0, 10.0, 10.0, 2.0, 2.0, 2.0, 0.5, 0.5, 0.5 }; static double j9_vec[N_MAX] = { 6.0, 6.0, 6.0, 2.0, 2.0, 2.0, 1.5, 1.5, 1.5 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; j1 = 0.0; j2 = 0.0; j3 = 0.0; j4 = 0.0; j5 = 0.0; j6 = 0.0; j7 = 0.0; j8 = 0.0; j9 = 0.0; fx = 0.0; } else { j1 = j1_vec[n_data-1]; j2 = j2_vec[n_data-1]; j3 = j3_vec[n_data-1]; j4 = j4_vec[n_data-1]; j5 = j5_vec[n_data-1]; j6 = j6_vec[n_data-1]; j7 = j7_vec[n_data-1]; j8 = j8_vec[n_data-1]; j9 = j9_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normal_01_cdf_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // normal_01_cdf_values() returns some values of the Normal 01 CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ 0, 1 ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 17 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.5398278372770290E+00, 0.5792597094391030E+00, 0.6179114221889526E+00, 0.6554217416103242E+00, 0.6914624612740131E+00, 0.7257468822499270E+00, 0.7580363477769270E+00, 0.7881446014166033E+00, 0.8159398746532405E+00, 0.8413447460685429E+00, 0.9331927987311419E+00, 0.9772498680518208E+00, 0.9937903346742239E+00, 0.9986501019683699E+00, 0.9997673709209645E+00, 0.9999683287581669E+00 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+00, 0.2000000000000000E+00, 0.3000000000000000E+00, 0.4000000000000000E+00, 0.5000000000000000E+00, 0.6000000000000000E+00, 0.7000000000000000E+00, 0.8000000000000000E+00, 0.9000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normal_01_pdf_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // normal_01_pdf_values() returns some values of the Normal 01 PDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ 0, 1 ] // PDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { 0.03155059887555709, 0.0005094586261557538, 0.01235886992552887, 0.353192862601275, 0.3171212685764107, 0.0009653372813755943, 0.06083856556197816, 0.003066504313116445, 0.0005116437388114821, 0.2246444116615346 }; static double x_vec[N_MAX] = { -2.252653624140994, 3.650540612071437, 2.636073871461605, 0.4935635421351536, -0.6775433481923101, -3.471050120671749, -1.939377660943641, -3.120345651740235, -3.649368017767143, 1.0717256984193 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normal_cdf_values ( int &n_data, double &mu, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // normal_cdf_values() returns some values of the Normal CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ mu, sigma ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.9772498680518208E+00, 0.9999683287581669E+00, 0.9999999990134124E+00, 0.6914624612740131E+00, 0.6305586598182364E+00, 0.5987063256829237E+00, 0.5792597094391030E+00, 0.6914624612740131E+00, 0.5000000000000000E+00, 0.3085375387259869E+00, 0.1586552539314571E+00 }; static double mu_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double sigma_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normal_pdf_values ( int &n_data, double &mu, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // normal_pdf_values() returns some values of the Normal PDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ mu, sigma ] // PDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double fx_vec[N_MAX] = { 0.01180775937213258, 0.006307849174478944, 0.0147514774470322, 0.9468437743011001, 0.02140312299941794, 0.05939959967353488, 0.2348929157422787, 0.007207515678571277, 0.005944396897656727, 0.03637663165771322 }; static double mu_vec[N_MAX] = { -56.31634060352484, 12.33908855337884, -48.48444152359102, 26.7931424604825, -19.73874370047668, -99.63232576831896, -81.09104995766396, 68.16949013113364, -47.93940044652702, -29.67426801922078 }; static double sigma_vec[N_MAX] = { 4.785956124893755, 2.13500469923221, 0.6387882883091059, 0.4024634224214489, 3.79790008346491, 4.497769898408682, 0.1667227687589636, 0.7032091872463158, 4.57117016420902, 4.132147851761006 }; static double x_vec[N_MAX] = { -46.85424018542929, 6.781057314200307, -50.23282168570062, 26.67129012408019, -12.9643468135976, -103.6600156181528, -80.73183222587458, 66.09155915000321, -58.53544475210675, -35.44773135435396 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void omega_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // omega_values() returns some values of the OMEGA function. // // Discussion: // // In Mathematica, the function can be evaluated by // // Length [ FactorInteger [ n ] ] // // First values: // // N OMEGA(N) // // 1 0 // 2 1 // 3 1 // 4 1 // 5 1 // 6 2 // 7 1 // 8 1 // 9 1 // 10 2 // 11 1 // 12 2 // 13 1 // 14 2 // 15 2 // 16 1 // 17 1 // 18 2 // 19 1 // 20 2 // // Formula: // // If N = 1, then // // OMEGA(N) = 0 // // else if the prime factorization of N is // // N = P1^E1 * P2^E2 * * PM^EM, // // then // // OMEGA(N) = M // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the OMEGA function. // // Output, int &C, the value of the OMEGA function. // { # define N_MAX 23 static int c_vec[N_MAX] = { 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 4, 4, 3, 1, 5, 2, 2, 1, 6, 7, 8 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 101, 210, 1320, 1764, 2003, 2310, 2827, 8717, 12553, 30030, 510510, 9699690 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void owen_values ( int &n_data, double &h, double &a, double &t ) //****************************************************************************80 // // Purpose: // // owen_values() returns some values of Owen's T function. // // Discussion: // // Owen's T function is useful for computation of the bivariate normal // distribution and the distribution of a skewed normal distribution. // // Although it was originally formulated in terms of the bivariate // normal function, the function can be defined more directly as // // T(H,A) = 1 / ( 2 * pi ) * // Integral ( 0 <= X <= A ) e^(H^2*(1+X^2)/2) / (1+X^2) dX // // In Mathematica, the function can be evaluated by: // // fx = 1/(2*Pi) * Integrate [ E^(-h^2*(1+x^2)/2)/(1+x^2), {x,0,a} ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 May 2009 // // Author: // // John Burkardt // // Reference: // // Mike Patefield, David Tandy, // Fast and Accurate Calculation of Owen's T Function, // Journal of Statistical Software, // Volume 5, Number 5, 2000, pages 1-25. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &H, a parameter. // // Output, double &A, the upper limit of the integral. // // Output, double &T, the value of the function. // { # define N_MAX 28 static double a_vec[N_MAX] = { 0.2500000000000000E+00, 0.4375000000000000E+00, 0.9687500000000000E+00, 0.0625000000000000E+00, 0.5000000000000000E+00, 0.9999975000000000E+00, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.1000000000000000E+02, 0.1000000000000000E+03 }; static double h_vec[N_MAX] = { 0.0625000000000000E+00, 6.5000000000000000E+00, 7.0000000000000000E+00, 4.7812500000000000E+00, 2.0000000000000000E+00, 1.0000000000000000E+00, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2500000000000000E+00, 0.2500000000000000E+00, 0.2500000000000000E+00, 0.2500000000000000E+00, 0.1250000000000000E+00, 0.1250000000000000E+00, 0.1250000000000000E+00, 0.1250000000000000E+00, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02, 0.7812500000000000E-02 }; static double t_vec[N_MAX] = { 3.8911930234701366E-02, 2.0005773048508315E-11, 6.3990627193898685E-13, 1.0632974804687463E-07, 8.6250779855215071E-03, 6.6741808978228592E-02, 0.4306469112078537E-01, 0.6674188216570097E-01, 0.7846818699308410E-01, 0.7929950474887259E-01, 0.6448860284750376E-01, 0.1066710629614485E+00, 0.1415806036539784E+00, 0.1510840430760184E+00, 0.7134663382271778E-01, 0.1201285306350883E+00, 0.1666128410939293E+00, 0.1847501847929859E+00, 0.7317273327500385E-01, 0.1237630544953746E+00, 0.1737438887583106E+00, 0.1951190307092811E+00, 0.7378938035365546E-01, 0.1249951430754052E+00, 0.1761984774738108E+00, 0.1987772386442824E+00, 0.2340886964802671E+00, 0.2479460829231492E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; h = 0.0; a = 0.0; t = 0.0; } else { h = h_vec[n_data-1]; a = a_vec[n_data-1]; t = t_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void partition_count_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // partition_count_values() returns some values of the integer partition count. // // Discussion: // // A partition of an integer N is a representation of the integer // as the sum of nonzero positive integers. The order of the summands // does not matter. The number of partitions of N is symbolized // by P(N). Thus, the number 5 has P(N) = 7, because it has the // following partitions: // // 5 = 5 // = 4 + 1 // = 3 + 2 // = 3 + 1 + 1 // = 2 + 2 + 1 // = 2 + 1 + 1 + 1 // = 1 + 1 + 1 + 1 + 1 // // In Mathematica, the function can be evaluated by // // PartitionsP[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the integer. // // Output, int &C, the number of partitions of the integer. // { # define N_MAX 21 static int c_vec[N_MAX] = { 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void partition_distinct_count_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // partition_distinct_count_values() returns some values of Q(N). // // Discussion: // // A partition of an integer N is a representation of the integer // as the sum of nonzero positive integers. The order of the summands // does not matter. The number of partitions of N is symbolized // by P(N). Thus, the number 5 has P(N) = 7, because it has the // following partitions: // // 5 = 5 // = 4 + 1 // = 3 + 2 // = 3 + 1 + 1 // = 2 + 2 + 1 // = 2 + 1 + 1 + 1 // = 1 + 1 + 1 + 1 + 1 // // However, if we require that each member of the partition // be distinct, so that no nonzero summand occurs more than once, // we are computing something symbolized by Q(N). // The number 5 has Q(N) = 3, because it has the following partitions // into distinct parts: // // 5 = 5 // = 4 + 1 // = 3 + 2 // // In Mathematica, the function can be evaluated by // // PartitionsQ[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the integer. // // Output, int &C, the number of partitions of the integer // into distinct parts. // { # define N_MAX 21 static int c_vec[N_MAX] = { 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void phi_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // phi_values() returns some values of the PHI function. // // Discussion: // // PHI(N) is the number of integers between 1 and N which are // relatively prime to N. I and J are relatively prime if they // have no common factors. The function PHI(N) is known as // "Euler's totient function". // // By convention, 1 and N are relatively prime. // // In Mathematica, the function can be evaluated by: // // EulerPhi[n] // // First values: // // N PHI(N) // // 1 1 // 2 1 // 3 2 // 4 2 // 5 4 // 6 2 // 7 6 // 8 4 // 9 6 // 10 4 // 11 10 // 12 4 // 13 12 // 14 6 // 15 8 // 16 8 // 17 16 // 18 6 // 19 18 // 20 8 // // Formula: // // PHI(U*V) = PHI(U) * PHI(V) if U and V are relatively prime. // // PHI(P^K) = P^(K-1) * ( P - 1 ) if P is prime. // // PHI(N) = N * Product ( P divides N ) ( 1 - 1 / P ) // // N = Sum ( D divides N ) PHI(D). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the PHI function. // // Output, int &C, the value of the PHI function. // { # define N_MAX 20 static int c_vec[N_MAX] = { 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 8, 8, 16, 20, 16, 40, 148, 200, 200, 648 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 100, 149, 500, 750, 999 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void pi_values ( int &n_data, int &n, int &p ) //****************************************************************************80 // // Purpose: // // pi_values() returns values of the Pi function. // // Discussion: // // Pi[n] is the number of primes less than or equal to n. // // In Mathematica, the function can be evaluated by: // // PrimePi[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 December 2022 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the argument. // // int &P, the value of the function. // { # define N_MAX 21 static int n_vec[N_MAX] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576 }; static int p_vec[N_MAX] = { 0, 1, 2, 4, 6, 11, 18, 31, 54, 97, 172, 309, 564, 1028, 1900, 3512, 6542, 12251, 23000, 43390, 82025 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; p = 0; } else { n = n_vec[n_data-1]; p = p_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void poisson_cdf_values ( int &n_data, double &a, int &x, double &fx ) //****************************************************************************80 // // Purpose: // // poisson_cdf_values() returns some values of the Poisson CDF. // // Discussion: // // CDF(X)(A) is the probability of at most X successes in unit time, // given that the expected mean number of successes is A. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = PoissonDistribution [ a ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 653-658. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, the parameter of the function. // // Output, int *X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double a_vec[N_MAX] = { 0.02E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 2.00E+00, 2.00E+00, 2.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00 }; static double fx_vec[N_MAX] = { 0.9801986733067553E+00, 0.9048374180359596E+00, 0.9953211598395555E+00, 0.6065306597126334E+00, 0.9097959895689501E+00, 0.9856123220330293E+00, 0.3678794411714423E+00, 0.7357588823428846E+00, 0.9196986029286058E+00, 0.9810118431238462E+00, 0.1353352832366127E+00, 0.4060058497098381E+00, 0.6766764161830635E+00, 0.8571234604985470E+00, 0.6737946999085467E-02, 0.4042768199451280E-01, 0.1246520194830811E+00, 0.2650259152973617E+00, 0.4404932850652124E+00, 0.6159606548330631E+00, 0.7621834629729387E+00 }; static int x_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; x = 0; fx = 0.0; } else { a = a_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void polylogarithm_values ( int &n_data, int &n, double &z, double &fx ) //****************************************************************************80 // // Purpose: // // polylogarithm_values() returns some values of the polylogarithm. // // Discussion: // // The polylogarithm of n and z is defined as // // f[n,z] = Sum ( 1 <= k < +oo ) z^k / k^n // // In Mathematica, the function can be evaluated by: // // PolyLog[n,z] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the exponent of the denominator. // // Output, double &Z, the base of the numerator. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double fx_vec[N_MAX] = { 0.1644934066848226E+01, 0.1202056903159594E+01, 0.1000994575127818E+01, 0.5822405264650125E+00, 0.5372131936080402E+00, 0.5002463206060068E+00, 0.3662132299770635E+00, 0.3488278611548401E+00, 0.3334424797228716E+00, 0.1026177910993911E+00, 0.1012886844792230E+00, 0.1000097826564961E+00 }; static int n_vec[N_MAX] = { 2, 3, 10, 2, 3, 10, 2, 3, 10, 2, 3, 10 }; static double z_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.3333333333333333E+00, 0.3333333333333333E+00, 0.3333333333333333E+00, 0.1000000000000000E+00, 0.1000000000000000E+00, 0.1000000000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; z = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; z = z_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void polyomino_chiral_count_values ( int &n_data, int &order, long long int &number ) //****************************************************************************80 // // Purpose: // // polyomino_chiral_count_values() counts chiral polyominoes (allowing holes). // // Discussion: // // Polyominoes are connected planar shapes formed by adjoining unit squares. // // The number of unit squares in a polyomino is its order. // // If we do not ignore reflections, but ignore rotations when comparing // then we are considering the class of "chiral" polyominoes. In that case, // for instance, there are 18 fixed polyominoes of order 5. // // As the order increases, the number of polyominoes grows very rapidly. // The list offered here goes no further than order 28, but the later // numbers in the list are too large to represent as 32 byte integers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 May 2018 // // Author: // // John Burkardt // // Reference: // // Solomon Golomb, // Polyominoes: Puzzles, Patterns, Problems, and Packings, // Princeton University Press, 1996, // ISBN: 9780691024448 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &ORDER, the order of a polyomino. // // Output, long long int &NUMBER, the number of chiral polyominos // of this order. // { # define N_MAX 31 static long long int number_vec[N_MAX] = { 1L, 1L, 1L, 2L, 7L, 18L, 60L, 196L, 704L, 2500L, 9189L, 33896L, 126759L, 476270L, 1802312L, 6849777L, 26152418L, 100203194L, 385221143L, 1485200848L, 5741256764L, 22245940545L, 86383382827L, 336093325058L, 1309998125640L, 5114451441106L, 19998172734786L, 78306011677182L, 307022182222506L, 1205243866707468L, 4736694001644862L }; static int order_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; order = 0; number = 0; } else { order = order_vec[n_data-1]; number = number_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void polyomino_fixed_count_values ( int &n_data, int &order, long long int &number ) //****************************************************************************80 // // Purpose: // // polyomino_fixed_count_values() counts fixed polyominoes (allowing holes). // // Discussion: // // Polyominoes are connected planar shapes formed by adjoining unit squares. // // The number of unit squares in a polyomino is its order. // // If we do not ignore reflections and rotations when comparing polyominoes, // then we are considering the class of "fixed" polyominoes. In that case, // for instance, there are 65 fixed polyominoes of order 5. // // As the order increases, the number of polyominoes grows very rapidly. // The list offered here goes no further than order 28, but the later // numbers in the list are too large to represent as 32 byte integers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 April 2018 // // Author: // // John Burkardt // // Reference: // // Solomon Golomb, // Polyominoes: Puzzles, Patterns, Problems, and Packings, // Princeton University Press, 1996, // ISBN: 9780691024448 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &ORDER, the order of a polyomino. // // Output, long long int &NUMBER, the number of fixed polyominos // of this order. // { # define N_MAX 29 static long long int number_vec[N_MAX] = { 1L, 1L, 2L, 6L, 19L, 63L, 216L, 760L, 2725L, 9910L, 36446L, 135268L, 505861L, 1903890L, 7204874L, 27394666L, 104592937L, 400795844L, 1540820542L, 5940738676L, 22964779660L, 88983512783L, 345532572678L, 1344372335524L, 5239988770268L, 20457802016011L, 79992676367108L, 313224032098244L, 1228088671826973L }; static int order_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; order = 0; number = 0; } else { order = order_vec[n_data-1]; number = number_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void polyomino_free_count_values ( int &n_data, int &order, long long int &number ) //****************************************************************************80 // // Purpose: // // polyomino_free_count_values() counts free polyominoes (allowing holes). // // Discussion: // // Polyominoes are connected planar shapes formed by adjoining unit squares. // // The number of unit squares in a polyomino is its order. // // If we ignore reflections and rotations when comparing polyominoes, // then we are considering the class of "free" polyominoes. In that case, // for instance, there are just 12 free polyominoes of order 5, the // so called "pentominoes". // // As the order increases, the number of polyominoes grows very rapidly. // The list offered here goes no further than order 28, but the later // numbers in the list are too large to represent as 32 byte integers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 April 2018 // // Author: // // John Burkardt // // Reference: // // Solomon Golomb, // Polyominoes: Puzzles, Patterns, Problems, and Packings, // Princeton University Press, 1996, // ISBN: 9780691024448 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &ORDER, the order of a polyomino. // // Output, long long int &NUMBER, the number of free polyominos of // this order. // { # define N_MAX 29 static long long int number_vec[N_MAX] = { 1L, 1L, 1L, 2L, 5L, 12L, 35L, 108L, 369L, 1285L, 4655L, 17073L, 63600L, 238591L, 901971L, 3426576L, 13079255L, 50107909L, 192622052L, 742624232L, 2870671950L, 11123060678L, 43191857688L, 168047007728L, 654999700403L, 2557227044764L, 9999088822075L, 39153010938487L, 153511100594603L }; static int order_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; order = 0; number = 0; } else { order = order_vec[n_data-1]; number = number_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void prandtl_values ( int &n_data, double &tc, double &p, double &pr ) //****************************************************************************80 // // Purpose: // // prandtl_values() returns some values of the Prandtl number. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, page 265. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &PR, the Prandtl number, dimensionless. // { # define N_MAX 35 static double pr_vec[N_MAX] = { 13.50E+00, 13.48E+00, 13.46E+00, 13.39E+00, 13.27E+00, 13.15E+00, 13.04E+00, 12.93E+00, 12.83E+00, 12.73E+00, 12.63E+00, 12.53E+00, 12.43E+00, 12.34E+00, 12.25E+00, 12.08E+00, 11.92E+00, 11.77E+00, 11.62E+00, 11.48E+00, 11.36E+00, 11.23E+00, 11.12E+00, 10.91E+00, 10.72E+00, 10.55E+00, 6.137E+00, 3.555E+00, 2.378E+00, 1.000E+00, 0.974E+00, 0.960E+00, 0.924E+00, 0.899E+00, 0.882E+00 }; static double p_vec[N_MAX] = { 1.0E+00, 5.0E+00, 10.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 125.0E+00, 150.0E+00, 175.0E+00, 200.0E+00, 225.0E+00, 250.0E+00, 275.0E+00, 300.0E+00, 350.0E+00, 400.0E+00, 450.0E+00, 500.0E+00, 550.0E+00, 600.0E+00, 650.0E+00, 700.0E+00, 800.0E+00, 900.0E+00, 1000.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 150.0E+00, 200.0E+00, 400.0E+00, 600.0E+00, 800.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; pr = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; pr = pr_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void prime_values ( int &n_data, int &n, int &p ) //****************************************************************************80 // // Purpose: // // prime_values() returns values of the prime function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Prime[n] // // Thanks to Morten Welinder for pointing out that the index of 145253029 // is 8192000, 12 April 2013. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 April 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the index of the prime. // // Output, int &P, the value of the prime. // { # define N_MAX 24 static int n_vec[N_MAX] = { 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000, 512000, 1024000, 2048000, 4096000, 8192000 }; static int p_vec[N_MAX] = { 2, 3, 7, 19, 53, 131, 311, 719, 1619, 3671, 7919, 17389, 37813, 81799, 176081, 376127, 800573, 1698077, 3588941, 7559173, 15881419, 33283031, 69600977, 145253029 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; p = 0; } else { n = n_vec[n_data-1]; p = p_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void psat_values ( int &n_data, double &tc, double &p ) //****************************************************************************80 // // Purpose: // // psat_values() returns some values of the saturation pressure. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, pages 9-15. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the saturation pressure, in bar. // { # define N_MAX 12 static double p_vec[N_MAX] = { 0.0061173E+00, 0.0065716E+00, 0.0087260E+00, 0.12344E+00, 1.0132E+00, 2.3201E+00, 4.7572E+00, 15.537E+00, 39.737E+00, 85.838E+00, 165.21E+00, 220.55E+00 }; static double tc_vec[N_MAX] = { 0.100000E-01, 0.100000E+01, 0.500000E+01, 0.500000E+02, 0.100000E+03, 0.125000E+03, 0.150000E+03, 0.200000E+03, 0.250000E+03, 0.300000E+03, 0.350000E+03, 0.373976E+03 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void psi_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // psi_values() returns some values of the Psi or Digamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // PolyGamma[x] // // or // // Polygamma[0,x] // // PSI(X) = d ln ( Gamma ( X ) ) / d X = Gamma'(X) / Gamma(X) // // PSI(1) = -Euler's constant. // // PSI(X+1) = PSI(X) + 1 / X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 June 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { -10.42375494041108E+00, -5.289039896592188E+00, -3.502524222200133E+00, -2.561384544585116E+00, -1.963510026021423E+00, -1.540619213893190E+00, -1.220023553697935E+00, -0.9650085667061385E+00, -0.7549269499470514E+00, -0.5772156649015329E+00, -0.4237549404110768E+00, -0.2890398965921883E+00, -0.1691908888667997E+00, -0.6138454458511615E-01, 0.3648997397857652E-01, 0.1260474527734763E+00, 0.2085478748734940E+00, 0.2849914332938615E+00, 0.3561841611640597E+00, 0.4227843350984671E+00 }; static double x_vec[N_MAX] = { 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void r8_factorial_values ( int &n_data, int &n, double &fn ) //****************************************************************************80 // // Purpose: // // r8_factorial_values() returns values of the real factorial function. // // Discussion: // // 0! = 1 // I! = Product ( 1 <= J <= I ) J // // Although the factorial is an integer valued function, it quickly // becomes too large for an integer to hold. This routine still accepts // an integer as the input argument, but returns the function value // as a real number. // // In Mathematica, the function can be evaluated by: // // n! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, double &FN, the value of the function. // { # define N_MAX 25 static double fn_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.6000000000000000E+01, 0.2400000000000000E+02, 0.1200000000000000E+03, 0.7200000000000000E+03, 0.5040000000000000E+04, 0.4032000000000000E+05, 0.3628800000000000E+06, 0.3628800000000000E+07, 0.3991680000000000E+08, 0.4790016000000000E+09, 0.6227020800000000E+10, 0.8717829120000000E+11, 0.1307674368000000E+13, 0.2092278988800000E+14, 0.3556874280960000E+15, 0.6402373705728000E+16, 0.1216451004088320E+18, 0.2432902008176640E+19, 0.1551121004333099E+26, 0.3041409320171338E+65, 0.9332621544394415E+158, 0.5713383956445855E+263 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 50, 100, 150 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; fn = 0.0; } else { n = n_vec[n_data-1]; fn = fn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void r8_factorial_log_values ( int &n_data, int &n, double &fn ) //****************************************************************************80 // // Purpose: // // r8_factorial_log_values() returns values of log(n!). // // Discussion: // // The function log(n!) can be written as // // log(n!) = sum ( 1 <= i <= n ) log ( i ) // // In Mathematica, the function can be evaluated by: // // Log[n!] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. The routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the argument of the function. // // double &FN, the value of the function. // { # define N_MAX 27 static double fn_vec[N_MAX] = { 0.0000000000000000E+00, 0.0000000000000000E+00, 0.6931471805599453E+00, 0.1791759469228055E+01, 0.3178053830347946E+01, 0.4787491742782046E+01, 0.6579251212010101E+01, 0.8525161361065414E+01, 0.1060460290274525E+02, 0.1280182748008147E+02, 0.1510441257307552E+02, 0.1750230784587389E+02, 0.1998721449566189E+02, 0.2255216385312342E+02, 0.2519122118273868E+02, 0.2789927138384089E+02, 0.3067186010608067E+02, 0.3350507345013689E+02, 0.3639544520803305E+02, 0.3933988418719949E+02, 0.4233561646075349E+02, 0.5800360522298052E+02, 0.1484777669517730E+03, 0.3637393755555635E+03, 0.6050201058494237E+03, 0.2611330458460156E+04, 0.5912128178488163E+04 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 50, 100, 150, 500, 1000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; fn = 0.0; } else { n = n_vec[n_data-1]; fn = fn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void r8_factorial2_values ( int &n_data, int &n, double &f ) //****************************************************************************80 // // Purpose: // // r8_factorial2_values() returns values of the double factorial function. // // Formula: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * * 1 ) (N odd) // // In Mathematica, the function can be evaluated by: // // n!! // // Example: // // N N!! // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 February 2015 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, page 16. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, double &F, the value of the function. // { # define N_MAX 16 static double f_vec[N_MAX] = { 1.0, 1.0, 2.0, 3.0, 8.0, 15.0, 48.0, 105.0, 384.0, 945.0, 3840.0, 10395.0, 46080.0, 135135.0, 645120.0, 2027025.0 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; f = 0.0; } else { n = n_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void r8_fall_values ( int &n_data, double &x, int &n, double &f ) //****************************************************************************80 // // Purpose: // // r8_fall_values() returns some values of the falling factorial function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // FactorialPower[X,Y] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 December 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, int &N, the arguments of the function. // // Output, double &F, the value of the function. // { # define N_MAX 15 static double f_vec[N_MAX] = { 120.0000000000000, 163.1601562500000, 216.5625000000000, 281.6601562500000, 360.0000000000000, 1.000000000000000, 7.500000000000000, 48.75000000000000, 268.1250000000000, 1206.562500000000, 4222.968750000000, 10557.42187500000, 15836.13281250000, 7918.066406250000, -3959.03320312500 }; static int n_vec[N_MAX] = { 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; static double x_vec[N_MAX] = { 5.00, 5.25, 5.50, 5.75, 6.00, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; n = 0; f = 0.0; } else { x = x_vec[n_data-1]; n = n_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void r8_rise_values ( int &n_data, double &x, int &n, double &f ) //****************************************************************************80 // // Purpose: // // r8_rise_values() returns some values of the rising factorial function. // // Discussion: // // Pochhammer(X,Y) = Gamma(X+Y) / Gamma(X) // // For integer arguments, Pochhammer(M,N) = ( M + N - 1 )! / ( N - 1 )! // // In Mathematica, the function can be evaluated by: // // Pochhammer[X,Y] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 December 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, int &N, the arguments of the function. // // Output, double &F, the value of the function. // { # define N_MAX 15 static double f_vec[N_MAX] = { 1680.000000000000, 1962.597656250000, 2279.062500000000, 2631.972656250000, 3024.000000000000, 1.000000000000000, 7.500000000000000, 63.75000000000000, 605.6250000000000, 6359.062500000000, 73129.21875000000, 914115.2343750000, 1.234055566406250E+07, 1.789380571289063E+08, 2.773539885498047E+09 }; static int n_vec[N_MAX] = { 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; static double x_vec[N_MAX] = { 5.00, 5.25, 5.50, 5.75, 6.00, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50, 7.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; n = 0; f = 0.0; } else { x = x_vec[n_data-1]; n = n_vec[n_data-1]; f = f_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void rayleigh_cdf_values ( int &n_data, double &sigma, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // rayleigh_cdf_values() returns some values of the Rayleigh CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = RayleighDistribution [ sigma ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &SIGMA, the shape parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 9 static double fx_vec[N_MAX] = { 0.8646647167633873E+00, 0.9996645373720975E+00, 0.9999999847700203E+00, 0.999999999999987E+00, 0.8646647167633873E+00, 0.3934693402873666E+00, 0.1992625970831920E+00, 0.1175030974154046E+00, 0.7688365361336422E-01 }; static double sigma_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; sigma = 0.0; x = 0.0; fx = 0.0; } else { sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void scaled_inverse_chi_square_pdf_values ( int &n_data, double &df, double &xi, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // scaled_inverse_chi_square_pdf_values(): scaled inverse Chi-Square PDF values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &DF, the degrees of freedom. // // Output, double &XI, the scale parameter. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double df_vec[N_MAX] = { 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0 }; static double fx_vec[N_MAX] = { 0.7322491280963244, 0.3368973499542734, 0.9036119633409063, 1.026062482798735, 0.5968580144169457, 0.8953274901880941, 0.08500366602520342, 0.004539992976248485, 0.3661245640481622, 0.1684486749771367, 0.4518059816704532, 0.5130312413993675, 0.0008099910956089117, 4.122307244877116E-07, 0.04250183301260171, 0.002269996488124243, 0.1830622820240811, 0.08422433748856834 }; static double x_vec[N_MAX] = { 0.10, 0.10, 0.20, 0.20, 0.40, 0.40, 0.10, 0.10, 0.20, 0.20, 0.40, 0.40, 0.10, 0.10, 0.20, 0.20, 0.40 }; static double xi_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; df = 0.0; xi = 0.0; x = 0.0; fx = 0.0; } else { df = df_vec[n_data-1]; xi = xi_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void secvir_values ( int &n_data, double &tc, double &vir ) //****************************************************************************80 // // Purpose: // // secvir_values() returns some values of the second virial coefficient. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, pages 24-25. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &VIR, the second virial coefficient, in // m^3/kg. // { # define N_MAX 19 static double tc_vec[N_MAX] = { 0.0E+00, 5.0E+00, 10.0E+00, 20.0E+00, 30.0E+00, 40.0E+00, 60.0E+00, 90.0E+00, 120.0E+00, 150.0E+00, 180.0E+00, 210.0E+00, 240.0E+00, 300.0E+00, 400.0E+00, 500.0E+00, 700.0E+00, 1000.0E+00, 2000.0E+00 }; static double vir_vec[N_MAX] = { -98.96E+00, -90.08E+00, -82.29E+00, -69.36E+00, -59.19E+00, -51.07E+00, -39.13E+00, -27.81E+00, -20.83E+00, -16.21E+00, -12.98E+00, -10.63E+00, -8.85E+00, -6.39E+00, -4.03E+00, -2.71E+00, -1.32E+00, -0.39E+00, 0.53E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; vir = 0.0; } else { tc = tc_vec[n_data-1]; vir = vir_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void shi_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // shi_values() returns some values of the hyperbolic sine integral function. // // Discussion: // // SHI(X) = integral ( 0 <= T <= X ) sinh ( T ) / T dt // // In Mathematica, the function can be evaluated by: // // SinhIntegral[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.5069967498196672, 0.6121303965633808, 0.7193380189288998, 0.8289965633789345, 0.9414978265114335, 1.057250875375729, 1.300250361022057, 1.561713388361002, 1.845814141358504, 2.157290343425901, 2.501567433354976, 3.549340406224435, 4.973440475859807, 6.966162067504942, 9.817326911233034, 13.96788504934715 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void si_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // si_values() returns some values of the sine integral function. // // Discussion: // // SI(X) = integral ( 0 <= T <= X ) sin ( T ) / T dt // // In Mathematica, the function can be evaluated by: // // SinIntegral[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 16 static double fx_vec[N_MAX] = { 0.4931074180430667E+00, 0.5881288096080801E+00, 0.6812222391166113E+00, 0.7720957854819966E+00, 0.8604707107452929E+00, 0.9460830703671830E+00, 0.1108047199013719E+01, 0.1256226732779218E+01, 0.1389180485870438E+01, 0.1505816780255579E+01, 0.1605412976802695E+01, 0.1778520173443827E+01, 0.1848652527999468E+01, 0.1833125398665997E+01, 0.1758203138949053E+01, 0.1654140414379244E+01 }; static double x_vec[N_MAX] = { 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.2E+00, 1.4E+00, 1.6E+00, 1.8E+00, 2.0E+00, 2.5E+00, 3.0E+00, 3.5E+00, 4.0E+00, 4.5E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sigma_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // sigma_values() returns some values of the Sigma function. // // Discussion: // // SIGMA(N) is the sum of the distinct divisors of N, including 1 and N. // // In Mathematica, the function can be evaluated by: // // DivisorSigma[1,n] // // First values: // // N SIGMA(N) // // 1 1 // 2 3 // 3 4 // 4 7 // 5 6 // 6 12 // 7 8 // 8 15 // 9 13 // 10 18 // 11 12 // 12 28 // 13 14 // 14 24 // 15 24 // 16 31 // 17 18 // 18 39 // 19 20 // 20 42 // // Formula: // // SIGMA(U*V) = SIGMA(U) * SIGMA(V) if U and V are relatively prime. // // SIGMA(P^K) = ( P^(K+1) - 1 ) / ( P - 1 ) if P is prime. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the Sigma function. // // Output, int &C, the value of the Sigma function. // { # define N_MAX 20 static int c_vec[N_MAX] = { 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 72, 128, 255, 176, 576, 1170, 618, 984, 2232, 2340 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 30, 127, 128, 129, 210, 360, 617, 815, 816, 1000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sin_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // sin_values() returns some values of the sine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sin[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 13 static double fx_vec[N_MAX] = { 0.00000000000000000000, 0.25881904510252076235, 0.47942553860420300027, 0.50000000000000000000, 0.70710678118654752440, 0.84147098480789650665, 0.86602540378443864676, 1.00000000000000000000, 0.90929742682568169540, 0.14112000805986722210, 0.00000000000000000000, -0.75680249530792825137, -0.95892427466313846889 }; static double x_vec[N_MAX] = { 0.0000000000000000000, 0.26179938779914943654, 0.50000000000000000000, 0.52359877559829887308, 0.78539816339744830962, 1.0000000000000000000, 1.0471975511965977462, 1.5707963267948966192, 2.0000000000000000000, 3.0000000000000000000, 3.1415926535897932385, 4.0000000000000000000, 5.0000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sin_degree_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // sin_degree_values(): the sine function with argument in degrees. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sin[x Degree] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 March 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { -0.087155742747658173558, 0.000000000000000000000, 0.017452406437283512819, 0.034899496702500971646, 0.052335956242943832722, 0.069756473744125300776, 0.087155742747658173558, 0.17364817766693034885, 0.25881904510252076235, 0.50000000000000000000, 0.70710678118654752440, 0.86602540378443864676, 0.96592582628906828675, 0.99619469809174553230, 0.99756405025982424761, 0.99862953475457387378, 0.99939082701909573001, 0.99984769515639123916, 1.0000000000000000000, 0.99984769515639123916, 0.96592582628906828675, 0.00000000000000000000 }; static double x_vec[N_MAX] = { -5.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 30.0, 45.0, 60.0, 75.0, 85.0, 86.0, 87.0, 88.0, 89.0, 90.0, 91.0, 105.0, 180.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sin_power_int_values ( int &n_data, double &a, double &b, int &n, double &fx ) //****************************************************************************80 // // Purpose: // // sin_power_int_values() returns some values of the sine power integral. // // Discussion: // // The function has the form // // SIN_POWER_INT(A,B,N) = Integral ( A <= T <= B ) ( sin(T) )^N dt // // In Mathematica, the function can be evaluated by: // // Integrate [ ( Sin[x] )^n, { x, a, b } ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 September 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, the limits of integration. // // Output, int &N, the power. // // Output, double &FX, the value of the function. // { # define N_MAX 10 static double a_vec[N_MAX] = { 0.10E+02, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.10E+01, 0.00E+00, 0.00E+00 }; static double b_vec[N_MAX] = { 0.20E+02, 0.10E+01, 0.10E+01, 0.10E+01, 0.10E+01, 0.10E+01, 0.20E+01, 0.20E+01, 0.10E+01, 0.10E+01 }; static double fx_vec[N_MAX] = { 0.10000000000000000000E+02, 0.45969769413186028260E+00, 0.27267564329357957615E+00, 0.17894056254885809051E+00, 0.12402556531520681830E+00, 0.88974396451575946519E-01, 0.90393123848149944133E+00, 0.81495684202992349481E+00, 0.21887522421729849008E-01, 0.17023439374069324596E-01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 5, 5, 10, 11 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; n = 0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; n = n_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sinh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // sinh_values() returns some values of the hyperbolic sine function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Sinh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { -74.203210577788758977, -1.1752011936438014569, 0.00000000000000000000, 0.10016675001984402582, 0.20133600254109398763, 0.30452029344714261896, 0.41075232580281550854, 0.52109530549374736162, 0.63665358214824127112, 0.75858370183953350346, 0.88810598218762300657, 1.0265167257081752760, 1.1752011936438014569, 3.6268604078470187677, 10.017874927409901899, 27.289917197127752449, 74.203210577788758977, 11013.232874703393377 }; static double x_vec[N_MAX] = { -5.0, -1.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void six_j_values ( int &n_data, double &j1, double &j2, double &j3, double &j4, double &j5, double &j6, double &fx ) //****************************************************************************80 // // Purpose: // // six_j_values() returns some values of the Wigner 6J function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // SixJSymbol[{j1,j2,j3},{j4,j5,j6}] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 February 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &J1, &J2, &J3, &J4, &J5, &J6, the arguments // of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 15 static double fx_vec[N_MAX] = { 0.03490905138373300, -0.03743025039659792, 0.01890866390959560, 0.007342448254928643, -0.02358935185081794, 0.01913476955215437, 0.001288017397724172, -0.01930018366290527, 0.01677305949382889, 0.005501147274850949, -0.02135439790896831, 0.003460364451435387, 0.02520950054795585, 0.01483990561221713, 0.002708577680633186 }; static double j1_vec[N_MAX] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0 }; static double j2_vec[N_MAX] = { 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0 }; static double j3_vec[N_MAX] = { 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 }; static double j4_vec[N_MAX] = { 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5 }; static double j5_vec[N_MAX] = { 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5 }; static double j6_vec[N_MAX] = { 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; j1 = 0.0; j2 = 0.0; j3 = 0.0; j4 = 0.0; j5 = 0.0; j6 = 0.0; fx = 0.0; } else { j1 = j1_vec[n_data-1]; j2 = j2_vec[n_data-1]; j3 = j3_vec[n_data-1]; j4 = j4_vec[n_data-1]; j5 = j5_vec[n_data-1]; j6 = j6_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sound_values ( int &n_data, double &tc, double &p, double &c ) //****************************************************************************80 // // Purpose: // // sound_values() returns some values of the speed of sound. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, page 238-246. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &C, the speed of sound, in m/s. // { # define N_MAX 20 static double c_vec[N_MAX] = { 1401.0E+00, 472.8E+00, 533.7E+00, 585.7E+00, 609.5E+00, 632.2E+00, 674.6E+00, 713.9E+00, 802.0E+00, 880.1E+00, 1017.8E+00, 1115.9E+00, 1401.7E+00, 1402.6E+00, 1409.6E+00, 1418.1E+00, 1443.1E+00, 1484.6E+00, 1577.1E+00, 1913.4E+00 }; static double p_vec[N_MAX] = { 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 5.0E+00, 10.0E+00, 50.0E+00, 100.0E+00, 250.0E+00, 500.0E+00, 1000.0E+00, 2500.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 100.0E+00, 200.0E+00, 300.0E+00, 350.0E+00, 400.0E+00, 500.0E+00, 600.0E+00, 850.0E+00, 1100.0E+00, 1600.0E+00, 2000.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; c = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sphere_unit_area_values ( int &n_data, int &n, double &area ) //****************************************************************************80 // // Purpose: // // sphere_unit_area_values() returns some areas of the unit sphere in ND. // // Discussion: // // The formula for the surface area of the unit sphere in N dimensions is: // // Sphere_Unit_Area ( N ) = 2 * PI^(N/2) / Gamma ( N / 2 ) // // Some values of the function include: // // N Area // // 2 2 * PI // 3 ( 4 / ) * PI // 4 ( 2 / 1) * PI^2 // 5 ( 8 / 3) * PI^2 // 6 ( 1 / 1) * PI^3 // 7 (16 / 15) * PI^3 // 8 ( 1 / 3) * PI^4 // 9 (32 / 105) * PI^4 // 10 ( 1 / 12) * PI^5 // // For the unit sphere, Area(N) = N * Volume(N) // // In Mathematica, the function can be evaluated by: // // 2 * Pi^(n/2) / Gamma[n/2] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. // On input, if N_DATA is 0, the first test data is returned, and // N_DATA is set to the index of the test data. On each subsequent // call, N_DATA is incremented and that test data is returned. When // there is no more test data, N_DATA is set to 0. // // Output, int &N, the spatial dimension. // // Output, double &AREA, the area of the unit sphere // in that dimension. // { # define N_MAX 20 static double area_vec[N_MAX] = { 0.2000000000000000E+01, 0.6283185307179586E+01, 0.1256637061435917E+02, 0.1973920880217872E+02, 0.2631894506957162E+02, 0.3100627668029982E+02, 0.3307336179231981E+02, 0.3246969701133415E+02, 0.2968658012464836E+02, 0.2550164039877345E+02, 0.2072514267328890E+02, 0.1602315322625507E+02, 0.1183817381218268E+02, 0.8389703410491089E+01, 0.5721649212349567E+01, 0.3765290085742291E+01, 0.2396678817591364E+01, 0.1478625959000308E+01, 0.8858104195716824E+00, 0.5161378278002812E+00 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; area = 0.0; } else { n = n_vec[n_data-1]; area = area_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sphere_unit_volume_values ( int &n_data, int &n, double &volume ) //****************************************************************************80 // // Purpose: // // sphere_unit_volume_values() returns some volumes of the unit sphere in ND. // // Discussion: // // The formula for the volume of the unit sphere in N dimensions is // // Volume(N) = 2 * PI^(N/2) / ( N * Gamma ( N / 2 ) ) // // This function satisfies the relationships: // // Volume(N) = 2 * PI * Volume(N-2) / N // Volume(N) = Area(N) / N // // Some values of the function include: // // N Volume // // 1 1 // 2 1 * PI // 3 ( 4 / 3) * PI // 4 ( 1 / 2) * PI^2 // 5 ( 8 / 15) * PI^2 // 6 ( 1 / 6) * PI^3 // 7 (16 / 105) * PI^3 // 8 ( 1 / 24) * PI^4 // 9 (32 / 945) * PI^4 // 10 ( 1 / 120) * PI^5 // // In Mathematica, the function can be evaluated by: // // 2 * Pi^(n/2) / ( n * Gamma[n/2] ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. // On input, if N_DATA is 0, the first test data is returned, and // N_DATA is set to the index of the test data. On each subsequent // call, N_DATA is incremented and that test data is returned. When // there is no more test data, N_DATA is set to 0. // // Output, int &N, the spatial dimension. // // Output, double &VOLUME, the volume of the unit // sphere in that dimension. // { # define N_MAX 20 static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; static double volume_vec[N_MAX] = { 0.2000000000000000E+01, 0.3141592653589793E+01, 0.4188790204786391E+01, 0.4934802200544679E+01, 0.5263789013914325E+01, 0.5167712780049970E+01, 0.4724765970331401E+01, 0.4058712126416768E+01, 0.3298508902738707E+01, 0.2550164039877345E+01, 0.1884103879389900E+01, 0.1335262768854589E+01, 0.9106287547832831E+00, 0.5992645293207921E+00, 0.3814432808233045E+00, 0.2353306303588932E+00, 0.1409811069171390E+00, 0.8214588661112823E-01, 0.4662160103008855E-01, 0.2580689139001406E-01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; volume = 0.0; } else { n = n_vec[n_data-1]; volume = volume_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void spherical_harmonic_values ( int &n_data, int &l, int &m, double &theta, double &phi, double &yr, double &yi ) //****************************************************************************80 // // Purpose: // // spherical_harmonic_values() returns values of spherical harmonic functions. // // Discussion: // // In Mathematica, the function can be evaluated by // // SphericalHarmonicY [ l, m, theta, phi ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 1998. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &L, int &M, double &THETA, &PHI, the arguments // of the function. // // Output, double &YR, &YI, the real and imaginary parts of // the function. // { # define N_MAX 20 static int l_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3 }; static int m_vec[N_MAX] = { 0, 0, 1, 2, 3, 5, 4, 3, 2, 1, 2, 2, 2, 2, 2, -1, -1, -1, -1, -1 }; static double phi_vec[N_MAX] = { 0.1047197551196598E+01, 0.1047197551196598E+01, 0.1047197551196598E+01, 0.1047197551196598E+01, 0.1047197551196598E+01, 0.6283185307179586E+00, 0.6283185307179586E+00, 0.6283185307179586E+00, 0.6283185307179586E+00, 0.6283185307179586E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.4487989505128276E+00, 0.8975979010256552E+00, 0.1346396851538483E+01, 0.1795195802051310E+01, 0.2243994752564138E+01 }; static double theta_vec[N_MAX] = { 0.5235987755982989E+00, 0.5235987755982989E+00, 0.5235987755982989E+00, 0.5235987755982989E+00, 0.5235987755982989E+00, 0.2617993877991494E+00, 0.2617993877991494E+00, 0.2617993877991494E+00, 0.2617993877991494E+00, 0.2617993877991494E+00, 0.6283185307179586E+00, 0.1884955592153876E+01, 0.3141592653589793E+01, 0.4398229715025711E+01, 0.5654866776461628E+01, 0.3926990816987242E+00, 0.3926990816987242E+00, 0.3926990816987242E+00, 0.3926990816987242E+00, 0.3926990816987242E+00 }; static double yi_vec[N_MAX] = { 0.0000000000000000E+00, 0.0000000000000000E+00, -0.2897056515173922E+00, 0.1916222768312404E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.3739289485283311E-02, -0.4219517552320796E-01, 0.1876264225575173E+00, -0.3029973424491321E+00, 0.4139385503112256E+00, -0.1003229830187463E+00, 0.0000000000000000E+00, -0.1003229830187463E+00, 0.4139385503112256E+00, -0.1753512375142586E+00, -0.3159720118970196E+00, -0.3940106541811563E+00, -0.3940106541811563E+00, -0.3159720118970196E+00 }; static double yr_vec[N_MAX] = { 0.2820947917738781E+00, 0.4231421876608172E+00, -0.1672616358893223E+00, -0.1106331731112457E+00, 0.1354974113737760E+00, 0.5390423109043568E-03, -0.5146690442951909E-02, 0.1371004361349490E-01, 0.6096352022265540E-01, -0.4170400640977983E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.3641205966137958E+00, 0.2519792711195075E+00, 0.8993036065704300E-01, -0.8993036065704300E-01, -0.2519792711195075E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; l = 0; m = 0; theta = 0.0; phi = 0.0; yr = 0.0; yi = 0.0; } else { l = l_vec[n_data-1]; m = m_vec[n_data-1]; theta = theta_vec[n_data-1]; phi = phi_vec[n_data-1]; yr = yr_vec[n_data-1]; yi = yi_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void sqrt_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // sqrt_values() returns some values of the square root function. // // Discussion: // // SQRT(X) = positive real number Y such that Y * Y = X. // // In Mathematica, the function can be evaluated by: // // Sqrt[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output double FX, the value of the function. // { # define N_MAX 14 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, 0.9000000040950000E-04, 0.3000000000000000E+00, 0.3162277660168379E+00, 0.6324555320336759E+00, 0.1000000000000000E+01, 0.1414213562373095E+01, 0.1732050807568877E+01, 0.1772453850905516E+01, 0.4358898943540674E+01, 0.5385164807134504E+01, 0.8426149773176359E+01, 0.9848857801796105E+01, 0.1111111106055556E+05 }; static double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.8100000073710001E-08, 0.9000000000000000E-01, 0.1000000000000000E+00, 0.4000000000000000E+00, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3141592653589793E+01, 0.1900000000000000E+02, 0.2900000000000000E+02, 0.7100000000000000E+02, 0.9700000000000000E+02, 0.1234567890000000E+09 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void stirling1_values ( int &n_data, int &n, int &m, int &fx ) //****************************************************************************80 // // Purpose: // // stirling1_values() returns some values of the Stirling numbers, kind 1. // // Discussion: // // The absolute value of the Stirling number S1(N,M) gives the number // of permutations on N objects having exactly M cycles, while the // sign of the Stirling number records the sign (odd or even) of // the permutations. For example, there are six permutations on 3 objects: // // A B C 3 cycles (A) (B) (C) // A C B 2 cycles (A) (BC) // B A C 2 cycles (AB) (C) // B C A 1 cycle (ABC) // C A B 1 cycle (ABC) // C B A 2 cycles (AC) (B) // // There are // // 2 permutations with 1 cycle, and S1(3,1) = 2 // 3 permutations with 2 cycles, and S1(3,2) = -3, // 1 permutation with 3 cycles, and S1(3,3) = 1. // // Since there are N! permutations of N objects, the sum of the absolute // values of the Stirling numbers in a given row, // // sum ( 1 <= I <= N ) abs ( S1(N,I) ) = N! // // First terms: // // N/M: 1 2 3 4 5 6 7 8 // // 1 1 0 0 0 0 0 0 0 // 2 -1 1 0 0 0 0 0 0 // 3 2 -3 1 0 0 0 0 0 // 4 -6 11 -6 1 0 0 0 0 // 5 24 -50 35 -10 1 0 0 0 // 6 -120 274 -225 85 -15 1 0 0 // 7 720 -1764 1624 -735 175 -21 1 0 // 8 -5040 13068 -13132 6769 -1960 322 -28 1 // // In Mathematica, the function can be evaluated by: // // StirlingS1[n,m] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, &M, the arguments of the function. // // Output, int &FX, the value of the function. // { # define N_MAX 16 static int fx_vec[N_MAX] = { 0, 1, -3, 11, -50, 274, -1764, 13068, -109584, 1026576, -13132, 6769, -1960, 322, -28, 1 }; static int m_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8, 8, 8, 8, 8 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; fx = 0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void stirling2_values ( int &n_data, int &n, int &m, int &fx ) //****************************************************************************80 // // Purpose: // // stirling2_values() returns some values of the Stirling numbers, kind 2. // // Discussion: // // S2(N,M) represents the number of distinct partitions of N elements // into M nonempty sets. For a fixed N, the sum of the Stirling // numbers S2(N,M) is represented by B(N), called "Bell's number", // and represents the number of distinct partitions of N elements. // // For example, with 4 objects, there are: // // 1 partition into 1 set: // // (A,B,C,D) // // 7 partitions into 2 sets: // // (A,B,C) (D) // (A,B,D) (C) // (A,C,D) (B) // (A) (B,C,D) // (A,B) (C,D) // (A,C) (B,D) // (A,D) (B,C) // // 6 partitions into 3 sets: // // (A,B) (C) (D) // (A) (B,C) (D) // (A) (B) (C,D) // (A,C) (B) (D) // (A,D) (B) (C) // (A) (B,D) (C) // // 1 partition into 4 sets: // // (A) (B) (C) (D) // // So S2(4,1) = 1, S2(4,2) = 7, S2(4,3) = 6, S2(4,4) = 1, and B(4) = 15. // // // First terms: // // N/M: 1 2 3 4 5 6 7 8 // // 1 1 0 0 0 0 0 0 0 // 2 1 1 0 0 0 0 0 0 // 3 1 3 1 0 0 0 0 0 // 4 1 7 6 1 0 0 0 0 // 5 1 15 25 10 1 0 0 0 // 6 1 31 90 65 15 1 0 0 // 7 1 63 301 350 140 21 1 0 // 8 1 127 966 1701 1050 266 28 1 // // In Mathematica, the function can be evaluated by: // // StirlingS2[n,m] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, &M, the arguments of the function. // // Output, int &FX, the value of the function. // { # define N_MAX 16 static int fx_vec[N_MAX] = { 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 966, 1701, 1050, 266, 28, 1 }; static int m_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 8, 8, 8, 8, 8 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; fx = 0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void stromgen_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // stromgen_values() returns some values of the Stromgen function. // // Discussion: // // The function is defined by: // // STROMGEN(X) = integral ( 0 <= t <= X ) t^7 * exp(2*t) / (exp(t)-1)^3 dt // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Reference: // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.21901065985698662316E-15, 0.22481399438625244761E-12, 0.23245019579558857124E-09, 0.24719561475975007037E-06, 0.28992610989833245669E-03, 0.10698146390809715091E-01, 0.89707650964424730705E-01, 0.40049605719592888440E+00, 0.30504104398079096598E+01, 0.11367704858439426431E+02, 0.12960679405324786954E+02, 0.18548713944748505675E+02, 0.27866273821903121400E+02, 0.51963334071699323351E+02, 0.10861016747891228129E+03, 0.15378903316556621624E+03, 0.19302665532558721516E+03, 0.19636850166006541482E+03, 0.19651946766008214217E+03, 0.19651956920868316152E+03 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0078125000E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.1250000000E+00, 4.5000000000E+00, 5.0000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void struve_h0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // struve_h0_values() returns some values of the Struve H0 function. // // Discussion: // // The function is defined by: // // HO(x) = 2/pi * integral ( 0 <= t <= pi/2 ) sin ( x * cos ( t ) ) dt // // In Mathematica, the function can be evaluated by: // // StruveH[0,x] // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.12433974658847434366E-02, -0.49735582423748415045E-02, 0.39771469054536941564E-01, -0.15805246001653314198E+00, 0.56865662704828795099E+00, 0.66598399314899916605E+00, 0.79085884950809589255E+00, -0.13501457342248639716E+00, 0.20086479668164503137E+00, -0.11142097800261991552E+00, -0.17026804865989885869E+00, -0.13544931808186467594E+00, 0.94393698081323450897E-01, -0.10182482016001510271E+00, 0.96098421554162110012E-01, -0.85337674826118998952E-01, -0.76882290637052720045E-01, 0.47663833591418256339E-01, -0.70878751689647343204E-01, 0.65752908073352785368E-01 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0078125000E+00, 0.0625000000E+00, -0.2500000000E+00, 1.0000000000E+00, 1.2500000000E+00, 2.0000000000E+00, -4.0000000000E+00, 7.5000000000E+00, 11.0000000000E+00, 11.5000000000E+00, -16.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00, -30.0000000000E+00, 50.0000000000E+00, 75.0000000000E+00, -80.0000000000E+00, 100.0000000000E+00, -125.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void struve_h1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // struve_h1_values() returns some values of the Struve H1 function. // // Discussion: // // The function is defined by: // // H1(x) = 2*x/pi * integral ( 0 <= t <= pi/2 ) // sin ( x * cos ( t ) )^2 * sin ( t ) dt // // In Mathematica, the function can be evaluated by: // // StruveH[1,x] // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.80950369576367526071E-06, 0.12952009724113229165E-04, 0.82871615165407083021E-03, 0.13207748375849572564E-01, 0.19845733620194439894E+00, 0.29853823231804706294E+00, 0.64676372828356211712E+00, 0.10697266613089193593E+01, 0.38831308000420560970E+00, 0.74854243745107710333E+00, 0.84664854642567359993E+00, 0.58385732464244384564E+00, 0.80600584524215772824E+00, 0.53880362132692947616E+00, 0.72175037834698998506E+00, 0.58007844794544189900E+00, 0.60151910385440804463E+00, 0.70611511147286827018E+00, 0.61631110327201338454E+00, 0.62778480765443656489E+00 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0078125000E+00, 0.0625000000E+00, -0.2500000000E+00, 1.0000000000E+00, 1.2500000000E+00, 2.0000000000E+00, -4.0000000000E+00, 7.5000000000E+00, 11.0000000000E+00, 11.5000000000E+00, -16.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00, -30.0000000000E+00, 50.0000000000E+00, 75.0000000000E+00, -80.0000000000E+00, 100.0000000000E+00, -125.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void struve_l0_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // struve_l0_values() returns some values of the Struve L0 function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // StruveL[0,x] // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.12433985199262820188E-02, -0.19896526647882937004E-01, 0.79715713253115014945E-01, -0.32724069939418078025E+00, 0.71024318593789088874E+00, 0.19374337579914456612E+01, -0.11131050203248583431E+02, 0.16850062034703267148E+03, -0.28156522493745948555E+04, 0.89344618796978400815E+06, 0.11382025002851451057E+07, -0.23549701855860190304E+07, 0.43558282527641046718E+08, 0.49993516476037957165E+09, -0.57745606064408041689E+10, 0.78167229782395624524E+12, -0.14894774793419899908E+17, 0.29325537838493363267E+21, 0.58940770556098011683E+25, -0.12015889579125463605E+30 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0312500000E+00, 0.1250000000E+00, -0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, -4.0000000000E+00, 7.0000000000E+00, -10.0000000000E+00, 16.0000000000E+00, 16.2500000000E+00, -17.0000000000E+00, 20.0000000000E+00, 22.5000000000E+00, -25.0000000000E+00, 30.0000000000E+00, -40.0000000000E+00, 50.0000000000E+00, 60.0000000000E+00, -70.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void struve_l1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // struve_l1_values() returns some values of the Struve L1 function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // StruveL[1,x] // // The data was reported by McLeod. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.80950410749865126939E-06, 0.20724649092571514607E-03, 0.33191834066894516744E-02, 0.53942182623522663292E-01, 0.22676438105580863683E+00, 0.11027597873677158176E+01, 0.91692778117386847344E+01, 0.15541656652426660966E+03, 0.26703582852084829694E+04, 0.86505880175304633906E+06, 0.11026046613094942620E+07, 0.22846209494153934787E+07, 0.42454972750111979449E+08, 0.48869614587997695539E+09, 0.56578651292431051863E+10, 0.76853203893832108948E+12, 0.14707396163259352103E+17, 0.29030785901035567967E+21, 0.58447515883904682813E+25, 0.11929750788892311875E+30 }; static double x_vec[N_MAX] = { 0.0019531250E+00, -0.0312500000E+00, 0.1250000000E+00, -0.5000000000E+00, 1.0000000000E+00, 2.0000000000E+00, -4.0000000000E+00, 7.0000000000E+00, -10.0000000000E+00, 16.0000000000E+00, 16.2500000000E+00, -17.0000000000E+00, 20.0000000000E+00, 22.5000000000E+00, -25.0000000000E+00, 30.0000000000E+00, -40.0000000000E+00, 50.0000000000E+00, 60.0000000000E+00, -70.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void student_cdf_values ( int &n_data, double &c, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // student_cdf_values() returns some values of the Student CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = StudentTDistribution [ c ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 November 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &C, is usually called the number of // degrees of freedom of the distribution. C is typically an // integer, but that is not essential. It is required that // C be strictly positive. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 13 static double c_vec[N_MAX] = { 1.0, 2.0, 3.0, 4.0, 5.0, 2.0, 5.0, 2.0, 5.0, 2.0, 3.0, 4.0, 5.0 }; static double fx_vec[N_MAX] = { 0.6000231200328521, 0.6001080279134390, 0.6001150934648930, 0.6000995134721354, 0.5999341989834830, 0.7498859393137811, 0.7500879487671045, 0.9500004222186464, 0.9499969138365968, 0.9900012348724744, 0.9900017619355059, 0.9900004567580596, 0.9900007637471291 }; static double x_vec[N_MAX] = { 0.325, 0.289, 0.277, 0.271, 0.267, 0.816, 0.727, 2.920, 2.015, 6.965, 4.541, 3.747, 3.365 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; c = 0.0; x = 0.0; fx = 0.0; } else { c = c_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void student_noncentral_cdf_values ( int &n_data, int &df, double &lambda, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // student_noncentral_cdf_values() returns values of the noncentral Student CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NoncentralStudentTDistribution [ df, lambda ] // CDF [ dist, x ] // // Mathematica seems to have some difficulty computing this function // to the desired number of digits. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &DF, double &LAMBDA, the parameters of the // function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 30 static int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 15, 20, 25, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10 }; static double fx_vec[N_MAX] = { 0.8975836176504333E+00, 0.9522670169E+00, 0.9711655571887813E+00, 0.8231218864E+00, 0.9049021510E+00, 0.9363471834E+00, 0.7301025986E+00, 0.8335594263E+00, 0.8774010255E+00, 0.5248571617E+00, 0.6293856597E+00, 0.6800271741E+00, 0.20590131975E+00, 0.2112148916E+00, 0.2074730718E+00, 0.9981130072E+00, 0.9994873850E+00, 0.9998391562E+00, 0.168610566972E+00, 0.16967950985E+00, 0.1701041003E+00, 0.9247683363E+00, 0.7483139269E+00, 0.4659802096E+00, 0.9761872541E+00, 0.8979689357E+00, 0.7181904627E+00, 0.9923658945E+00, 0.9610341649E+00, 0.8688007350E+00 }; static double lambda_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 4.0E+00, 4.0E+00, 4.0E+00, 7.0E+00, 7.0E+00, 7.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00 }; static double x_vec[N_MAX] = { 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 15.00E+00, 15.00E+00, 15.00E+00, 0.05E+00, 0.05E+00, 0.05E+00, 4.00E+00, 4.00E+00, 4.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 6.00E+00, 6.00E+00, 6.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; df = 0; lambda = 0.0; x = 0.0; fx = 0.0; } else { df = df_vec[n_data-1]; lambda = lambda_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void subfactorial_values ( int &n_data, int &n, int &fn ) //****************************************************************************80 // // Purpose: // // subfactorial_values() returns values of the subfactorial function. // // Discussion: // // The subfactorial function Subfactorial(N) counts the number of // permutations of N objects which leave no object unchanged. // // Such a permutation is known as a derangement. // // In Mathematica, the function can be evaluated by: // // << DiscreteMath`CombinatorialFunctions` // Subfactorial[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 March 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the function. // // Output, int &FN, the value of the function. // { # define N_MAX 13 static int fn_vec[N_MAX] = { 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; fn = 0; } else { n = n_vec[n_data-1]; fn = fn_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void surten_values ( int &n_data, double &tc, double &sigma ) //****************************************************************************80 // // Purpose: // // surten_values() returns some values of the surface tension. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, pages 267. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &SIGMA, the surface tension, // in Pascal * m = Newton / m. // { # define N_MAX 14 static double sigma_vec[N_MAX] = { 74.22E+00, 72.74E+00, 71.20E+00, 69.60E+00, 67.95E+00, 58.92E+00, 48.75E+00, 37.68E+00, 26.05E+00, 14.37E+00, 8.78E+00, 3.67E+00, 0.40E+00, 0.00E+00 }; static double tc_vec[N_MAX] = { 10.000E+00, 20.000E+00, 30.000E+00, 40.000E+00, 50.000E+00, 100.000E+00, 150.000E+00, 200.000E+00, 250.000E+00, 300.000E+00, 325.000E+00, 350.000E+00, 370.000E+00, 373.976E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; sigma = 0.0; } else { tc = tc_vec[n_data-1]; sigma = sigma_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void synch1_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // synch1_values() returns some values of the synchrotron radiation function. // // Discussion: // // The function is defined by: // // SYNCH1(x) = x * integral ( x <= t < +oo ) K(5/3)(t) dt // // where K(5/3) is a modified Bessel function of order 5/3. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.26514864547487397044E+00, 0.62050129979079045645E+00, 0.85112572132368011206E+00, 0.87081914687546885094E+00, 0.65142281535536396975E+00, 0.45064040920322354579E+00, 0.30163590285073940285E+00, 0.19814490804441305867E+00, 0.12856571000906381300E+00, 0.52827396697866818297E-01, 0.42139298471720305542E-01, 0.21248129774981984268E-01, 0.13400258907505536491E-01, 0.84260797314108699935E-02, 0.12884516186754671469E-02, 0.19223826430086897418E-03, 0.28221070834007689394E-04, 0.15548757973038189372E-05, 0.11968634456097453636E-07, 0.89564246772237127742E-10 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void synch2_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // synch2_values() returns some values of the synchrotron radiation function. // // Discussion: // // The function is defined by: // // SYNCH2(x) = x * K(2/3)(x) // // where K(2/3) is a modified Bessel function of order 2/3. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.13430727275667378338E+00, 0.33485265272424176976E+00, 0.50404224110911078651E+00, 0.60296523236016785113E+00, 0.49447506210420826699E+00, 0.36036067860473360389E+00, 0.24967785497625662113E+00, 0.16813830542905833533E+00, 0.11117122348556549832E+00, 0.46923205826101330711E-01, 0.37624545861980001482E-01, 0.19222123172484106436E-01, 0.12209535343654701398E-01, 0.77249644268525771866E-02, 0.12029044213679269639E-02, 0.18161187569530204281E-03, 0.26884338006629353506E-04, 0.14942212731345828759E-05, 0.11607696854385161390E-07, 0.87362343746221526073E-10 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 12.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 25.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tan_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tan_values() returns some values of the tangent function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Tan[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 15 static double fx_vec[N_MAX] = { 0.00000000000000000000, 0.26794919243112270647, 0.54630248984379051326, 0.57735026918962576451, 1.0000000000000000000, 1.5574077246549022305, 1.7320508075688772935, 3.7320508075688772935, 7.5957541127251504405, 15.257051688265539110, -2.1850398632615189916, -0.14254654307427780530, 0.0000000000000000000, 1.1578212823495775831, -3.3805150062465856370 }; static double x_vec[N_MAX] = { 0.00000000000000000000, 0.26179938779914943654, 0.50000000000000000000, 0.52359877559829887308, 0.78539816339744830962, 1.0000000000000000000, 1.0471975511965977462, 1.3089969389957471827, 1.4398966328953219010, 1.5053464798451092601, 2.0000000000000000000, 3.0000000000000000000, 3.1415926535897932385, 4.0000000000000000000, 5.0000000000000000000 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tanh_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tanh_values() returns some values of the hyperbolic tangent function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Tanh[x] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { -0.99990920426259513121, -0.76159415595576488812, 0.00000000000000000000, 0.099667994624955817118, 0.19737532022490400074, 0.29131261245159090582, 0.37994896225522488527, 0.46211715726000975850, 0.53704956699803528586, 0.60436777711716349631, 0.66403677026784896368, 0.71629787019902442081, 0.76159415595576488812, 0.96402758007581688395, 0.99505475368673045133, 0.99932929973906704379, 0.99990920426259513121, 0.99999999587769276362 }; static double x_vec[N_MAX] = { -5.0, -1.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tau_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // tau_values() returns some values of the Tau function. // // Discussion: // // TAU(N) is the number of divisors of N, including 1 and N. // // In Mathematica, the function can be evaluated by: // // DivisorSigma[1,n] // // First values: // // N TAU(N) // // 1 1 // 2 2 // 3 2 // 4 3 // 5 2 // 6 4 // 7 2 // 8 4 // 9 3 // 10 4 // 11 2 // 12 6 // 13 2 // 14 4 // 15 4 // 16 5 // 17 2 // 18 6 // 19 2 // 20 6 // // Formula: // // If the prime factorization of N is // // N = P1**E1 * P2**E2 * * PM**EM, // // then // // TAU(N) = ( E1 + 1 ) * ( E2 + 1 ) * * ( EM + 1 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the argument of the Tau function. // // Output, int &C, the value of the Tau function. // { # define N_MAX 20 static int c_vec[N_MAX] = { 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 12, 12, 4, 18, 24, 2, 8, 14, 28 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 72, 126, 226, 300, 480, 521, 610, 832, 960 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void thercon_values ( int &n_data, double &tc, double &p, double &lambda ) //****************************************************************************80 // // Purpose: // // thercon_values() returns some values of the thermal conductivity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, page 264. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &LAMBDA, the thermal conductivity, in // mW/(m degrees Kelvin). // { # define N_MAX 35 static double lambda_vec[N_MAX] = { 561.00E+00, 561.30E+00, 561.50E+00, 562.40E+00, 563.70E+00, 565.10E+00, 566.50E+00, 567.90E+00, 569.30E+00, 570.60E+00, 572.00E+00, 573.40E+00, 574.80E+00, 576.10E+00, 577.50E+00, 580.20E+00, 582.90E+00, 585.50E+00, 588.10E+00, 590.70E+00, 593.30E+00, 595.80E+00, 598.30E+00, 603.10E+00, 607.80E+00, 612.20E+00, 607.20E+00, 643.60E+00, 666.80E+00, 25.08E+00, 28.85E+00, 33.28E+00, 54.76E+00, 79.89E+00, 107.30E+00 }; static double p_vec[N_MAX] = { 1.0E+00, 5.0E+00, 10.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 125.0E+00, 150.0E+00, 175.0E+00, 200.0E+00, 225.0E+00, 250.0E+00, 275.0E+00, 300.0E+00, 350.0E+00, 400.0E+00, 450.0E+00, 500.0E+00, 550.0E+00, 600.0E+00, 650.0E+00, 700.0E+00, 800.0E+00, 900.0E+00, 1000.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 150.0E+00, 200.0E+00, 400.0E+00, 600.0E+00, 800.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; lambda = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; lambda = lambda_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void three_j_values ( int &n_data, double &j1, double &j2, double &j3, double &m1, double &m2, double &m3, double &fx ) //****************************************************************************80 // // Purpose: // // three_j_values() returns some values of the Wigner 3J function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 February 2007 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &J1, &J2, &J3, &M1, &M2, &M3, the arguments // of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 8 static double fx_vec[N_MAX] = { 0.2788866755113585, -0.09534625892455923, -0.06741998624632421, 0.1533110351679666, -0.1564465546936860, 0.1099450412156551, -0.05536235693131719, 0.01799835451137786 }; static double j1_vec[N_MAX] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 }; static double j2_vec[N_MAX] = { 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5 }; static double j3_vec[N_MAX] = { 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5 }; static double m1_vec[N_MAX] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; static double m2_vec[N_MAX] = { -3.5, -3.5, -3.5, -3.5, -3.5, -3.5, -3.5, -3.5 }; static double m3_vec[N_MAX] = { 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; j1 = 0.0; j2 = 0.0; j3 = 0.0; m1 = 0.0; m2 = 0.0; m3 = 0.0; fx = 0.0; } else { j1 = j1_vec[n_data-1]; j2 = j2_vec[n_data-1]; j3 = j3_vec[n_data-1]; m1 = m1_vec[n_data-1]; m2 = m2_vec[n_data-1]; m3 = m3_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran02_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran02_values() returns some values of the order 2 transportation function. // // Discussion: // // The function is defined by: // // TRAN02(x) = integral ( 0 <= t <= x ) t^2 exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.19531247930394515480E-02, 0.31249152314331109004E-01, 0.12494577194783451032E+00, 0.49655363615640595865E+00, 0.97303256135517012845E+00, 0.14121978695932525805E+01, 0.18017185674405776809E+01, 0.21350385339277043015E+01, 0.24110500490169534620E+01, 0.28066664045631179931E+01, 0.28777421863296234131E+01, 0.30391706043438554330E+01, 0.31125074928667355940E+01, 0.31656687817738577185E+01, 0.32623520367816009184E+01, 0.32843291144979517358E+01, 0.32897895167775788137E+01, 0.32898672226665499687E+01, 0.32898681336064325400E+01, 0.32898681336964528724E+01 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran03_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran03_values() returns some values of the order 3 transportation function. // // Discussion: // // The function is defined by: // // TRAN03(x) = integral ( 0 <= t <= x ) t^3 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.19073483296476379584E-05, 0.48826138243180786081E-03, 0.78074163848431205820E-02, 0.12370868718812031049E+00, 0.47984100657241749994E+00, 0.10269431622039754738E+01, 0.17063547219458658863E+01, 0.24539217444475937661E+01, 0.32106046629422467723E+01, 0.45792174372291563703E+01, 0.48722022832940370805E+01, 0.56143866138422732286E+01, 0.59984455864575470009E+01, 0.63033953673480961120E+01, 0.69579908688361166266E+01, 0.71503227120085929750E+01, 0.72110731475871876393E+01, 0.72123221966388461839E+01, 0.72123414161609465119E+01, 0.72123414189575656868E+01 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran04_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran04_values() returns some values of the order 4 transportation function. // // Discussion: // // The function is defined by: // // TRAN04(x) = integral ( 0 <= t <= x ) t^4 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.24835263919461834041E-08, 0.10172029353616724881E-04, 0.65053332405940765479E-03, 0.41150448004155727767E-01, 0.31724404523442648241E+00, 0.10079442901142373591E+01, 0.22010881024333408363E+01, 0.38846508619156545210E+01, 0.59648223973714765245E+01, 0.10731932392998622219E+02, 0.11940028876819364777E+02, 0.15359784316882182982E+02, 0.17372587633093742893E+02, 0.19122976016053166969E+02, 0.23583979156921941515E+02, 0.25273667677030441733E+02, 0.25955198214572256372E+02, 0.25975350935212241910E+02, 0.25975757522084093747E+02, 0.25975757609067315288E+02 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran05_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran05_values() returns some values of the order 5 transportation function. // // Discussion: // // The function is defined by: // // TRAN05(x) = integral ( 0 <= t <= x ) t^5 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.36379780361036116971E-11, 0.23840564453948442379E-06, 0.60982205372226969189E-04, 0.15410004586376649337E-01, 0.23661587923909478926E+00, 0.11198756851307629651E+01, 0.32292901663684049171E+01, 0.70362973105160654056E+01, 0.12770557691044159511E+02, 0.29488339015245845447E+02, 0.34471340540362254586E+02, 0.50263092218175187785E+02, 0.60819909101127165207E+02, 0.70873334429213460498E+02, 0.10147781242977788097E+03, 0.11638074540242071077E+03, 0.12409623901262967878E+03, 0.12442270155632550228E+03, 0.12443132790838589548E+03, 0.12443133061720432435E+03 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran06_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran06_values() returns some values of the order 6 transportation function. // // Discussion: // // The function is defined by: // // TRAN06(x) = integral ( 0 <= t <= x ) t^6 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.56843405953641209574E-14, 0.59601180165247401484E-08, 0.60978424397580572815E-05, 0.61578909866319494394E-02, 0.18854360275680840514E+00, 0.13319251347921659134E+01, 0.50857202271697616755E+01, 0.13729222365466557122E+02, 0.29579592481641441292E+02, 0.88600835706899853768E+02, 0.10916037113373004909E+03, 0.18224323749575359518E+03, 0.23765383125586756031E+03, 0.29543246745959381136E+03, 0.50681244381280455592E+03, 0.63878231134946125623E+03, 0.72699203556994876111E+03, 0.73230331643146851717E+03, 0.73248692015882096369E+03, 0.73248700462879996604E+03 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran07_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran07_values() returns some values of the order 7 transportation function. // // Discussion: // // The function is defined by: // // TRAN07(x) = integral ( 0 <= t <= x ) t^7 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.92518563327283409427E-17, 0.15521095556949867541E-09, 0.63516238373841716290E-06, 0.25638801246626135714E-02, 0.15665328993811649746E+00, 0.16538225039181097423E+01, 0.83763085709508211054E+01, 0.28078570717830763747E+02, 0.72009676046751991365E+02, 0.28174905701691911450E+03, 0.36660227975327792529E+03, 0.70556067982603601123E+03, 0.99661927562755629434E+03, 0.13288914430417403901E+04, 0.27987640273169129925E+04, 0.39721376409416504325E+04, 0.49913492839319899726E+04, 0.50781562639825019000E+04, 0.50820777202028708434E+04, 0.50820803580047164618E+04 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran08_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran08_values() returns some values of the order 8 transportation function. // // Discussion: // // The function is defined by: // // TRAN08(x) = integral ( 0 <= t <= x ) t^8 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.15488598634539359463E-19, 0.41574269117845953797E-11, 0.68050651245227411689E-07, 0.10981703519563009836E-02, 0.13396432776187883834E+00, 0.21153387806998617182E+01, 0.14227877028750735641E+02, 0.59312061431647843226E+02, 0.18139614577043147745E+03, 0.93148001928992220863E+03, 0.12817928112604611804E+04, 0.28572838386329242218E+04, 0.43872971687877730010E+04, 0.62993229139406657611E+04, 0.16589426277154888511E+05, 0.27064780798797398935E+05, 0.38974556062543661284E+05, 0.40400240716905025786E+05, 0.40484316504120655568E+05, 0.40484399001892184901E+05 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tran09_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // tran09_values() returns some values of the order 9 transportation function. // // Discussion: // // The function is defined by: // // TRAN09(x) = integral ( 0 <= t <= x ) t^9 * exp(t) / ( exp(t) - 1 )^2 dt // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Allan McLeod, // Algorithm 757: // MISCFUN: A software package to compute uncommon special functions, // ACM Transactions on Mathematical Software, // Volume 22, Number 3, September 1996, pages 288-301. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.26469772870084897671E-22, 0.11367943653594246210E-12, 0.74428246255329800255E-08, 0.48022728485415366194E-03, 0.11700243014358676725E+00, 0.27648973910899914391E+01, 0.24716631405829192997E+02, 0.12827119828849828583E+03, 0.46842894800662208986E+03, 0.31673967371627895718E+04, 0.46140886546630195390E+04, 0.11952718545392302185E+05, 0.20001612666477027728E+05, 0.31011073271851366554E+05, 0.10352949905541130133E+06, 0.19743173017140591390E+06, 0.33826030414658460679E+06, 0.36179607036750755227E+06, 0.36360622124777561525E+06, 0.36360880558827162725E+06 }; static double x_vec[N_MAX] = { 0.0019531250E+00, 0.0312500000E+00, 0.1250000000E+00, 0.5000000000E+00, 1.0000000000E+00, 1.5000000000E+00, 2.0000000000E+00, 2.5000000000E+00, 3.0000000000E+00, 4.0000000000E+00, 4.2500000000E+00, 5.0000000000E+00, 5.5000000000E+00, 6.0000000000E+00, 8.0000000000E+00, 10.0000000000E+00, 15.0000000000E+00, 20.0000000000E+00, 30.0000000000E+00, 50.0000000000E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void trigamma_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // trigamma_values() returns some values of the TriGamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // PolyGamma[1,x] // // TriGamma(X) = d^2 ln ( Gamma ( X ) ) / d X^2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double fx_vec[N_MAX] = { 0.1644934066848226E+01, 0.1433299150792759E+01, 0.1267377205423779E+01, 0.1134253434996619E+01, 0.1025356590529597E+01, 0.9348022005446793E+00, 0.8584318931245799E+00, 0.7932328301639984E+00, 0.7369741375017002E+00, 0.6879720582426356E+00, 0.6449340668482264E+00 }; static double x_vec[N_MAX] = { 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_ab_cdf_values ( int &n_data, double &mu, double &sigma, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_ab_cdf_values(): values of the Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, &B, the lower and upper truncation limits. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.3371694242213513, 0.3685009225506048, 0.4006444233448185, 0.4334107066903040, 0.4665988676496338, 0.5000000000000000, 0.5334011323503662, 0.5665892933096960, 0.5993555766551815, 0.6314990774493952, 0.6628305757786487 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_ab_pdf_values ( int &n_data, double &mu, double &sigma, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_ab_pdf_values(): values of the Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, &B, the lower and upper truncation limits. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.01543301171801836, 0.01588394472270638, 0.01624375997031919, 0.01650575046469259, 0.01666496869385951, 0.01671838200940538, 0.01666496869385951, 0.01650575046469259, 0.01624375997031919, 0.01588394472270638, 0.01543301171801836 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_a_cdf_values ( int &n_data, double &mu, double &sigma, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_a_cdf_values(): values of the Lower Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,+oo). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, the lower truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double fx_vec[N_MAX] = { 0.3293202045481688, 0.3599223134505957, 0.3913175216041539, 0.4233210140873113, 0.4557365629792204, 0.4883601253415709, 0.5209836877039214, 0.5533992365958304, 0.5854027290789878, 0.6167979372325460, 0.6474000461349729 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_a_pdf_values ( int &n_data, double &mu, double &sigma, double &a, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_a_pdf_values(): values of the Lower Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval [A,+oo). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &A, the lower truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double a_vec[N_MAX] = { 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0 }; static double fx_vec[N_MAX] = { 0.01507373507401876, 0.01551417047139894, 0.01586560931024694, 0.01612150073158793, 0.01627701240029317, 0.01632918226724295, 0.01627701240029317, 0.01612150073158793, 0.01586560931024694, 0.01551417047139894, 0.01507373507401876 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_b_cdf_values ( int &n_data, double &mu, double &sigma, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_b_cdf_values(): values of the upper Truncated Normal CDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval (-oo,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &B, the upper truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.3525999538650271, 0.3832020627674540, 0.4145972709210122, 0.4466007634041696, 0.4790163122960786, 0.5116398746584291, 0.5442634370207796, 0.5766789859126887, 0.6086824783958461, 0.6400776865494043, 0.6706797954518312 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void truncated_normal_b_pdf_values ( int &n_data, double &mu, double &sigma, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // truncated_normal_b_pdf_values(): values of the Upper Truncated Normal PDF. // // Discussion: // // The Normal distribution, with mean Mu and standard deviation Sigma, // is truncated to the interval (-oo,B]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2013 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &MU, the mean of the distribution. // // Output, double &SIGMA, the standard deviation of the distribution. // // Output, double &B, the upper truncation limit. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 11 static double b_vec[N_MAX] = { 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0, 150.0 }; static double fx_vec[N_MAX] = { 0.01507373507401876, 0.01551417047139894, 0.01586560931024694, 0.01612150073158793, 0.01627701240029317, 0.01632918226724295, 0.01627701240029317, 0.01612150073158793, 0.01586560931024694, 0.01551417047139894, 0.01507373507401876 }; static double mu_vec[N_MAX] = { 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0 }; static double sigma_vec[N_MAX] = { 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0 }; static double x_vec[N_MAX] = { 90.0, 92.0, 94.0, 96.0, 98.0, 100.0, 102.0, 104.0, 106.0, 108.0, 110.0 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; b = 0.0; mu = 0.0; sigma = 0.0; x = 0.0; fx = 0.0; } else { b = b_vec[n_data-1]; mu = mu_vec[n_data-1]; sigma = sigma_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void tsat_values ( int &n_data, double &p, double &tc ) //****************************************************************************80 // // Purpose: // // tsat_values() returns some values of the saturation temperature. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, pages 16-22. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &P, the pressure, in bar. // // Output, double &TC, the saturation temperature, in // degrees Celsius. // { # define N_MAX 20 static double p_vec[N_MAX] = { 0.0061173E+00, 0.012E+00, 0.025E+00, 0.055E+00, 0.080E+00, 0.110E+00, 0.160E+00, 0.250E+00, 0.500E+00, 0.750E+00, 1.000E+00, 1.500E+00, 2.000E+00, 5.000E+00, 10.000E+00, 20.000E+00, 50.000E+00, 100.000E+00, 200.000E+00, 220.550E+00 }; static double tc_vec[N_MAX] = { 0.010E+00, 9.655E+00, 21.080E+00, 34.589E+00, 41.518E+00, 47.695E+00, 55.327E+00, 64.980E+00, 81.339E+00, 91.783E+00, 99.632E+00, 111.378E+00, 120.443E+00, 151.866E+00, 179.916E+00, 212.417E+00, 263.977E+00, 311.031E+00, 365.800E+00, 373.976E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; p = 0.0; tc = 0.0; } else { p = p_vec[n_data-1]; tc = tc_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void van_der_corput_values ( int &n_data, int &base, int &seed, double &value ) //****************************************************************************80 // // Purpose: // // van_der_corput_values() returns some values of the van der Corput sequence. // // Discussion: // // The van der Corput sequence is often used to generate a "subrandom" // sequence of points which have a better covering property // than pseudorandom points. // // The van der Corput sequence generates a sequence of points in [0,1] // which (theoretically) never repeats. Except for SEED = 0, the // elements of the van der Corput sequence are strictly between 0 and 1. // // The van der Corput sequence writes an int *in a given base B, // and then its digits are "reflected" about the decimal point. // This maps the numbers from 1 to N into a set of numbers in [0,1], // which are especially nicely distributed if N is one less // than a power of the base. // // Hammersley suggested generating a set of N nicely distributed // points in two dimensions by setting the first component of the // Ith point to I/N, and the second to the van der Corput // value of I in base 2. // // Halton suggested that in many cases, you might not know the number // of points you were generating, so Hammersley's formulation was // not ideal. Instead, he suggested that to generate a nicely // distributed sequence of points in M dimensions, you simply // choose the first M primes, P(1:M), and then for the J-th component of // the I-th point in the sequence, you compute the van der Corput // value of I in base P(J). // // Thus, to generate a Halton sequence in a 2 dimensional space, // it is typical practice to generate a pair of van der Corput sequences, // the first with prime base 2, the second with prime base 3. // Similarly, by using the first K primes, a suitable sequence // in K-dimensional space can be generated. // // The generation is quite simple. Given an int *SEED, the expansion // of SEED in base BASE is generated. Then, essentially, the result R // is generated by writing a decimal point followed by the digits of // the expansion of SEED, in reverse order. This decimal value is actually // still in base BASE, so it must be properly interpreted to generate // a usable value. // // Example: // // BASE = 2 // // SEED SEED van der Corput // decimal binary binary decimal // ------- ------ ------ ------- // 0 = 0 => .0 = 0.0; // 1 = 1 => .1 = 0.5 // 2 = 10 => .01 = 0.25 // 3 = 11 => .11 = 0.75 // 4 = 100 => .001 = 0.125 // 5 = 101 => .101 = 0.625 // 6 = 110 => .011 = 0.375 // 7 = 111 => .111 = 0.875 // 8 = 1000 => .0001 = 0.0625 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2004 // // Author: // // John Burkardt // // Reference: // // John Halton, // On the efficiency of certain quasi-random sequences of points // in evaluating multi-dimensional integrals, // Numerische Mathematik, // Volume 2, pages 84-90, 1960. // // John Hammersley, // Monte Carlo methods for solving multivariable problems, // Proceedings of the New York Academy of Science, // Volume 86, pages 844-874, 1960. // // J G van der Corput, // Verteilungsfunktionen, // Proc Akad Amsterdam, // Volume 38, 1935, // Volume 39, 1936. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &BASE, the base of the sequence. // // Output, int &SEED, the index of the element of the sequence. // // Output, double &VALUE, the value of the SEED-th element of the // van der Corput sequence in base BASE. // { # define N_MAX 75 static int base_vec[N_MAX] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 3, 4, 5, 7, 11, 13, 2, 3, 4, 5, 7, 11, 13, 2, 3, 4, 5, 7, 11, 13, 2, 3, 4, 5, 7, 11, 13, 29, 29, 29, 29, 29, 71, 71, 71, 71, 71, 173, 173, 173, 173, 173, 409, 409, 409, 409, 409 }; static int seed_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 10, 10, 10, 10, 10, 100, 100, 100, 100, 100, 100, 100, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 1000, 1001, 1002, 1003, 1004, 1000, 1001, 1002, 1003, 1004, 1000, 1001, 1002, 1003, 1004, 1000, 1001, 1002, 1003, 1004 }; static double value_vec[N_MAX] = { 0.0000000000000000E+00, 0.5000000000000000E+00, 0.2500000000000000E+00, 0.7500000000000000E+00, 0.1250000000000000E+00, 0.6250000000000000E+00, 0.3750000000000000E+00, 0.8750000000000000E+00, 0.0625000000000000E+00, 0.0000000000000000E+00, 0.3333333333333333E+00, 0.6666666666666666E+00, 0.1111111111111111E+00, 0.4444444444444444E+00, 0.7777777777777777E+00, 0.2222222222222222E+00, 0.5555555555555556E+00, 0.8888888888888888E+00, 0.0000000000000000E+00, 0.2500000000000000E+00, 0.5000000000000000E+00, 0.7500000000000000E+00, 0.0625000000000000E+00, 0.3125000000000000E+00, 0.5625000000000000E+00, 0.8125000000000000E+00, 0.1250000000000000E+00, 0.3125000000000000E+00, 0.3703703703703703E+00, 0.6250000000000000E+00, 0.0800000000000000E+00, 0.4489795918367347E+00, 0.9090909090909092E+00, 0.7692307692307693E+00, 0.1484375000000000E+00, 0.4115226337448559E+00, 0.0976562500000000E+00, 0.0320000000000000E+00, 0.2915451895043731E+00, 0.1652892561983471E+00, 0.7337278106508875E+00, 0.0927734375000000E+00, 0.3475080018289895E+00, 0.1708984375000000E+00, 0.0051200000000000E+00, 0.9162848812994586E+00, 0.9316303531179565E+00, 0.9904415111515704E+00, 0.0347290039062500E+00, 0.3861200020322105E+00, 0.0189208984375000E+00, 0.0005120000000000E+00, 0.5749985125245433E+00, 0.1529950140017758E+00, 0.2459297643639929E+00, 0.4887449259912255E+00, 0.5232276846119153E+00, 0.5577104432326049E+00, 0.5921932018532945E+00, 0.6266759604739842E+00, 0.0872842689942472E+00, 0.1013687760365007E+00, 0.1154532830787542E+00, 0.1295377901210077E+00, 0.1436222971632613E+00, 0.7805138828560928E+00, 0.7862942296769020E+00, 0.7920745764977113E+00, 0.7978549233185205E+00, 0.8036352701393298E+00, 0.4449997309915651E+00, 0.4474447187666262E+00, 0.4498897065416874E+00, 0.4523346943167484E+00, 0.4547796820918096E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; base = 0; seed = 0; value = 0.0; } else { base = base_vec[n_data-1]; seed = seed_vec[n_data-1]; value = value_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void viscosity_values ( int &n_data, double &tc, double &p, double &eta ) //****************************************************************************80 // // Purpose: // // viscosity_values() returns some values of the viscosity function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2002 // // Author: // // John Burkardt // // Reference: // // Lester Haar, John Gallagher and George Kell, // NBS/NRC Steam Tables: // Thermodynamic and Transport Properties and Computer Programs // for Vapor and Liquid States of Water in SI Units, // Hemisphere Publishing Corporation, Washington, 1984, // TJ270.H3, page 263. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &TC, the temperature, in degrees Celsius. // // Output, double &P, the pressure, in bar. // // Output, double &ETA, the viscosity, in MegaPascal seconds. // { # define N_MAX 34 static double eta_vec[N_MAX] = { 1792.0E+00, 1791.0E+00, 1790.0E+00, 1786.0E+00, 1780.0E+00, 1775.0E+00, 1769.0E+00, 1764.0E+00, 1759.0E+00, 1754.0E+00, 1749.0E+00, 1744.0E+00, 1739.0E+00, 1735.0E+00, 1731.0E+00, 1722.0E+00, 1714.0E+00, 1707.0E+00, 1700.0E+00, 1694.0E+00, 1687.0E+00, 1682.0E+00, 1676.0E+00, 1667.0E+00, 1659.0E+00, 1653.0E+00, 890.8E+00, 547.1E+00, 378.4E+00, 12.28E+00, 16.18E+00, 24.45E+00, 32.61E+00, 40.38E+00 }; static double p_vec[N_MAX] = { 1.0E+00, 5.0E+00, 10.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 125.0E+00, 150.0E+00, 175.0E+00, 200.0E+00, 225.0E+00, 250.0E+00, 275.0E+00, 300.0E+00, 350.0E+00, 400.0E+00, 450.0E+00, 500.0E+00, 550.0E+00, 600.0E+00, 650.0E+00, 700.0E+00, 800.0E+00, 900.0E+00, 1000.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00 }; static double tc_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 25.0E+00, 50.0E+00, 75.0E+00, 100.0E+00, 200.0E+00, 400.0E+00, 600.0E+00, 800.0E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; tc = 0.0; p = 0.0; eta = 0.0; } else { tc = tc_vec[n_data-1]; p = p_vec[n_data-1]; eta = eta_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void von_mises_cdf_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // von_mises_cdf_values() returns some values of the von Mises CDF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 December 2004 // // Author: // // John Burkardt // // Reference: // // Kanti Mardia, Peter Jupp, // Directional Statistics, // Wiley, 2000, QA276.M335 // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, the parameters of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 23 static double a_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, -0.2E+01, -0.1E+01, 0.0E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00, 0.0E+00 }; static double b_vec[N_MAX] = { 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.3E+01, 0.0E+00, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01 }; static double fx_vec[N_MAX] = { 0.2535089956281180E-01, 0.1097539041177346E+00, 0.5000000000000000E+00, 0.8043381312498558E+00, 0.9417460124555197E+00, 0.5000000000000000E+00, 0.6018204118446155E+00, 0.6959356933122230E+00, 0.7765935901304593E+00, 0.8410725934916615E+00, 0.8895777369550366E+00, 0.9960322705517925E+00, 0.9404336090170247E+00, 0.5000000000000000E+00, 0.5956639098297530E-01, 0.3967729448207649E-02, 0.2321953958111930E-03, 0.6250000000000000E+00, 0.7438406999109122E+00, 0.8369224904294019E+00, 0.8941711407897124E+00, 0.9291058600568743E+00, 0.9514289900655436E+00 }; static double x_vec[N_MAX] = { -0.2617993977991494E+01, -0.1570796326794897E+01, 0.0000000000000000E+00, 0.1047197551196598E+01, 0.2094395102393195E+01, 0.1000000000000000E+01, 0.1200000000000000E+01, 0.1400000000000000E+01, 0.1600000000000000E+01, 0.1800000000000000E+01, 0.2000000000000000E+01, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.0000000000000000E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00, 0.7853981633974483E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void weekday_values ( int &n_data, int &y, int &m, int &d, int &w ) //****************************************************************************80 // // Purpose: // // weekday_values() returns the day of the week for various dates. // // Discussion: // // The CE or Common Era calendar is used, under the // hybrid Julian/Gregorian Calendar, with a transition from Julian // to Gregorian. The day after 04 October 1582 was 15 October 1582. // // The year before 1 AD or CE is 1 BC or BCE. In this data set, // years BC/BCE are indicated by a negative year value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2012 // // Author: // // John Burkardt // // Reference: // // Edward Reingold, Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // LC: CE12.R45. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &Y, &M, &D, the Common Era date. // // Output, int &W, the day of the week. Sunday = 1. // { # define N_MAX 34 static int d_vec[N_MAX] = { 30, 8, 26, 3, 7, 18, 7, 19, 14, 18, 16, 3, 26, 20, 4, 25, 31, 9, 24, 10, 30, 24, 19, 2, 27, 19, 25, 29, 19, 7, 17, 25, 10, 18 }; static int m_vec[N_MAX] = { 7, 12, 9, 10, 1, 5, 11, 4, 10, 5, 3, 3, 3, 4, 6, 1, 3, 9, 2, 6, 6, 7, 6, 8, 3, 4, 8, 9, 4, 10, 3, 2, 11, 7 }; static int w_vec[N_MAX] = { 1, 4, 4, 1, 4, 2, 7, 1, 7, 1, 6, 7, 6, 1, 1, 4, 7, 7, 7, 4, 1, 6, 1, 2, 4, 1, 1, 2, 2, 5, 3, 1, 4, 1 }; static int y_vec[N_MAX] = { - 587, - 169, 70, 135, 470, 576, 694, 1013, 1066, 1096, 1190, 1240, 1288, 1298, 1391, 1436, 1492, 1553, 1560, 1648, 1680, 1716, 1768, 1819, 1839, 1903, 1929, 1941, 1943, 1943, 1992, 1996, 2038, 2094 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; y = 0; m = 0; d = 0; w = 0; } else { y = y_vec[n_data-1]; m = m_vec[n_data-1]; d = d_vec[n_data-1]; w = w_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void weibull_cdf_values ( int &n_data, double &alpha, double &beta, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // weibull_cdf_values() returns some values of the Weibull CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = WeibullDistribution [ alpha, beta ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &ALPHA, the first parameter of the distribution. // // Output, double &BETA, the second parameter of the distribution. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 12 static double alpha_vec[N_MAX] = { 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01 }; static double beta_vec[N_MAX] = { 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.5000000000000000E+00, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.5000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01 }; static double fx_vec[N_MAX] = { 0.8646647167633873E+00, 0.9816843611112658E+00, 0.9975212478233336E+00, 0.9996645373720975E+00, 0.6321205588285577E+00, 0.4865828809674080E+00, 0.3934693402873666E+00, 0.3296799539643607E+00, 0.8946007754381357E+00, 0.9657818816883340E+00, 0.9936702845725143E+00, 0.9994964109502630E+00 }; static double x_vec[N_MAX] = { 0.1000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.4000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.2000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01, 0.3000000000000000E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; alpha = 0.0; beta = 0.0; x = 0.0; fx = 0.0; } else { alpha = alpha_vec[n_data-1]; beta = beta_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void wright_omega_values ( int &n_data, complex &z, complex &fz ) //****************************************************************************80 // // Purpose: // // wright_omega_values() returns some values of the Wright Omega function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 May 2016 // // Author: // // John Burkardt // // Reference: // // Robert Corless, David Jeffrey, // The Wright Omega Function, // in Artificial Intelligence, Automated Reasoning, and Symbolic Computation, // ed J Calmet, B Benhamou, O Caprotti, L Henocque, V Sorge, // Lecture Notes in Artificial Intelligence, volume 2385, // Springer, 2002, pages 76-89. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, complex &Z, the argument of the function. // // Output, complex &FZ, the value of the function. // { # define N_MAX 10 static complex fz_vec[N_MAX] = { complex ( +0.5671432904097838, + 0.0000000000000000 ), complex ( +1.000000000000000, + 0.0000000000000000 ), complex ( +2.718281828459045, + 0.0000000000000000 ), complex ( -1.000000000000000, + 0.0000000000000000 ), complex ( -1.000000000000000, + 0.0000000000000000 ), complex ( -2.000000000000000, + 0.0000000000000000 ), complex ( -0.40637573995996, + 0.0000000000000000 ), complex ( +0.000000000000000, + 1.0000000000000000 ), complex ( -0.3181315052047641, + 1.337235701430689 ), complex ( +0.9372082083733697, + 0.5054213160131512 ) }; static complex z_vec[N_MAX] = { complex ( +0.000000000000000, + 0.000000000000000 ), complex ( +1.000000000000000, + 0.000000000000000 ), complex ( +3.718281828459045, + 0.000000000000000 ), complex ( -1.000000000000000, + 3.141592653589793 ), complex ( -1.000000000000000, - 3.141592653589793 ), complex ( -1.306852819440055, + 3.141592653589793 ), complex ( -1.306852819440055, - 3.141592653589793 ), complex ( +0.000000000000000, + 2.570796326794897 ), complex ( +0.000000000000000, + 3.141592653589793 ), complex ( +1.000000000000000, + 1.000000000000000 ) }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; z = complex ( 0.0, 0.0 ); fz = complex ( 0.0, 0.0 ); } else { z = z_vec[n_data-1]; fz = fz_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void zeta_values ( int &n_data, int &n, double &zeta ) //****************************************************************************80 // // Purpose: // // zeta_values() returns some values of the Riemann Zeta function. // // Discussion: // // ZETA(N) = sum ( 1 <= I < +oo ) 1 / I^N // // In Mathematica, the function can be evaluated by: // // Zeta[n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA. The user sets N_DATA to 0 before the first call. // // Output: // // int &N_DATA. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // int &N, the argument of the Zeta function. // // double &ZETA, the value of the Zeta function. // { # define N_MAX 15 static int n_vec[N_MAX] = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 30, 40 }; static double zeta_vec[N_MAX] = { 0.164493406684822643647E+01, 0.120205690315959428540E+01, 0.108232323371113819152E+01, 0.103692775514336992633E+01, 0.101734306198444913971E+01, 0.100834927738192282684E+01, 0.100407735619794433939E+01, 0.100200839292608221442E+01, 0.100099457512781808534E+01, 0.100049418860411946456E+01, 0.100024608655330804830E+01, 0.100001528225940865187E+01, 0.100000095396203387280E+01, 0.100000000093132743242E+01, 0.100000000000090949478E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; zeta = 0.0; } else { n = n_vec[n_data-1]; zeta = zeta_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void zeta_m1_values ( int &n_data, double &p, double &zeta_m1 ) //****************************************************************************80 // // Purpose: // // zeta_m1_values() returns some values of the Riemann Zeta Minus One function. // // Discussion: // // ZETA_M1(N) = ZETA(N) - 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 January 2017 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &P, the argument. // // Output, double &ZETA_M1, the value. // { # define N_MAX 17 static double p_vec[N_MAX] = { 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 16.0, 20.0, 30.0, 40.0 }; static double zeta_m1_vec[N_MAX] = { 0.64493406684822643647E+00, 0.3414872573E+00, 0.20205690315959428540E+00, 0.1267338673E+00, 0.8232323371113819152E-01, 0.3692775514336992633E-01, 0.1734306198444913971E-01, 0.834927738192282684E-02, 0.407735619794433939E-02, 0.200839292608221442E-02, 0.99457512781808534E-03, 0.49418860411946456E-03, 0.24608655330804830E-03, 0.1528225940865187E-04, 0.95396203387280E-06, 0.93132743242E-10, 0.90949478E-12 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; p = 0.0; zeta_m1 = 0.0; } else { p = p_vec[n_data-1]; zeta_m1 = zeta_m1_vec[n_data-1]; } return; # undef N_MAX }