# include # include # include # include # include # include # include using namespace std; # include "test_matrix.hpp" //****************************************************************************80 double *a123_matrix ( ) //****************************************************************************80 // // Purpose: // // a123_matrix() returns the A123 matrix. // // Example: // // 1 2 3 // 4 5 6 // 7 8 9 // // Properties: // // A is integral. // // A is not symmetric. // // A is singular. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // double *A123[3,3], the matrix. // { double *a; int i; int j; int k; a = new double[3*3]; k = 0; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 3; j++ ) { k = k + 1; a[i+j*3] = ( double ) ( k ); } } return a; } //****************************************************************************80 double a123_determinant ( ) //****************************************************************************80 // // Purpose: // // a123_determinant() returns the determinant of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double VALUE, the determinant. // { double value; value = 0.0; return value; } //****************************************************************************80 double *a123_eigen_left ( ) //****************************************************************************80 // // Purpose: // // a123_eigen_left() returns the left eigenvectors of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_EIGEN_LEFT[3*3], the left eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[3*3] = { -0.464547273387671, -0.882905959653586, 0.408248290463862, -0.570795531228578, -0.239520420054206, -0.816496580927726, -0.677043789069485, 0.403865119545174, 0.408248290463863 }; a = r8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 double *a123_eigen_right ( ) //****************************************************************************80 // // Purpose: // // a123_eigen_right() returns the right eigenvectors of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_EIGEN_RIGHT[3*3], the right eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[3*3] = { -0.231970687246286, -0.525322093301234, -0.818673499356181, -0.785830238742067, -0.086751339256628, 0.612327560228810, 0.408248290463864, -0.816496580927726, 0.408248290463863 }; a = r8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 double *a123_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // a123_eigenvalues returns the eigenvalues of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_EIGENVALUES[3], the eigenvalues. // { double *lambda; double lambda_save[3] = { 16.116843969807043, -1.116843969807043, 0.0 }; lambda = r8vec_copy_new ( 3, lambda_save ); return lambda; } //****************************************************************************80 double *a123_inverse ( ) //****************************************************************************80 // // Purpose: // // a123_inverse() returns the pseudo-inverse of the A123 matrix. // // Example: // // -0.638888888888888 -0.166666666666666 0.305555555555555 // -0.055555555555556 0.000000000000000 0.055555555555556 // 0.527777777777777 0.166666666666666 -0.194444444444444 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_INVERSE[3*3], the matrix. // { double *b; double b_save[3*3] = { -0.638888888888888, -0.055555555555556, 0.527777777777777, -0.166666666666666, 0.000000000000000, 0.166666666666666, 0.305555555555555, 0.055555555555556, -0.194444444444444 }; b = r8mat_copy_new ( 3, 3, b_save ); return b; } //****************************************************************************80 double *a123_null_left ( ) //****************************************************************************80 // // Purpose: // // a123_null_left() returns a left null vector of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_NULL_LEFT[3], a left null vector. // { double *x; double x_save[3] = { 1.0, -2.0, 1.0 }; x = r8vec_copy_new ( 3, x_save ); return x; } //****************************************************************************80 double *a123_null_right ( ) //****************************************************************************80 // // Purpose: // // a123_null_right() returns a right null vector of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_NULL_RIGHT[3], the vector. // { double *x; double x_save[3] = { 1.0, -2.0, 1.0 }; x = r8vec_copy_new ( 3, x_save ); return x; } //****************************************************************************80 void a123_plu ( double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // a123_plu() returns the PLU factors of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double P[3*3], L[3*3], U[3*3], the PLU factors. // { double l_save[3*3] = { 1.0, 0.142857142857143, 0.571428571428571, 0.0, 1.00, 0.5, 0.0, 0.00, 1.0 }; double p_save[3*3] = { 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0 }; double u_save[3*3] = { 7.0, 0.00, 0.0, 8.0, 0.857142857142857, 0.0, 9.0, 1.714285714285714, 0.0 }; r8mat_copy ( 3, 3, l_save, l ); r8mat_copy ( 3, 3, p_save, p ); r8mat_copy ( 3, 3, u_save, u ); return; } //****************************************************************************80 void a123_qr ( double q[], double r[] ) //****************************************************************************80 // // Purpose: // // a123_qr() returns the QR factors of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double Q[3*3], R[3*3], the QR factors. // { double q_save[3*3] = { -0.123091490979333, -0.492365963917331, -0.861640436855329, 0.904534033733291, 0.301511344577763, -0.301511344577763, 0.408248290463862, -0.816496580927726, 0.408248290463863 }; double r_save[3*3] = { -8.124038404635959, 0.0, 0.0, -9.601136296387955, 0.904534033733293, 0.0, -11.078234188139948, 1.809068067466585, 0.0 }; r8mat_copy ( 3, 3, q_save, q ); r8mat_copy ( 3, 3, r_save, r ); return; } //****************************************************************************80 double *a123_rhs ( ) //****************************************************************************80 // // Purpose: // // a123_rhs() returns the A123 right hand side. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double A123_RHS[3], the right hand side vector. // { static double b_save[3] = { 10.0, 28.0, 46.0 }; double *b; b = r8vec_copy_new ( 3, b_save ); return b; } //****************************************************************************80 double *a123_solution ( ) //****************************************************************************80 // // Purpose: // // a123_solution() returns the A123 solution vector. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, A123_SOLUTION[3], the solution. // { double *x; static double x_save[3] = { 3.0, 2.0, 1.0 }; x = r8vec_copy_new ( 3, x_save ); return x; } //****************************************************************************80 void a123_svd ( double u[], double s[], double v[] ) //****************************************************************************80 // // Purpose: // // a123_svd() returns the SVD factors of the A123 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 March 2015 // // Author: // // John Burkardt // // Output: // // Output, double U[3*3], S[3*3], V[3*3], the SVD factors. // { double s_save[3*3] = { 16.848103352614210, 0.0, 0.0, 0.0, 1.068369514554710, 0.0, 0.0, 0.0, 0.0 }; double u_save[3*3] = { -0.214837238368397, -0.520587389464737, -0.826337540561078, 0.887230688346371, 0.249643952988297, -0.387942782369774, 0.408248290463863, -0.816496580927726, 0.408248290463863 }; double v_save[3*3] = { -0.479671177877772, -0.572367793972062, -0.665064410066353, -0.776690990321560, -0.075686470104559, 0.625318050112443, -0.408248290463863, 0.816496580927726, -0.408248290463863 }; r8mat_copy ( 3, 3, s_save, s ); r8mat_copy ( 3, 3, u_save, u ); r8mat_copy ( 3, 3, v_save, v ); return; } //****************************************************************************80 double *aegerter_matrix ( int n ) //****************************************************************************80 // // Purpose: // // aegerter_matrix() returns the AEGERTER matrix. // // Formula: // // if ( I == N ) // A(I,J) = J // else if ( J == N ) // A(I,J) = I // else if ( I == J ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 0 0 0 1 // 0 1 0 0 2 // 0 0 1 0 3 // 0 0 0 1 4 // 1 2 3 4 5 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is border-banded. // // det ( A ) = N * ( - 2 * N * N + 3 * N + 5 ) / 6 // // A has N-2 eigenvalues equal to 1. // // The other two eigenvalues are // // ( N + 1 + sqrt ( ( N + 1 )^2 - 4 * det ( A ) ) ) / 2 // ( N + 1 - sqrt ( ( N + 1 )^2 - 4 * det ( A ) ) ) / 2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Reference: // // MJ Aegerter, // Construction of a Set of Test Matrices, // Communications of the ACM, // Volume 2, Number 8, August 1959, pages 10-12. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double AEGERTER[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i == n ) { a[i-1+(j-1)*n] = ( double ) ( j ); } else if ( j == n ) { a[i-1+(j-1)*n] = ( double ) ( i ); } else if ( i == j ) { a[i-1+(j-1)*n] = 1.0; } else { a[i-1+(j-1)*n] = 0.0; } } } return a; } //****************************************************************************80 double aegerter_condition ( int n ) //****************************************************************************80 // // Purpose: // // aegerter_condition() returns the L1 condition of the AEGERTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double AEGERTER_CONDITION, the L1 condition number. // { double a_norm; double *b; double b_norm; double value; a_norm = ( double ) ( ( ( n + 1 ) * n ) / 2 ); b = aegerter_inverse ( n ); b_norm = r8mat_norm_l1 ( n, n, b ); value = a_norm * b_norm; // // Free memory. // delete [] b; return value; } //****************************************************************************80 double aegerter_determinant ( int n ) //****************************************************************************80 // // Purpose: // // aegerter_determinant() returns the determinant of the AEGERTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double AEGERTER_DETERMINANT, the determinant. // { double determ; determ = ( double ) ( n - ( ( n - 1 ) * n * ( 2 * n - 1 ) ) / 6 ); return determ; } //****************************************************************************80 double *aegerter_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // aegerter_eigenvalues() returns the eigenvalues of the AEGERTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double AEGERTER_EIGENVALUES[N], the eigenvalues. // { double determ; int i; double *lambda; double np1; lambda = new double[n]; determ = ( double ) ( n - ( ( n - 1 ) * n * ( 2 * n - 1 ) ) / 6 ); np1 = ( double ) ( n + 1 ); lambda[0] = 0.5 * ( np1 - sqrt ( np1 * np1 - 4.0 * determ ) ); for ( i = 1; i < n - 1; i++ ) { lambda[i] = 1.0; } lambda[n-1] = 0.5 * ( np1 + sqrt ( np1 * np1 - 4.0 * determ ) ); return lambda; } //****************************************************************************80 double *aegerter_inverse ( int n ) //****************************************************************************80 // // Purpose: // // aegerter_inverse() returns the inverse of the AEGERTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double AEGERTER_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n - 1; i++ ) { for ( j = 1; j <= n - 1; j++ ) { if ( i == j ) { a[i-1+(j-1)*n] = 1.0 - ( double ) ( i * j ) / ( double ) ( n * n ); } else { a[i-1+(j-1)*n] = - ( double ) ( i * j ) / ( double ) ( n * n ); } } } for ( i = 1; i <= n - 1; i++ ) { a[i-1+(n-1)*n] = ( double ) ( i ) / ( double ) ( n * n ); } for ( j = 1; j <= n - 1; j++ ) { a[n-1+(j-1)*n] = ( double ) ( j ) / ( double ) ( n * n ); } a[n-1+(n-1)*n] = - 1.0 / ( double ) ( n * n ); return a; } //****************************************************************************80 double *anticirculant_matrix ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // anticirculant_matrix() returns an ANTICIRCULANT matrix. // // Formula: // // K = 1 + mod ( J + I - 2, N ) // A(I,J) = X(K) // // Example: // // M = 4, N = 5, X = ( 1, 2, 3, 4, 5 ) // // 1 2 3 4 5 // 2 3 4 5 1 // 3 4 5 1 2 // 4 5 1 2 3 // // M = 5, N = 4, X = ( 1, 2, 3, 4 ) // // 1 2 3 4 // 2 3 4 5 // 3 4 5 1 // 4 5 1 2 // 1 2 3 4 // // Properties: // // A is a special Hankel matrix in which the diagonals "wrap around". // // A is symmetric: A' = A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double X[N], the vector that defines A. // // Output, double ANTICIRCULANT[M*N], the matrix. // { double *a; int i; int j; int k; a = new double[m*n]; for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { k = ( ( j + i - 2 ) % n ); a[i-1+(j-1)*m] = x[k]; } } return a; } //****************************************************************************80 double anticirculant_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // anticirculant_determinant(): determinant of the ANTICIRCULANT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values in the first row of A. // // Output, double ANTICIRCULANT_DETERMINANT, the determinant. // { double determ; int i; int j; complex *lambda; complex *w; w = c8vec_unity ( n ); lambda = new complex [n]; for ( i = 0; i < n; i++ ) { lambda[i] = x[n-1]; } for ( i = n - 2; 0 <= i; i-- ) { for ( j = 0; j < n; j++ ) { lambda[j] = lambda[j] * w[j] + x[i]; } } // // First eigenvalue is "special". // determ = real ( lambda[0] ); // // Eigenvalues 2, 3 through ( N + 1 ) / 2 are paired with complex conjugates. // for ( i = 1; i < ( n + 1 ) / 2; i++ ) { determ = determ * pow ( abs ( lambda[i] ), 2 ); } // // If N is even, there is another unpaired eigenvalue. // if ( ( n % 2 ) == 0 ) { determ = determ * real ( lambda[(n/2)] ); } // // This is actually the determinant of the CIRCULANT matrix. // We have to perform ( N - 1 ) / 2 row interchanges to get // to the anticirculant matrix. // determ = r8_mop ( ( n - 1 ) / 2 ) * determ; // // Free memory. // delete [] lambda; delete [] w; return determ; } //****************************************************************************80 double *antihadamard_matrix ( int n ) //****************************************************************************80 // // Purpose: // // antihadamard_matrix() returns an approximate ANTIHADAMARD matrix. // // Discussion: // // An Anti-Hadamard matrix is one whose elements are all 0 or 1, // and for which the Frobenius norm of the inverse is as large as // possible. This routine returns a matrix for which the Frobenius norm // of the inverse is large, though not necessarily maximal. // // Formula: // // if ( I = J ) // A(I,J) = 1 // else if ( I < J and mod ( I + J, 2 ) = 1 ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 1 0 1 0 // 0 1 1 0 1 // 0 0 1 1 0 // 0 0 0 1 1 // 0 0 0 0 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is Toeplitz: constant along diagonals. // // A is upper triangular. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero-one matrix. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Reference: // // Ronald Graham, Neal Sloane, // Anti-Hadamard Matrices, // Linear Algebra and Applications, // Volume 62, November 1984, pages 113-137. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double ANTIHADAMARD[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j < i ) { a[i+j*n] = 0.0; } else if ( i == j ) { a[i+j*n] = 1.0; } else if ( ( ( i + j ) % 2 ) == 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double antihadamard_determinant ( int n ) //****************************************************************************80 // // Purpose: // // antihadamard_determinant() returns the determinant of the ANTIHADAMARD matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 October 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double ANTIHADAMARD_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double antisummation_condition ( int n ) //****************************************************************************80 // // Purpose: // // antisummation_condition() returns the L1 condition of the ANTISUMMATION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2022 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double antisummation_condition, the L1 condition. // { int i; double cond; double norm_A; double norm_inv; double twoi; norm_A = ( double ) n; norm_inv = 1.0; twoi = 1.0; for ( i = 0; i <= n - 2; i++ ) { norm_inv = norm_inv + twoi; twoi = twoi * 2.0; } cond = norm_A * norm_inv; return cond; } //****************************************************************************80 double antisummation_determinant ( int n ) //****************************************************************************80 // // Purpose: // // antisummation_determinant() returns the determinant of the ANTISUMMATION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2022 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double antisummation_determinant, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *antisummation_inverse ( int n ) //****************************************************************************80 // // Purpose: // // antisummation_inverse() returns the inverse of the ANTISUMMATION matrix. // // Example: // // N = 5 // // 1 0 0 0 0 // 1 1 0 0 0 // 2 1 1 0 0 // 4 2 1 1 0 // 8 4 2 1 1 // // Properties: // // A is lower triangular. // // A is Toeplitz: constant along diagonals. // // A is nonsingular. // // det ( A ) = 1. // // A is the inverse of the antisummation matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2022 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double antisummation_inverse[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0; } else if ( j < i ) { a[i+j*n] = pow ( 2.0, i - j - 1 ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *antisummation_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // antisummation_matrix() returns the ANTISUMMATION matrix. // // Example: // // M = 5, N = 5 // // 1 0 0 0 0 // -1 1 0 0 0 // -1 -1 1 0 0 // -1 -1 -1 1 0 // -1 -1 -1 -1 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower triangular. // // A is Toeplitz: constant along diagonals. // // A is nonsingular. // // det ( A ) = 1. // // A is the Cholesky factor of the MOLER3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2022 // // Author: // // John Burkardt // // Reference: // // Nick Higham, // Seven Sins of Numerical Linear Algebra, // https://nhigham.com/2022/10/11/seven-sins-of-numerical-linear-algebra/ // // Input: // // int M, N, the order of the matrix. // // Output: // // double antisummation_matrix[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( j < i ) { a[i+j*m] = -1.0; } else if ( j == i ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double *antisymmetric_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // antisymmetric_random_matrix() returns an ANTISYMMETRIC matrix. // // Example: // // N = 5 // // 0.0000 -0.1096 0.0813 0.9248 -0.0793 // 0.1096 0.0000 0.1830 0.1502 0.8244 // -0.0813 -0.1830 0.0000 0.0899 -0.2137 // -0.9248 -0.1502 -0.0899 0.0000 -0.4804 // 0.0793 -0.8244 0.2137 0.4804 0.0000 // // Properties: // // A is generally not symmetric: A' /= A. // // A is antisymmetric: A' = -A. // // Because A is antisymmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The diagonal of A is zero. // // All the eigenvalues of A are imaginary. // // if N is odd, then det ( A ) = 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double antisymmetric_random[N*N], the matrix. // { double *a; int i; int j; int seed; a = new double[n*n]; seed = key; for ( i = 0; i < n; i++ ) { a[i+i*n] = 0.0; for ( j = i + 1; j < n; j++ ) { a[i+j*n] = 2.0 * r8_uniform_01 ( seed ) - 1.0; a[j+i*n] = - a[i+j*n]; } } return a; } //****************************************************************************80 double *archimedes_matrix ( ) //****************************************************************************80 // // Purpose: // // archimedes_matrix() returns the ARCHIMEDES matrix. // // Formula: // // 6 -5 0 -6 0 0 0 0 // 0 20 -9 -20 0 0 0 0 // -13 0 42 -42 0 0 0 0 // 0 -7 0 0 12 -7 0 0 // 0 0 -9 0 0 20 -9 0 // 0 0 0 -11 0 0 30 -11 // -13 0 0 0 -13 0 0 42 // // Discussion: // // "The sun god had a herd of cattle, consisting of bulls and cows, // one part of which was white, a second black, a third spotted, and // a fourth brown. Among the bulls, the number of white ones was // one half plus one third the number of the black greater than // the brown; the number of the black, one quarter plus one fifth // the number of the spotted greater than the brown; the number of // the spotted, one sixth and one seventh the number of the white // greater than the brown. Among the cows, the number of white ones // was one third plus one quarter of the total black cattle; the number // of the black, one quarter plus one fifth the total of the spotted // cattle; the number of spotted, one fifth plus one sixth the total // of the brown cattle; the number of the brown, one sixth plus one // seventh the total of the white cattle. What was the composition // of the herd?" // // The 7 relations involving the 8 numbers W, X, Y, Z, w, x, y, z, // have the form: // // W = ( 5/ 6) * X + Z // X = ( 9/20) * Y + Z // Y = (13/42) * W + Z // w = ( 7/12) * ( X + x ) // x = ( 9/20) * ( Y + y ) // y = (11/30) * ( Z + z ) // z = (13/42) * ( W + w ) // // These equations may be multiplied through to an integral form // that is embodied in the above matrix. // // A more complicated second part of the problem imposes additional // constraints (W+X must be square, Y+Z must be a triangular number). // // Properties: // // A is integral: int ( A ) = A. // // A has full row rank. // // It is desired to know a solution X in positive integers of // // A * X = 0. // // The null space of A is spanned by multiples of the null vector: // // [ 10,366,482 ] // [ 7,460,514 ] // [ 7,358,060 ] // [ 4,149,387 ] // [ 7,206,360 ] // [ 4,893,246 ] // [ 3,515,820 ] // [ 5,439,213 ] // // and this is the smallest positive integer solution of the // equation A * X = 0. // // Thus, for the "simple" part of Archimedes's problem, the total number // of cattle of the Sun is 50,389,082. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Reference: // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45 // // Parameters: // // Output, double ARCHIMEDES[7*8], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[7*8] = { 6.0, 0.0, -13.0, 0.0, 0.0, 0.0, -13.0, -5.0, 20.0, 0.0, -7.0, 0.0, 0.0, 0.0, 0.0, -9.0, 42.0, 0.0, -9.0, 0.0, 0.0, -6.0, -20.0, -42.0, 0.0, 0.0, -11.0, 0.0, 0.0, 0.0, 0.0, 12.0, 0.0, 0.0, -13.0, 0.0, 0.0, 0.0, -7.0, 20.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -9.0, 30.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -11.0, 42.0 }; a = r8mat_copy_new ( 7, 8, a_save ); return a; } //****************************************************************************80 double *archimedes_null_right ( ) //****************************************************************************80 // // Purpose: // // archimedes_null_right() returns a right null vector for the ARCHIMEDES matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2008 // // Author: // // John Burkardt // // Output: // // double ARCHIMEDES_NULL_RIGHT[8], the null vector. // { int n = 8; double *x; static double x_save[8] = { 10366482.0, 7460514.0, 7358060.0, 4149387.0, 7206360.0, 4893246.0, 3515820.0, 5439213.0 }; x = r8vec_copy_new ( n, x_save ); return x; } //****************************************************************************80 double *bab_matrix ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_matrix() returns the BAB matrix. // // Discussion: // // The name is meant to suggest the pattern "B A B" formed by // the nonzero entries in a general row of the matrix. // // Example: // // N = 5 // ALPHA = 5, BETA = 2 // // 5 2 . . . // 2 5 2 . . // . 2 5 2 . // . . 2 5 2 // . . . 2 5 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Reference: // // CM da Fonseca, J Petronilho, // Explicit Inverses of Some Tridiagonal Matrices, // Linear Algebra and Its Applications, // Volume 325, 2001, pages 7-21. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = alpha; } else if ( i == j + 1 || i == j - 1 ) { a[i+j*n] = beta; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double bab_condition ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_condition() returns the L1 condition of the BAB matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB_CONDITION, the L1 condition number. // { double a_norm; double *b; double b_norm; double value; if ( n == 1 ) { a_norm = fabs ( alpha ); } else if ( n == 2 ) { a_norm = fabs ( alpha ) + fabs ( beta ); } else { a_norm = fabs ( alpha ) + 2.0 * fabs ( beta ); } b = bab_inverse ( n, alpha, beta ); b_norm = r8mat_norm_l1 ( n, n, b ); value = a_norm * b_norm; // // Free memory. // delete [] b; return value; } //****************************************************************************80 double bab_determinant ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_determinant() returns the determinant of the BAB matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB_DETERMINANT, the determinant. // { double determ; double determ_nm1; double determ_nm2; int i; determ_nm1 = alpha; if ( n == 1 ) { determ = determ_nm1; return determ; } determ_nm2 = determ_nm1; determ_nm1 = alpha * alpha - beta * beta; if ( n == 2 ) { determ = determ_nm1; return determ; } for ( i = n - 2; 1 <= i; i-- ) { determ = alpha * determ_nm1 - beta * beta * determ_nm2; determ_nm2 = determ_nm1; determ_nm1 = determ; } return determ; } //****************************************************************************80 double *bab_eigen_right ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_eigen_right() returns the right eigenvectors of the BAB matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = sqrt ( 2.0 / ( double ) ( n + 1 ) ) * sin ( angle ); } } return a; } //****************************************************************************80 double *bab_eigenvalues ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_eigenvalues() returns the eigenvalues of the BAB matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); lambda[i] = alpha + 2.0 * beta * cos ( angle ); } return lambda; } //****************************************************************************80 double *bab_inverse ( int n, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // bab_inverse() returns the inverse of the BAB matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, BETA, the parameters. // // Output, double BAB_INVERSE[N*N], the matrix. // { double *a; int i; int j; double *u; double x; if ( beta == 0.0 ) { if ( alpha == 0.0 ) { cerr << "\n"; cerr << "BAB_INVERSE(): Fatal error!\n"; cerr << " ALPHA = BETA = 0.\n"; exit ( 1 ); } a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j ) { a[i+j*n] = 1.0 / alpha; } else { a[i+j*n] = 0.0; } } } } else { x = 0.5 * alpha / beta; u = cheby_u_polynomial ( n, x ); a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= i; j++ ) { a[i-1+(j-1)*n] = r8_mop ( i + j ) * u[j-1] * u[n-i] / u[n] / beta; } for ( j = i + 1; j <= n; j++ ) { a[i-1+(j-1)*n] = r8_mop ( i + j ) * u[i-1] * u[n-j] / u[n] / beta; } } delete [] u; } return a; } //****************************************************************************80 double *bauer_matrix ( ) //****************************************************************************80 // // Purpose: // // bauer_matrix() returns the BAUER matrix. // // Example: // // -74 80 18 -11 -4 -8 // 14 -69 21 28 0 7 // 66 -72 -5 7 1 4 // -12 66 -30 -23 3 -3 // 3 8 -7 -4 1 0 // 4 -12 4 4 0 1 // // Properties: // // The matrix is integral. // // The inverse matrix is integral. // // The matrix is ill-conditioned. // // The determinant is 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Reference: // // Virginia Klema, Alan Laub, // The Singular Value Decomposition: Its Computation and Some Applications, // IEEE Transactions on Automatic Control, // Volume 25, Number 2, April 1980. // // Parameters: // // Output, double BAUER[6,6], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[6*6] = { -74.0, 14.0, 66.0, -12.0, 3.0, 4.0, 80.0, -69.0, -72.0, 66.0, 8.0, -12.0, 18.0, 21.0, -5.0, -30.0, -7.0, 4.0, -11.0, 28.0, 7.0, -23.0, -4.0, 4.0, -4.0, 0.0, 1.0, 3.0, 1.0, 0.0, -8.0, 7.0, 4.0, -3.0, 0.0, 1.0 }; a = r8mat_copy_new ( 6, 6, a_save ); return a; } //****************************************************************************80 double bauer_condition ( ) //****************************************************************************80 // // Purpose: // // bauer_condition() returns the L1 condition of the BAUER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double VALUE, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 307.0; b_norm = 27781.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double bauer_determinant ( ) //****************************************************************************80 // // Purpose: // // bauer_determinant() returns the determinant of the BAUER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double VALUE, the determinant. // { double value; value = 1.0; return value; } //****************************************************************************80 double *bauer_inverse ( ) //****************************************************************************80 // // Purpose: // // bauer_inverse() returns the inverse of the BAUER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double BAUER_INVERSE[6*6], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[6*6] = { 1.0, 0.0, -2.0, 15.0, 43.0, -56.0, 0.0, 1.0, 2.0, -12.0, -42.0, 52.0, -7.0, 7.0, 29.0, -192.0, -600.0, 764.0, -40.0, 35.0, 155.0, -1034.0, -3211.0, 4096.0, 131.0, -112.0, -502.0, 3354.0, 10406.0, -13276.0, -84.0, 70.0, 319.0, -2130.0, -6595.0, 8421.0 }; a = r8mat_copy_new ( 6, 6, a_save ); return a; } //****************************************************************************80 double *bernstein_matrix ( int n ) //****************************************************************************80 // // Purpose: // // bernstein_matrix() returns the BERNSTEIN matrix. // // Discussion: // // The Bernstein matrix of order N is an NxN matrix A which can be used to // transform a vector of power basis coefficients C representing a polynomial // P(X) to a corresponding Bernstein basis coefficient vector B: // // B = A * C // // The N power basis vectors are ordered as (1,X,X^2,...X^(N-1)) and the N // Bernstein basis vectors as ((1-X)^(N-1), X*(1-X)^(N-2),...,X^(N-1)). // // Example: // // N = 5 // // 1 -4 6 -4 1 // 0 4 -12 12 -4 // 0 0 6 -12 6 // 0 0 0 4 -4 // 0 0 0 0 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BERNSTEIN[N*N], the Bernstein matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i <= j; i++ ) { a[i+j*n] = r8_mop ( j - i ) * r8_choose ( n - 1 - i, j - i ) * r8_choose ( n - 1, i ); } } return a; } //****************************************************************************80 double bernstein_determinant ( int n ) //****************************************************************************80 // // Purpose: // // bernstein_determinant() returns the determinant of the BERNSTEIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BERNSTEIN_DETERMINANT, the determinant. // { int i; double value; value = 1.0; for ( i = 0; i < n; i++ ) { value = value * r8_choose ( n - 1, i ); } return value; } //****************************************************************************80 double *bernstein_inverse ( int n ) //****************************************************************************80 // // Purpose: // // bernstein_inverse() returns the inverse of the BERNSTEIN matrix. // // Discussion: // // The inverse Bernstein matrix of order N is an NxN matrix A which can // be used to transform a vector of Bernstein basis coefficients B // representing a polynomial P(X) to a corresponding power basis // coefficient vector C: // // C = A * B // // The N power basis vectors are ordered as (1,X,X^2,...X^(N-1)) and the N // Bernstein basis vectors as ((1-X)^(N-1), X*(1_X)^(N-2),...,X^(N-1)). // // Example: // // N = 5 // // 1.0000 1.0000 1.0000 1.0000 1.0000 // 0 0.2500 0.5000 0.7500 1.0000 // 0 0 0.1667 0.5000 1.0000 // 0 0 0 0.2500 1.0000 // 0 0 0 0 1.0000 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BERNSTEIN_INVERSE[N*N], the inverse Bernstein matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i <= j; i++ ) { a[i+j*n] = r8_choose ( j, i ) / r8_choose ( n - 1, i ); } } return a; } //****************************************************************************80 double *bernstein_poly_01 ( int n, double x ) //****************************************************************************80 // // Purpose: // // bernstein_poly_01() evaluates the Bernstein polynomials based in [0,1]. // // Discussion: // // The Bernstein polynomials are assumed to be based on [0,1]. // // The formula is: // // B(N,I)(X) = [N!/(I!*(N-I)!)] * (1-X)^(N-I) * X^I // // First values: // // B(0,0)(X) = 1 // // B(1,0)(X) = 1-X // B(1,1)(X) = X // // B(2,0)(X) = (1-X)^2 // B(2,1)(X) = 2 * (1-X) * X // B(2,2)(X) = X^2 // // B(3,0)(X) = (1-X)^3 // B(3,1)(X) = 3 * (1-X)^2 * X // B(3,2)(X) = 3 * (1-X) * X^2 // B(3,3)(X) = X^3 // // B(4,0)(X) = (1-X)^4 // B(4,1)(X) = 4 * (1-X)^3 * X // B(4,2)(X) = 6 * (1-X)^2 * X^2 // B(4,3)(X) = 4 * (1-X) * X^3 // B(4,4)(X) = X^4 // // Special values: // // B(N,I)(X) has a unique maximum value at X = I/N. // // B(N,I)(X) has an I-fold zero at 0 and and N-I fold zero at 1. // // B(N,I)(1/2) = C(N,K) / 2^N // // For a fixed X and N, the polynomials add up to 1: // // Sum ( 0 <= I <= N ) B(N,I)(X) = 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the degree of the Bernstein polynomials // to be used. For any N, there is a set of N+1 Bernstein polynomials, // each of degree N, which form a basis for polynomials on [0,1]. // // Input, double X, the evaluation point. // // Output, double BERNSTEIN_POLY[N+1], the values of the N+1 // Bernstein polynomials at X. // { double *bern; int i; int j; bern = new double[n+1]; if ( n == 0 ) { bern[0] = 1.0; } else if ( 0 < n ) { bern[0] = 1.0 - x; bern[1] = x; for ( i = 2; i <= n; i++ ) { bern[i] = x * bern[i-1]; for ( j = i - 1; 1 <= j; j-- ) { bern[j] = x * bern[j-1] + ( 1.0 - x ) * bern[j]; } bern[0] = ( 1.0 - x ) * bern[0]; } } return bern; } //****************************************************************************80 double *bernstein_vandermonde ( int n ) //****************************************************************************80 // // Purpose: // // bernstein_vandermonde() returns the Bernstein Vandermonde matrix. // // Discussion: // // The Bernstein Vandermonde matrix of order N is constructed by // evaluating the N Bernstein polynomials of degree N-1 at N equally // spaced points between 0 and 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 December 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BERNSTEIN_VANDERMONDE[N*N], the Bernstein Vandermonde matrix. // { double *b; int i; int j; double *v; double x; v = new double[n*n]; if ( n == 1 ) { v[0+0*1] = 1.0; return v; } for ( i = 0; i < n; i++ ) { x = ( double ) ( i ) / ( double ) ( n - 1 ); b = bernstein_poly_01 ( n - 1, x ); for ( j = 0; j < n; j++ ) { v[i+j*n] = b[j]; } delete [] b; } return v; } //****************************************************************************80 double *bimarkov_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // bimarkov_random_matrix() returns a BIMARKOV matrix. // // Discussion: // // A Bimarkov matrix is also known as a doubly stochastic matrix. // // Example: // // N = 5 // // 1/5 1/5 1/5 1/5 1/5 // 1/2 1/2 0 0 0 // 1/6 1/6 2/3 0 0 // 1/12 1/12 1/12 3/4 0 // 1/20 1/20 1/20 1/20 4/5 // // Properties: // // A is generally not symmetric: A' /= A. // // 0 <= A(I,J) <= 1.0 for every I and J. // // A has constant row sum 1. // // Because it has a constant row sum of 1, // A has an eigenvalue of 1 // and a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum 1. // // Because it has a constant column sum of 1, // A has an eigenvalue of 1 // and a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // All the eigenvalues of A have modulus 1. // // The eigenvalue 1 lies on the boundary of all the Gershgorin // row or column sum disks. // // Every doubly stochastic matrix is a combination // A = w1 * P1 + w2 * P2 + ... + wk * Pk // of permutation matrices, with positive weights w that sum to 1. // (Birkhoff's theorem, see Horn and Johnson.) // // A is a Markov matrix. // // A is a transition matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2008 // // Author: // // John Burkardt // // Reference: // // Roger Horn, Charles Johnson, // Matrix Analysis, // Cambridge, 1985, // ISBN: 0-521-38632-2, // LC: QA188.H66. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output,double BIMARKOV_RANDOM[N*N], the matrix. // { double *a; int i; int j; // // Get a random orthogonal matrix. // a = orthogonal_random_matrix ( n, key ); // // Square each entry. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] * a[i+j*n]; } } return a; } //****************************************************************************80 double *bis_matrix ( double alpha, double beta, int m, int n ) //****************************************************************************80 // // Purpose: // // bis_matrix() returns the BIS matrix. // // Discussion: // // The BIS matrix is a bidiagonal scalar matrix. // // Formula: // // if ( I = J ) // A(I,J) = ALPHA // else if ( J = I + 1 ) // A(I,J) = BETA // else // A(I,J) = 0 // // Example: // // ALPHA = 7, BETA = 2, M = 5, N = 4 // // 7 2 0 0 // 0 7 2 0 // 0 0 7 2 // 0 0 0 7 // 0 0 0 0 // // Properties: // // A is bidiagonal. // // Because A is bidiagonal, it has property A (bipartite). // // A is upper triangular. // // A is banded with bandwidth 2. // // A is Toeplitz: constant along diagonals. // // A is generally not symmetric: A' /= A. // // A is nonsingular if and only if ALPHA is nonzero. // // det ( A ) = ALPHA^N. // // LAMBDA(1:N) = ALPHA. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, the scalars which define the // diagonal and first superdiagonal of the matrix. // // Input, int M, N, the order of the matrix. // // Output, double BIS[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { if ( j == i ) { a[i-1+(j-1)*m] = alpha; } else if ( j == i + 1 ) { a[i-1+(j-1)*m] = beta; } else { a[i-1+(j-1)*m] = 0.0; } } } return a; } //****************************************************************************80 double bis_condition ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // bis_condition() returns the L1 condition of the BIS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, the scalars which define the // diagonal and first superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double BIS_CONDITION, the L1 condition of the matrix. // { double a_norm; double b_norm; double ba; double value; a_norm = fabs ( alpha ) + fabs ( beta ); ba = fabs ( beta / alpha ); b_norm = ( pow ( ba, n ) - 1.0 ) / ( ba - 1.0 ) / fabs ( alpha ); value = a_norm * b_norm; return value; } //****************************************************************************80 double bis_determinant ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // bis_determinant() returns the determinant of the BIS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, the scalars which define the // diagonal and first superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double BIS_DETERMINANT, the determinant of the matrix. // { double determ; determ = pow ( alpha, n ); return determ; } //****************************************************************************80 double *bis_eigenvalues ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // bis_eigenvalues() returns the eigenvalues of the BIS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, the scalars which define the // diagonal and first superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double BIS_EIGENVALUES[N], the eigenvalues of the matrix. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = alpha; } return lambda; } //****************************************************************************80 double *bis_inverse ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // bis_inverse() returns the inverse of the BIS matrix. // // Formula: // // if ( I <= J ) // A(I,J) = (-BETA)^(J-I) / ALPHA^(J+1-I) // else // A(I,J) = 0 // // Example: // // ALPHA = 7.0, BETA = 2.0, N = 4 // // 0.1429 -0.0408 0.0117 -0.0033 // 0 0.1429 -0.0408 0.0117 // 0 0 0.1429 -0.0408 // 0 0 0 0.1429 // // Properties: // // A is generally not symmetric: A' /= A. // // A is upper triangular // // A is Toeplitz: constant along diagonals. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // det ( A ) = (1/ALPHA)^N. // // LAMBDA(1:N) = 1 / ALPHA. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, the scalars which define the // diagonal and first superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double BIS_INVERSE[N*N], the matrix. // { double *a; int i; int j; if ( alpha == 0.0 ) { cerr << "\n"; cerr << "BIS_INVERSE(): Fatal error.\n"; cerr << " The input parameter ALPHA was 0.\n"; exit ( 1 ); } a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i <= j ) { a[i+j*n] = pow ( - beta / alpha, j - i ) / alpha; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *biw_matrix ( int n ) //****************************************************************************80 // // Purpose: // // biw_matrix() returns the BIW matrix. // // Discussion: // // BIW is a bidiagonal matrix of Wilkinson. Originally, this matrix // was considered for N = 100. // // Formula: // // if ( I == J ) // A(I,J) = 0.5 + I / ( 10 * N ) // else if ( J == I+1 ) // A(I,J) = -1.0 // else // A(I,J) = 0 // // Example: // // N = 5 // // 0.52 -1.00 0.00 0.00 0.00 // 0.00 0.54 -1.00 0.00 0.00 // 0.00 0.00 0.56 -1.00 0.00 // 0.00 0.00 0.00 0.58 -1.00 // 0.00 0.00 0.00 0.00 0.60 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BIW[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { a[i+i*n] = 0.5 + ( double ) ( i + 1 ) / ( double ) ( 10 * n ); } for ( i = 0; i < n - 1; i++ ) { a[i+(i+1)*n] = - 1.0; } return a; } //****************************************************************************80 double biw_condition ( int n ) //****************************************************************************80 // // Purpose: // // biw_condition() computes the L1 condition of the BIW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double VALUE, the L1 condition. // { double a_norm; double aii; double b_norm; double bij; int i; int j; double value; if ( n == 1 ) { a_norm = 0.6; } else { a_norm = 1.6; } b_norm = 0.0; j = n; for ( i = n; 1 <= i; i-- ) { aii = 0.5 + ( double ) ( i ) / ( double ) ( 10 * n ); if ( i == j ) { bij = 1.0 / aii; } else if ( i < j ) { bij = bij / aii; } b_norm = b_norm + fabs ( bij ); } value = a_norm * b_norm; return value; } //****************************************************************************80 double biw_determinant ( int n ) //****************************************************************************80 // // Purpose: // // biw_determinant() computes the determinant of the BIW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BIW_DETERMINANT, the determinant. // { int i; double value; value = 1.0; for ( i = 0; i < n; i++ ) { value = value * ( 0.5 + ( double ) ( i + 1 ) / ( double ) ( 10 * n ) ); } return value; } //****************************************************************************80 double *biw_inverse ( int n ) //****************************************************************************80 // // Purpose: // // biw_inverse() returns the inverse of the BIW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BIW_INVERSE[N,N], the matrix. // { double aii; double aiip1; double *b; int i; int j; b = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = 0.0; } } for ( j = n - 1; 0 <= j; j-- ) { for ( i = n - 1; 0 <= i; i-- ) { aii = 0.5 + ( double ) ( i + 1 ) / ( double ) ( 10 * n ); aiip1 = -1.0; if ( i == j ) { b[i+j*n] = 1.0 / aii; } else if ( i < j ) { b[i+j*n] = - aiip1 * b[i+1+j*n] / aii; } } } return b; } //****************************************************************************80 double *bodewig_matrix ( ) //****************************************************************************80 // // Purpose: // // bodewig_matrix() returns the BODEWIG matrix. // // Example: // // 2 1 3 4 // 1 -3 1 5 // 3 1 6 -2 // 4 5 -2 -1 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is symmetric: A' = A. // // det ( A ) = 568. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double BODEWIG[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 2.0, 1.0, 3.0, 4.0, 1.0, -3.0, 1.0, 5.0, 3.0, 1.0, 6.0, -2.0, 4.0, 5.0, -2.0, -1.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double bodewig_condition ( ) //****************************************************************************80 // // Purpose: // // bodewig_condition() returns the L1 condition of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_CONDITION, the L1 condition. // { double cond; cond = 10.436619718309862; return cond; } //****************************************************************************80 double bodewig_determinant ( ) //****************************************************************************80 // // Purpose: // // bodewig_determinant() returns the determinant of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_DETERMINANT, the determinant. // { double determ; determ = 568.0; return determ; } //****************************************************************************80 double *bodewig_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // bodewig_eigenvalues() returns the eigenvalues of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_EIGENVALUES[4], the eigenvalues. // { double *lambda; static double lambda_save[4] = { -8.028578352396531, 7.932904717870018, 5.668864372830019, -1.573190738303506 }; lambda = r8vec_copy_new ( 4, lambda_save ); return lambda; } //****************************************************************************80 double *bodewig_inverse ( ) //****************************************************************************80 // // Purpose: // // bodewig_inverse() returns the inverse of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_INVERSE[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { -139.0/ 568.0, 165.0/ 568.0, 79.0/ 568.0, 111.0/ 568.0, 165.0/ 568.0, -155.0/ 568.0, -57.0/ 568.0, -1.0/ 568.0, 79.0/ 568.0, -57.0/ 568.0, 45.0/ 568.0, -59.0/ 568.0, 111.0/ 568.0, -1.0/ 568.0, -59.0/ 568.0, -11.0/ 568.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 void bodewig_plu ( double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // bodewig_plu() returns the PLU factors of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, double P[4*4], L[4*4], U[4*4], the PLU factors. // { // // Note that the matrix entries are listed by column. // static double l_save[4*4] = { 1.0, 0.25, 0.75, 0.50, 0.0, 1.00, 0.647058823529412, 0.352941176470588, 0.0, 0.00, 1.0, 0.531531531531532, 0.0, 0.00, 0.0, 1.0 }; static double p_save[4*4] = { 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0 }; static double u_save[4*4] = { 4.0, 0.00, 0.0, 0.0, 5.0, -4.25, 0.00, 0.0, -2.0, 1.50, 6.529411764705882, 0.0, -1.0, 5.25, -4.647058823529412, 5.117117117117118 }; r8mat_copy ( 4, 4, l_save, l ); r8mat_copy ( 4, 4, p_save, p ); r8mat_copy ( 4, 4, u_save, u ); return; } //****************************************************************************80 double *bodewig_rhs ( ) //****************************************************************************80 // // Purpose: // // bodewig_rhs() returns the BODEWIG right hand side. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_RHS[4], the right hand side vector. // { double *b; static double b_save[4] = { 29.0, 18.0, 15.0, 4.0 }; b = r8vec_copy_new ( 4, b_save ); return b; } //****************************************************************************80 double *bodewig_eigen_right ( ) //****************************************************************************80 // // Purpose: // // bodewig_eigen_right() returns the right eigenvectors of the BODEWIG matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double BODEWIG_EIGEN_RIGHT[4*4], the right eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 0.263462395147524, 0.659040718046439, -0.199633529128396, -0.675573350827063, 0.560144509774526, 0.211632763260098, 0.776708263894565, 0.195381612446620, 0.378702689441644, 0.362419048574935, -0.537935161097828, 0.660198809976478, -0.688047939843040, 0.624122855455373, 0.259800864702728, 0.263750269148100 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *bodewig_solution ( ) //****************************************************************************80 // // Purpose: // // bodewig_solution() returns the BODEWIG_SOLUTION // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Output, BODEWIG_SOLUTION[4], the solution. // { double *x; static double x_save[4] = { 1.0, 2.0, 3.0, 4.0 }; x = r8vec_copy_new ( 4, x_save ); return x; } //****************************************************************************80 double *boothroyd_matrix ( int n ) //****************************************************************************80 // // Purpose: // // boothroyd_matrix() returns the BOOTHROYD matrix. // // Formula: // // A(I,J) = C(N+I-1,I-1) * C(N-1,N-J) * N / ( I + J - 1 ) // // Example: // // N = 5 // // 5 10 10 5 1 // 15 40 45 24 5 // 35 105 126 70 15 // 70 224 280 160 35 // 126 420 540 315 70 // // Properties: // // A is not symmetric. // // A is positive definite. // // det ( A ) = 1. // // The inverse matrix has the same entries, but with alternating sign. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Reference: // // John Boothroyd, // Algorithm 274: // Generation of Hilbert Derived Test Matrix, // Communications of the ACM, // Volume 9, Number 1, January 1966, page 11. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BOOTHROYD[N*N] the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { a[i-1+(j-1)*n] = r8_choose ( n + i - 1, i - 1 ) * r8_choose ( n - 1, n - j ) * ( double ) ( n ) / ( double ) ( i + j - 1 ); } } return a; } //****************************************************************************80 double boothroyd_condition ( int n ) //****************************************************************************80 // // Purpose: // // boothroyd_condition() returns the L1 condition of the BOOTHROYD matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BOOTHROYD_CONDITION, the L1 condition. // { double a_norm; double b_norm; int i; int j; double s; double value; a_norm = 0.0; for ( j = 1; j <= n; j++ ) { s = 0.0; for ( i = 1; i <= n; i++ ) { s = s + r8_choose ( n + i - 1, i - 1 ) * r8_choose ( n - 1, n - j ) * ( double ) ( n ) / ( double ) ( i + j - 1 ); } if ( a_norm < s ) { a_norm = s; } } b_norm = a_norm; value = a_norm * b_norm; return value; } //****************************************************************************80 double boothroyd_determinant ( int n ) //****************************************************************************80 // // Purpose: // // boothroyd_determinant() returns the determinant of the BOOTHROYD matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BOOTHROYD_DETERMINANT, the determinant. // { double value; value = 1.0; return value; } //****************************************************************************80 double *boothroyd_inverse ( int n ) //****************************************************************************80 // // Purpose: // // boothroyd_inverse() returns the inverse of the BOOTHROYD matrix. // // Example: // // N = 5 // // 5 -10 10 -5 1 // -15 40 -45 24 -5 // 35 -105 126 -70 15 // -70 224 -280 160 -35 // 126 -420 540 -315 70 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BOOTHROYD_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { a[i-1+(j-1)*n] = r8_mop ( i + j ) * r8_choose ( n + i - 1, i - 1 ) * r8_choose ( n - 1, n - j ) * ( double ) ( n ) / ( double ) ( i + j - 1 ); } } return a; } //****************************************************************************80 double *borderband_matrix ( int n ) //****************************************************************************80 // // Purpose: // // borderband_matrix() returns the BORDERBAND matrix. // // Formula: // // If ( I = J ) // A(I,I) = 1 // else if ( I = N ) // A(N,J) = 2^(1-J) // else if ( J = N ) // A(I,N) = 2^(1-I) // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 0 0 0 1 // 0 1 0 0 1/2 // 0 0 1 0 1/4 // 0 0 0 1 1/8 // 1 1/2 1/4 1/8 1 // // Properties: // // A is symmetric: A' = A. // // A is border-banded. // // A has N-2 eigenvalues of 1. // // det ( A ) = 1 - sum ( 1 <= I <= N-1 ) 2^(2-2*I) // // For N = 2, A is singular. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BORDERBAND[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i == j ) { a[i-1+(j-1)*n] = 1.0; } else if ( j == n ) { a[i-1+(j-1)*n] = pow ( 2.0, 1 - i ); } else if ( i == n ) { a[i-1+(j-1)*n] = pow ( 2.0, 1 - j ); } else { a[i-1+(j-1)*n] = 0.0; } } } return a; } //****************************************************************************80 double borderband_determinant ( int n ) //****************************************************************************80 // // Purpose: // // borderband_determinant() returns the determinant of the BORDERBAND matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BORDERBAND_DETERMINANT, the determinant. // { double determ; int i; determ = 0.0; for ( i = 1; i <= n - 1; i++ ) { determ = determ - pow ( 2.0, 2 - 2 * i ); } determ = determ + 1.0; return determ; } //****************************************************************************80 double *borderband_inverse ( int n ) //****************************************************************************80 // // Purpose: // // borderband_inverse() returns the inverse of the BORDERBAND matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double BORDERBAND_INVERSE[N*N], the inverse matrix. // { double *a; double *l; double *l_inverse; double *lp_inverse; double *p; double *p_inverse; double *u; double *u_inverse; p = new double[n*n]; l = new double[n*n]; u = new double[n*n]; borderband_plu ( n, p, l, u ); p_inverse = r8mat_transpose_new ( n, n, p ); l_inverse = tri_l1_inverse ( n, l ); lp_inverse = r8mat_mm_new ( n, n, n, l_inverse, p_inverse ); u_inverse = tri_u_inverse ( n, u ); a = r8mat_mm_new ( n, n, n, u_inverse, lp_inverse ); // // Free memory. // delete [] l; delete [] l_inverse; delete [] lp_inverse; delete [] p; delete [] p_inverse; delete [] u; delete [] u_inverse; return a; } //****************************************************************************80 void borderband_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // borderband_plu() returns the PLU factors of the BORDERBAND matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; int k; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { l[i+j*n] = 1.0; } else if ( i == n - 1 ) { l[i+j*n] = pow ( 2.0, - j ); } else { l[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == n - 1 && j == n - 1 ) { u[i+j*n] = 0.0; for ( k = 1; k < n - 1; k++ ) { u[i+j*n] = u[i+j*n] - pow ( 2.0, - 2 * k ); } } else if ( i == j ) { u[i+j*n] = 1.0; } else if ( j == n - 1 ) { u[i+j*n] = pow ( 2.0, - i ); } else { u[i+j*n] = 0.0; } } } return; } //****************************************************************************80 void bvec_next_grlex ( int n, int bvec[] ) //****************************************************************************80 // // Purpose: // // bvec_next() generates the next binary vector in GRLEX order. // // Discussion: // // N = 3 // // Input Output // ----- ------ // 0 0 0 => 0 0 1 // 0 0 1 => 0 1 0 // 0 1 0 => 1 0 0 // 1 0 0 => 0 1 1 // 0 1 1 => 1 0 1 // 1 0 1 => 1 1 0 // 1 1 0 => 1 1 1 // 1 1 1 => 0 0 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 March 2015 // // Author: // // John Burkardt // // Input: // // int N, the dimension of the vectors. // // int BVEC[N], a vector. // // Output: // // int BVEC[N], the successor to the input vector. // { int i; int o; int s; int z; // // Initialize locations of 0 and 1. // if ( bvec[0] == 0 ) { z = 0; o = -1; } else { z = -1; o = 0; } // // Moving from right to left, search for a "1", preceded by a "0". // for ( i = n - 1; 1 <= i; i-- ) { if ( bvec[i] == 1 ) { o = i; if ( bvec[i-1] == 0 ) { z = i - 1; break; } } } // // BVEC = 0 // if ( o == -1 ) { bvec[n-1] = 1; } // // 01 never occurs. So for sure, B(1) = 1. // else if ( z == -1 ) { s = 0; for ( i = 0; i < n; i++ ) { s = s + bvec[i]; } if ( s == n ) { for ( i = 0; i < n; i++ ) { bvec[i] = 0; } } else { for ( i = 0; i < n - s - 1; i++ ) { bvec[i] = 0; } for ( i = n - s - 1; i < n; i++ ) { bvec[i] = 1; } } } // // Found the rightmost "01" string. // Replace it by "10". // Shift following 1's to the right. // else { bvec[z] = 1; bvec[o] = 0; s = 0; for ( i = o + 1; i < n; i++ ) { s = s + bvec[i]; } for ( i = o + 1; i < n - s; i++ ) { bvec[i] = 0; } for ( i = n - s; i < n; i++ ) { bvec[i] = 1; } } return; } //****************************************************************************80 double c8_abs ( complex x ) //****************************************************************************80 // // Purpose: // // c8_abs() returns the absolute value of a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, complex X, the value to be handled. // // Output, double C8_ABS, the absolute value of X. // { double value; value = sqrt ( pow ( real ( x ), 2 ) + pow ( imag ( x ), 2 ) ); return value; } //****************************************************************************80 complex c8_i ( ) //****************************************************************************80 // // Purpose: // // c8_i() returns the value of the imaginary unit, i as a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex C8_I, the value of complex i. // { complex value; value = complex ( 0.0, 1.0 ); return value; } //****************************************************************************80 bool c8_le_l2 ( complex x, complex y ) //****************************************************************************80 // // Purpose: // // c8_le_l2() := X <= Y for C8 values, and the L2 norm. // // Discussion: // // A C8 is a complex double precision value. // // The L2 norm can be defined here as: // // C8_NORM_L2(X) = sqrt ( ( real (X) )^2 + ( imag (X) )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 April 2008 // // Author: // // John Burkardt // // Parameters: // // Input, complex X, Y, the values to be compared. // // Output, bool C8_LE_L2, is TRUE if X <= Y. // { bool value; if ( pow ( real ( x ), 2 ) + pow ( imag ( x ), 2 ) <= pow ( real ( y ), 2 ) + pow ( imag ( y ), 2 ) ) { value = true; } else { value = false; } return value; } //****************************************************************************80 complex c8_normal_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // c8_normal_01() returns a unit pseudonormal C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 October 2005 // // Author: // // John Burkardt // // Parameters: // // int &SEED, a seed for the random number generator. // // Output, complex C8_NORMAL_01, a unit pseudornormal value. // // Output: // // int &SEED, an updated seed. // { const double r8_pi = 3.141592653589793; double v1; double v2; double x_c; double x_r; complex value; v1 = r8_uniform_01 ( seed ); v2 = r8_uniform_01 ( seed ); x_r = sqrt ( - 2.0 * log ( v1 ) ) * cos ( 2.0 * r8_pi * v2 ); x_c = sqrt ( - 2.0 * log ( v1 ) ) * sin ( 2.0 * r8_pi * v2 ); value = complex ( x_r, x_c ); return value; } //****************************************************************************80 complex c8_one ( ) //****************************************************************************80 // // Purpose: // // c8_one() returns the value of complex 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex C8_ONE, the value of complex 1. // { complex value; value = complex ( 1.0, 0.0 ); return value; } //****************************************************************************80 void c8_swap ( complex *x, complex *y ) //****************************************************************************80 // // Purpose: // // c8_swap() swaps two C8's. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 October 2005 // // Author: // // John Burkardt // // Input: // // complex *X, *Y, two values. // // Output: // // complex *X, *Y, the values have been interchanged. // { complex z; z = *x; *x = *y; *y = z; return; } //****************************************************************************80 complex c8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // c8_uniform_01() returns a unit pseudorandom C8. // // Discussion: // // A C8 is a double precision complex value. // // The angle should be uniformly distributed between 0 and 2 * PI, // the square root of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 October 2005 // // Author: // // John Burkardt // // Parameters: // // int &SEED, the "seed" value, which should NOT be 0. // // Output: // // Output, complex C8_UNIFORM_01, a pseudorandom complex value. // // int &SEED, an updated seed. { double r; int k; const double r8_pi = 3.141592653589793; double theta; complex value; k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); value = r * complex ( cos ( theta ), sin ( theta ) ); return value; } //****************************************************************************80 complex c8_zero ( ) //****************************************************************************80 // // Purpose: // // c8_zero() returns the value of 0 as a C8. // // Discussion: // // A C8 is a double precision complex value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex C8_ZERO, the value of complex 0. // { complex value; value = complex ( 0.0, 0.0 ); return value; } //****************************************************************************80 complex *c8mat_copy_new ( int m, int n, complex a1[] ) //****************************************************************************80 // // Purpose: // // c8mat_copy_new() copies one C8MAT to a "new" C8MAT. // // Discussion: // // An C8MAT is a doubly dimensioned array of complex double precision values, // which may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, complex A1[M*N], the matrix to be copied. // // Output, complex C8MAT_COPY_NEW[M*N], the copy of A1. // { complex *a2; int i; int j; a2 = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return a2; } //****************************************************************************80 complex *c8mat_identity ( int n ) //****************************************************************************80 // // Purpose: // // c8mat_identity() sets a C8MAT to the identity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex C8MAT_IDENTITY[N*N], the matrix. // { complex *a; int i; int j; a = new complex [n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = complex ( 1.0, 0.0 ); } else { a[i+j*n] = complex ( 0.0, 0.0 ); } } } return a; } //****************************************************************************80 double c8mat_is_eigen_right ( int n, int k, complex a[], complex x[], complex lambda[] ) //****************************************************************************80 // // Purpose: // // c8mat_is_eigen_right(): error in a complex right eigensystem. // // Discussion: // // A C8MAT is a matrix of complex doubles. // // This routine computes the Frobenius norm of // // A * X - X * LAMBDA // // where // // A is an N by N matrix, // X is an N by K matrix (each of K columns is an eigenvector) // LAMBDA is a K by K diagonal matrix of eigenvalues. // // This routine assumes that A, X and LAMBDA are all complex. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // int K, the number of eigenvectors. // K is usually 1 or N. // // complex A[N*N], the matrix. // // complex X[N*K], the K eigenvectors. // // complex LAMBDA[K], the K eigenvalues. // // Output: // // double C8MAT_IS_EIGEN_RIGHT, the Frobenius norm // of the difference matrix A * X - X * LAMBDA, which would be exactly zero // if X and LAMBDA were exact eigenvectors and eigenvalues of A. // { complex *c; double error_frobenius; int i; int j; // // C = A * X // c = c8mat_mm_new ( n, n, k, a, x ); // // C = C - LAMBDA * X // for ( j = 0; j < k; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = c[i+j*n] - lambda[j] * x[i+j*n]; } } error_frobenius = c8mat_norm_fro ( n, k, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 complex *c8mat_mm_new ( int n1, int n2, int n3, complex a[], complex b[] ) //****************************************************************************80 // // Purpose: // // c8mat_mm_new() multiplies two C8MAT's. // // Discussion: // // A C8MAT is a doubly dimensioned array of C8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the order of the matrices. // // Input, complex A[N1*N2], complex B[N2*N3], // the matrices to multiply. // // Output, complex C[N1*N3], the product matrix C = A * B. // { complex *c; int i; int j; int k; c = new complex [n1*n3]; for ( i = 0; i < n1; i ++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[k+j*n2]; } } } return c; } //****************************************************************************80 double c8mat_norm_fro ( int m, int n, complex a[] ) //****************************************************************************80 // // Purpose: // // c8mat_norm_fro() returns the Frobenius norm of a C8MAT. // // Discussion: // // The Frobenius norm is defined as // // C8MAT_NORM_FRO = sqrt ( // sum ( 1 <= I <= M ) Sum ( 1 <= J <= N ) |A(I,J)| ) // // The matrix Frobenius-norm is not derived from a vector norm, but // is compatible with the vector L2 norm, so that: // // c8vec_norm_l2 ( A*x ) <= c8mat_norm_fro ( A ) * c8vec_norm_l2 ( x ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, complex A[M*N], the matrix. // // Output, double C8MAT_NORM_FRO, the Frobenius norm of A. // { int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + pow ( real ( a[i+j*m] ), 2 ) + pow ( imag ( a[i+j*m] ), 2 ); } } value = sqrt ( value ); return value; } //****************************************************************************80 void c8mat_print ( int m, int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // c8mat_print() prints a C8MAT. // // Discussion: // // A C8MAT is a matrix of double precision complex values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, string TITLE, a title. // { c8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void c8mat_print_some ( int m, int n, complex a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // c8mat_print_some() prints some of a C8MAT. // // Discussion: // // A C8MAT is a matrix of double precision complex values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the matrix. // // Input, complex A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { complex c; int i; int i2hi; int i2lo; int inc; int incx = 4; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + incx ) { j2hi = j2lo + incx - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << " " << setw(10) << j; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) INCX entries in row I, that lie in the current strip. // for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; c = a[i-1+(j-1)*m]; cout << " " << setw(8) << real ( c ) << " " << setw(8) << imag ( c ); } cout << "\n"; } } return; } //****************************************************************************80 complex *c8mat_uniform_01 ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // c8mat_uniform_01() returns a unit pseudorandom C8MAT. // // Discussion: // // A C8MAT is a matrix of double precision complex values. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Input: // // int M, N, the number of rows and columns in the matrix. // // int &SEED, the "seed" value, which should NOT be 0. // // Output: // // complex C[M*N], the pseudorandom complex matrix. // // int &SEED, an updated seed. // { complex *c; int i; int j; double r; int k; const double r8_pi = 3.141592653589793; double theta; c = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i+j*m] = r * complex ( cos ( theta ), sin ( theta ) ); } } return c; } //****************************************************************************80 complex *c8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // c8mat_zero_new() returns a new zeroed C8MAT. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, complex C8MAT_ZERO[M*N], the new zeroed matrix. // { complex *a; int i; int j; a = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 complex *c8vec_copy_new ( int n, complex a1[] ) //****************************************************************************80 // // Purpose: // // c8vec_copy_new() copies a C8VEC to a "new" C8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, complex A1[N], the vector to be copied. // // Output, complex C8VEC_COPY_NEW[N], the copy of A1. // { complex *a2; int i; a2 = new complex [n]; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return a2; } //****************************************************************************80 double c8vec_norm_l2 ( int n, complex a[] ) //****************************************************************************80 // // Purpose: // // c8vec_norm_l2() returns the L2 norm of a C8VEC. // // Discussion: // // The vector L2 norm is defined as: // // value = sqrt ( sum ( 1 <= I <= N ) conjg ( A(I) ) * A(I) ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, complex A[N], the vector whose L2 norm is desired. // // Output, double C8VEC_NORM_L2, the L2 norm of A. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + real ( a[i] ) * real ( a[i] ) + imag ( a[i] ) * imag ( a[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 void c8vec_print ( int n, complex a[], string title ) //****************************************************************************80 // // Purpose: // // c8vec_print() prints a C8VEC, with an optional title. // // Discussion: // // A C8VEC is a vector of double precision complex values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, complex A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(6) << i+1 << " " << real ( a[i] ) << " " << imag ( a[i] ) << "\n"; } return; } //****************************************************************************80 complex *c8vec_uniform_01 ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // c8vec_uniform_01() returns a unit C8VEC. // // Discussion: // // A C8VEC is a vector of double precision complex values. // // The angles should be uniformly distributed between 0 and 2 * PI, // the square roots of the radius uniformly distributed between 0 and 1. // // This results in a uniform distribution of values in the unit circle. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Input: // // int N, the number of values to compute. // // int &SEED, the "seed" value, which should NOT be 0. // // Output: // // complex C8VEC_UNIFORM_01[N], the pseudorandom complex vector. // // int &SEED, an updated seed. // { complex *c; int i; double r; int k; const double r8_pi = 3.141592653589793; double theta; c = new complex [n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r = sqrt ( ( double ) ( seed ) * 4.656612875E-10 ); k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } theta = 2.0 * r8_pi * ( ( double ) ( seed ) * 4.656612875E-10 ); c[i] = r * complex ( cos ( theta ), sin ( theta ) ); } return c; } //****************************************************************************80 complex *c8vec_unity ( int n ) //****************************************************************************80 // // Purpose: // // c8vec_unity() returns the N roots of unity in a C8VEC. // // Discussion: // // A C8VEC is a vector of double precision complex values. // // X(1:N) = exp ( 2 * PI * (0:N-1) / N ) // // X(1:N)^N = ( (1,0), (1,0), ..., (1,0) ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, complex C8VEC_UNITY[N], the N roots of unity. // { complex *a; int i; const double r8_pi = 3.141592653589793; double theta; a = new complex [n]; for ( i = 0; i < n; i++ ) { theta = r8_pi * ( double ) ( 2 * i ) / ( double ) ( n ); a[i] = complex ( cos ( theta ), sin ( theta ) ); } return a; } //****************************************************************************80 double *carry_matrix ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_matrix() returns the CARRY matrix. // // Discussion: // // We assume that arithmetic is being done in base ALPHA. We are adding // a column of N digits base ALPHA, as part of adding N random numbers. // We know the carry digit, between 0 and N-1, that is being carried into the // column sum (the incarry digit), and we want to know the probability of // the various carry digits 0 through N-1 (the outcarry digit) that could // be carried out of the column sum. // // The carry matrix summarizes this data. The entry A(I,J) represents // the probability that, given that the incarry digit is I-1, the // outcarry digit will be J-1. // // Formula: // // A(I,J) = ( 1 / ALPHA )^N * sum ( 0 <= K <= J-1 - floor ( I-1 / ALPHA ) ) // (-1)^K * C(N+1,K) * C(N-I+(J-K)*ALPHA, N ) // // Example: // // ALPHA = 10, N = 4 // // 0.0715 0.5280 0.3795 0.0210 // 0.0495 0.4840 0.4335 0.0330 // 0.0330 0.4335 0.4840 0.0495 // 0.0210 0.3795 0.5280 0.0715 // // Properties: // // A is generally not symmetric: A' /= A. // // A is a Markov matrix. // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // LAMBDA(I) = 1 / ALPHA^(I-1) // // det ( A ) = 1 / ALPHA^((N*(N-1))/2) // // The eigenvectors do not depend on ALPHA. // // A is generally not normal: A' * A /= A * A'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2011 // // Author: // // John Burkardt // // Reference: // // John Holte, // Carries, Combinatorics, and an Amazing Matrix, // The American Mathematical Monthly, // Volume 104, Number 2, February 1997, pages 138-149. // // Parameters: // // Input, int ALPHA, the numeric base being used in the addition. // // Input, int N, the order of the matrix. // // Output, double CARRY[N*N], the matrix. // { double *a; double c1; double c2; int i; int j; int k; double temp; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { temp = 0.0; for ( k = 0; k <= j - ( i / alpha ); k++ ) { c1 = r8_choose ( n + 1, k ); c2 = r8_choose ( n - ( i + 1 ) + ( j + 1 - k ) * alpha, n ); temp = temp + r8_mop ( k ) * c1 * c2; } a[i+j*n] = temp / ( double ) ( i4_power ( alpha, n ) ); } } return a; } //****************************************************************************80 double carry_determinant ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_determinant() returns the determinant of the CARRY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int ALPHA, the numeric base being used in the addition. // // Output, double CARRY_DETERMINANT, the determinant. // { double determ; int power; power = ( n * ( n - 1 ) ) / 2; determ = 1.0 / ( double ) ( i4_power ( alpha, power ) ); return determ; } //****************************************************************************80 double *carry_eigen_left ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_eigen_left() returns the left eigenvectors of the CARRY matrix. // // Formula: // // A(I,J) = sum ( 0 <= K <= J-1 ) // (-1)^K * C(N+1,K) * ( J - K )^(N+1-I) // // Example: // // N = 4 // // 1 11 11 1 // 1 3 -3 -1 // 1 -1 -1 1 // 1 -3 3 -1 // // Properties: // // A is generally not symmetric: A' /= A. // // Column 1 is all 1's, and column N is (-1)^(I+1). // // The top row is proportional to a row of Eulerian numbers, and // can be normalized to represent the stationary probablities // for the carrying process when adding N random numbers. // // The bottom row is proportional to a row of Pascal's triangle, // with alternating signs. // // The product of the left and right eigenvector matrices of // order N is N! times the identity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2011 // // Author: // // John Burkardt // // Reference: // // John Holte, // Carries, Combinatorics, and an Amazing Matrix, // The American Mathematical Monthly, // Volume 104, Number 2, February 1997, pages 138-149. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int ALPHA, the numeric base being used in the addition. // // Output, double CARRY_EIGEN_LEFT[N*N], the matrix. // { double *a; int i; int j; int k; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k <= j; k++ ) { a[i+j*n] = a[i+j*n] + r8_mop ( k ) * r8_choose ( n + 1, k ) * ( double ) ( i4_power ( j + 1 - k, n - i ) ); } } } return a; } //****************************************************************************80 double *carry_eigen_right ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_eigen_right() returns the right eigenvectors of the CARRY matrix. // // Discussion: // // A(I,J) = sum ( N+1-J) <= K <= N ) // S1(N,K) * C(K,N+1-J) ( N - I )^(K-N+J-1) // // where S1(N,K) is a signed Sterling number of the first kind. // // Example: // // N = 4 // // 1 6 11 6 // 1 2 -1 -2 // 1 -2 -1 2 // 1 -6 11 -6 // // Properties: // // A is generally not symmetric: A' /= A. // // The first column is all 1's. // // The last column is reciprocals of binomial coefficients with // alternating sign multiplied by (N-1)!. // // The top and bottom rows are the unsigned and signed Stirling numbers // of the first kind. // // The entries in the J-th column are a degree (J-1) polynomial // in the row index I. (Column 1 is constant, the first difference // in column 2 is constant, the second difference in column 3 is // constant, and so on.) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 June 2008 // // Author: // // John Burkardt // // Reference: // // John Holte, // Carries, Combinatorics, and an Amazing Matrix, // The American Mathematical Monthly, // Volume 104, Number 2, February 1997, pages 138-149.. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int ALPHA, the numeric base being used in the addition. // // Output, double CARRY_EIGEN_RIGHT[N*N], the matrix. // { double *a; int i; int j; int k; double *s1; a = new double[n*n]; s1 = stirling_matrix ( n, n ); for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { a[(i-1)+(j-1)*n] = 0.0; for ( k = n + 1 - j; k <= n; k++ ) { if ( n - i == 0 && k - n + j - 1 == 0 ) { a[(i-1)+(j-1)*n] = a[(i-1)+(j-1)*n] + s1[n-1+(k-1)*n] * r8_choose ( k, n + 1 - j ); } else { a[(i-1)+(j-1)*n] = a[(i-1)+(j-1)*n] + s1[n-1+(k-1)*n] * r8_choose ( k, n + 1 - j ) * ( double ) ( i4_power ( n - i, k - n + j - 1 ) ); } } } } // // Free memory. // delete [] s1; return a; } //****************************************************************************80 double *carry_eigenvalues ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_eigenvalues() returns the eigenvalues of the CARRY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int ALPHA, the numeric base being used in the addition. // // Output, double CARRY_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = 1.0 / ( double ) ( i4_power ( alpha, i ) ); } return lambda; } //****************************************************************************80 double *carry_inverse ( int n, int alpha ) //****************************************************************************80 // // Purpose: // // carry_inverse() returns the inverse of the CARRY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int ALPHA, the numeric base being used in the addition. // // Output, double CARRY_INVERSE[N*N], the matrix. // { double *a; double *d; int i; int j; double t; double *u; double *v; v = carry_eigen_left ( n, alpha ); d = carry_eigenvalues ( n, alpha ); u = carry_eigen_right ( n, alpha ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { v[i+j*n] = v[i+j*n] / d[i]; } } a = r8mat_mm_new ( n, n, n, u, v ); t = r8_factorial ( n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] / t; } } // // Free memory. // delete [] d; delete [] u; delete [] v; return a; } //****************************************************************************80 double *cauchy_matrix ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // cauchy_matrix() returns the CAUCHY matrix. // // Formula: // // A(I,J) = 1.0 / ( X(I) + Y(J) ) // // Example: // // N = 5, X = ( 1, 3, 5, 8, 7 ), Y = ( 2, 4, 6, 10, 9 ) // // 1/3 1/5 1/7 1/11 1/10 // 1/5 1/7 1/9 1/13 1/12 // 1/7 1/9 1/11 1/15 1/14 // 1/10 1/12 1/14 1/18 1/17 // 1/9 1/11 1/13 1/17 1/16 // // or, in decimal form, // // 0.333333 0.200000 0.142857 0.0909091 0.100000 // 0.200000 0.142857 0.111111 0.0769231 0.0833333 // 0.142857 0.111111 0.0909091 0.0666667 0.0714286 // 0.100000 0.0833333 0.0714286 0.0555556 0.0588235 // 0.111111 0.0909091 0.0769231 0.0588235 0.0625000 // // Properties: // // A is generally not symmetric: A' /= A. // // A is totally positive if 0 < X(1) < ... < X(N) and 0 < Y1 < ... < Y(N). // // A will be singular if any X(I) equals X(J), or // any Y(I) equals Y(J), or if any X(I)+Y(J) equals zero. // // A is generally not normal: A' * A /= A * A'. // // The Hilbert matrix is a special case of the Cauchy matrix. // // The Parter matrix is a special case of the Cauchy matrix. // // The Ris or "ding-dong" matrix is a special case of the Cauchy matrix. // // det ( A ) = product ( 1 <= I < J <= N ) ( X(J) - X(I) )* ( Y(J) - Y(I) ) // / product ( 1 <= I <= N, 1 <= J <= N ) ( X(I) + Y(J) ) // // The inverse of A is // // INVERSE(A)(I,J) = product ( 1 <= K <= N ) [ (X(J)+Y(K)) * (X(K)+Y(I)) ] / // [ (X(J)+Y(I)) * product ( 1 <= K <= N, K /= J ) (X(J)-X(K)) // * product ( 1 <= K <= N, K /= I ) (Y(I)-Y(K)) ] // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 June 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Nicholas Higham, // Accuracy and Stability of Numerical Algorithms, // SIAM, 1996. // // Donald Knuth, // The Art of Computer Programming, // Volume 1, Fundamental Algorithms, Second Edition // Addison-Wesley, Reading, Massachusetts, 1973, page 36. // // Olga Taussky, Marvin Marcus, // Eigenvalues of finite matrices, // in Survey of Numerical Analysis, // Edited by John Todd, // McGraw-Hill, pages 279-313, 1962. // // Evgeny Tyrtyshnikov, // Cauchy-Toeplitz matrices and some applications, // Linear Algebra and Applications, // Volume 149, 1991, pages 1-18. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], Y[N], vectors that determine the matrix. // // Output, double CAUCHY[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( x[i] + y[j] == 0.0 ) { cerr << "\n"; cerr << "CAUCHY(): Fatal error!\n"; cerr << " The denominator X(I)+Y(J) was zero\n"; cerr << " for I = " << i << "\n"; cerr << " X(I) = " << x[i] << "\n"; cerr << " and J = " << j << "\n"; cerr << " Y(J) = " << y[j] << "\n"; exit ( 1 ); } a[i+j*n] = 1.0 / ( x[i] + y[j] ); } } return a; } //****************************************************************************80 double cauchy_determinant ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // cauchy_determinant() returns the determinant of the CAUCHY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], Y[N], vectors that determine the matrix. // // Output, double CAUCHY_DETERMINANT, the determinant. // { double bottom; double determ; int i; int j; double top; top = 1.0; for ( i = 0; i < n; i++ ) { for ( j = i + 1; j < n; j++ ) { top = top * ( x[j] - x[i] ) * ( y[j] - y[i] ); } } bottom = 1.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { bottom = bottom * ( x[i] + y[j] ); } } determ = top / bottom; return determ; } //****************************************************************************80 double *cauchy_inverse ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // cauchy_inverse() returns the inverse of the CAUCHY matrix. // // Formula: // // A(I,J) = product ( 1 <= K <= N ) [(X(J)+Y(K))*(X(K)+Y(I))] / // [ (X(J)+Y(I)) * product ( 1 <= K <= N, K /= J ) (X(J)-X(K)) // * product ( 1 <= K <= N, K /= I ) (Y(I)-Y(K)) ] // // Example: // // N = 5, X = ( 1, 3, 5, 8, 7 ), Y = ( 2, 4, 6, 10, 9 ) // // 241.70 -2591.37 9136.23 10327.50 -17092.97 // -2382.19 30405.38 -116727.19 -141372.00 229729.52 // 6451.76 -89667.70 362119.56 459459.00 -737048.81 // 10683.11 -161528.55 690983.38 929857.44 -1466576.75 // -14960.00 222767.98 -942480.06 -1253376.00 1983696.00 // // Properties: // // A is generally not symmetric: A' /= A. // // The sum of the entries of A equals the sum of the entries of X and Y. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 June 2008 // // Author: // // John Burkardt // // Reference: // // Donald Knuth, // The Art of Computer Programming, // Volume 1, Fundamental Algorithms, Second Edition, // Addison-Wesley, Reading, Massachusetts, 1973, page 36. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], Y[N], vectors that determine the matrix. // The following conditions on X and Y must hold: // // X(I)+Y(J) must not be zero for any I and J; // X(I) must never equal X(J); // Y(I) must never equal Y(J). // // Output, double CAUCHY_INVERSE[N*N], the matrix. // { double *a; double bot1; double bot2; int i; int j; int k; double top; a = new double[n*n]; // // Check the data. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( x[i] + y[j] == 0.0 ) { cerr << "\n"; cerr << "CAUCHY_INVERSE(): Fatal error!\n"; cerr << " The denominator X(I)+Y(J) was zero\n"; cerr << " for I = " << i << "\n"; cerr << " and J = " << j << "\n"; exit ( 1 ); } if ( i != j && x[i] == x[j] ) { cerr << "\n"; cerr << "CAUCHY_INVERSE(): Fatal error!\n"; cerr << " X(I) equals X(J)\n"; cerr << " for I = " << i << "\n"; cerr << " and J = " << j << "\n"; exit ( 1 ); } if ( i != j && y[i] == y[j] ) { cerr << "\n"; cerr << "CAUCHY_INVERSE(): Fatal error!\n"; cerr << " Y(I) equals Y(J)\n"; cerr << " for I = " << i << "\n"; cerr << " and J = " << j << "\n"; exit ( 1 ); } } } for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { top = 1.0; bot1 = 1.0; bot2 = 1.0; for ( k = 0; k < n; k++ ) { top = top * ( x[j] + y[k] ) * ( x[k] + y[i] ); if ( k != j ) { bot1 = bot1 * ( x[j] - x[k] ); } if ( k != i ) { bot2 = bot2 * ( y[i] - y[k] ); } } a[i+j*n] = top / ( ( x[j] + y[i] ) * bot1 * bot2 ); } } return a; } //****************************************************************************80 double *cheby_diff1_matrix ( int n ) //****************************************************************************80 // // Purpose: // // cheby_diff1_matrix() returns the CHEBY_DIFF1 matrix. // // Example: // // N = 6 // // 8.5000 -10.4721 2.8944 -1.5279 1.1056 -0.5000 // 2.6180 -1.1708 -2.0000 0.8944 -0.6810 0.2764 // -0.7236 2.0000 -0.1708 1.6180 0.8944 -0.3820 // 0.3820 -0.8944 1.6180 0.1708 -2.0000 0.7236 // -0.2764 0.6180 -0.8944 2.0000 1.1708 -2.6180 // 0.5000 -1.1056 1.5279 -2.8944 10.4721 -8.5000 // // Properties: // // If 1 < N, then det ( A ) = 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2008 // // Author: // // John Burkardt // // Reference: // // Lloyd Trefethen, // Spectral Methods in MATLAB, // SIAM, 2000, page 54. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_DIFF1[N*N], the matrix. // { double *a; double *c; int i; int j; const double r8_pi = 3.141592653589793; double *x; if ( n <= 0 ) { return NULL; } a = new double[n*n]; if ( n == 1 ) { a[0+0*n] = 1.0; return a; } c = new double[n]; c[0] = 2.0; for ( i = 1; i < n - 1; i++ ) { c[i] = 1.0; } c[n-1] = 2.0; // // Get the Chebyshev points. // x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = cos ( r8_pi * ( double ) ( i ) / ( double ) ( n - 1 ) ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i != j ) { a[i+j*n] = r8_mop ( i + j ) * c[i] / ( c[j] * ( x[i] - x[j] ) ); } else if ( i == 0 ) { a[i+j*n] = ( double ) ( 2 * ( n - 1 ) * ( n - 1 ) + 1 ) / 6.0; } else if ( i == n - 1 ) { a[i+j*n] = - ( double ) ( 2 * ( n - 1 ) * ( n - 1 ) + 1 ) / 6.0; } else { a[i+j*n] = - 0.5 * x[i] / ( 1.0 - x[i] * x[i] ); } } } // // Free memory. // delete [] c; delete [] x; return a; } //****************************************************************************80 double cheby_diff1_determinant ( int n ) //****************************************************************************80 // // Purpose: // // cheby_diff1_determinant() returns the determinant of the CHEBY_DIFF1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 May 2020 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double CHEBY_DIFF1_DETERMINANT, the determinant. // { double value; if ( n == 1 ) { value = 1.0; } else { value = 0.0; } return value; } //****************************************************************************80 double *cheby_diff1_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // cheby_diff1_null_left() returns a left null vector of the CHEBY_DIFF1 matrix. // // Discussion: // // The matrix only has a (nonzero) null vector when M is odd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double CHEBY1_NULL_LEFT[M], the null vector. // { int i; double t; double *x; x = new double[m]; if ( ( m % 2 ) == 1 ) { x[0] = 1.0; t = -2.0; for ( i = 1; i < m - 1; i++ ) { x[i] = t; t = - t; } x[m-1] = 1.0; } else { for ( i = 0; i < m; i++ ) { x[i] = 0.0; } } return x; } //****************************************************************************80 double *cheby_diff1_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // cheby_diff1_null_right() returns a right null vector of the CHEBY_DIFF1 matrix. // // Discussion: // // The matrix only has a (nonzero) null vector when N is odd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double CHEBY1_NULL_RIGHT[N], the null vector. // { int i; double *x; x = new double[n]; if ( ( n % 2 ) == 1 ) { for ( i = 0; i < n; i++ ) { x[i] = 1.0; } } else { for ( i = 0; i < n; i++ ) { x[i] = 0.0; } } return x; } //****************************************************************************80 double *cheby_t_matrix ( int n ) //****************************************************************************80 // // Purpose: // // cheby_t_matrix() returns the CHEBY_T matrix. // // Discussion // // This is the Chebyshev T matrix, associated with the Chebyshev // "T" polynomials, or Chebyshev polynomials of the first kind. // // Example: // // N = 11 // // 1 . -1 . 1 . -1 . 1 . -1 // . 1 . -3 . 5 . -7 . 9 . // . . 2 . -8 . 18 . -32 . 50 // . . . 4 . -20 . 56 . -120 . // . . . . 8 . -48 . 160 . -400 // . . . . . 16 . -112 . 432 . // . . . . . . 32 . -256 . 1120 // . . . . . . . 64 . -576 . // . . . . . . . . 128 . -1280 // . . . . . . . . . 256 . // . . . . . . . . . . 512 // // Properties: // // A is generally not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is reducible. // // A is lower triangular. // // Each row of A sums to 1. // // det ( A ) = 2^( (N-1) * (N-2) / 2 ) // // A is not normal: A' * A /= A * A'. // // For I = 1: // LAMBDA(1) = 1 // For 1 < I // LAMBDA(I) = 2^(I-2) // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2024 // // Author: // // John Burkardt // // Input: // // int N: the order of the matrix. // // Output: // // double CHEBY_T[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = r8mat_zero_new ( n, n ); A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 1.0; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { i = 0; A[i+j*n] = - A[i+(j-2)*n]; for ( i = 1; i < n; i++ ) { A[i+j*n] = 2.0 * A[i-1+(j-1)*n] - A[i+(j-2)*n]; } } return A; } //****************************************************************************80 double cheby_t_determinant ( int n ) //****************************************************************************80 // // Purpose: // // cheby_t_determinant() returns the determinant of the CHEBY_T matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_DETERMINANT, the determinant. // { double determ; int power; power = ( ( n - 1 ) * ( n - 2 ) ) / 2; determ = ( double ) i4_power ( 2, power ); return determ; } //****************************************************************************80 double *cheby_t_inverse ( int n ) //****************************************************************************80 // // Purpose: // // cheby_t_inverse() returns the inverse of the CHEBY_T matrix. // // Example: // // N = 11 // Each column must be divided by the divisor below it. // // 1 . 1 . 3 . 10 . 35 . 126 // . 1 . 3 . 10 . 35 . 126 . // . . 1 . 4 . 15 . 56 . 210 // . . . 1 . 5 . 21 . 84 . // . . . . 1 . 6 . 28 . 120 // . . . . . 1 . 7 . 36 . // . . . . . . 1 . 8 . 45 // . . . . . . . 1 . 9 . // . . . . . . . . 1 . 10 // . . . . . . . . . 1 . // . . . . . . . . . . 1 // /1 /1 /2 /4 /8 /16 /32 /64 /128 /256 /512 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2024 // // Author: // // John Burkardt // // Input: // // int N: the order of the matrix. // // Output: // // double CHEBY_T_INVERSE[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = r8mat_zero_new ( n, n ); A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 1.0; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { A[i+j*n] = A[i+1+(j-1)*n] / 2.0; } else if ( i == 1 ) { A[i+j*n] = ( 2.0 * A[i-1+(j-1)*n] + A[i+1+(j-1)*n] ) / 2.0; } else if ( i < n - 1 ) { A[i+j*n] = ( A[i-1+(j-1)*n] + A[i+1+(j-1)*n] ) / 2.0; } else { A[i+j*n] = A[i-1+(j-1)*n] / 2.0; } } } return A; } //****************************************************************************80 double *cheby_u_matrix ( int n ) //****************************************************************************80 // // Purpose: // // cheby_u_matrix() returns the CHEBY_U matrix. // // Discussion // // This is the Chebyshev U matrix, associated with the Chebyshev // "U" polynomials, or Chebyshev polynomials of the second kind. // // Example: // // N = 11 // // 1 . . . . . . . . . . // . 2 . . . . . . . . . // -1 . 4 . . . . . . . . // . -4 . 8 . . . . . . . // 1 . -12 . 16 . . . . . . // . 6 . -32 . 32 . . . . . // -1 . 24 . -80 . 64 . . . . // . -8 . 80 . -192 . 128 . . . // 1 . -40 . 240 . -448 . 256 . . // . 10 . -160 . 672 . -1024 . 512 . // -1 . 60 . -560 . 1792 . -2304 . 1024 // // Properties: // // A is generally not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is generally not normal: A' * A /= A * A'. // // A is lower triangular. // // A is reducible. // // The entries of row N sum to N. // // det ( A ) = 2^((N*(N-1))/2). // // LAMBDA(I) = 2^(I-1) // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_U[N*N], the matrix. // { double *a; int i; int j; if ( n <= 0 ) { return NULL; } a = r8mat_zero_new ( n, n ); a[0+0*n] = 1.0; if ( n == 1 ) { return a; } a[1+1*n] = 2.0; if ( n == 2 ) { return a; } for ( i = 2; i < n; i++ ) { j = 0; a[i+j*n] = - a[i-2+j*n]; for ( j = 1; j < n; j++ ) { a[i+j*n] = 2.0 * a[i-1+(j-1)*n] - a[i-2+j*n]; } } return a; } //****************************************************************************80 double cheby_u_determinant ( int n ) //****************************************************************************80 // // Purpose: // // cheby_u_determinant() returns the determinant of the CHEBY_U matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_U_DETERMINANT, the determinant. // { double determ; int power; power = ( n * ( n - 1 ) ) / 2; determ = ( double ) i4_power ( 2, power ); return determ; } //****************************************************************************80 double *cheby_u_inverse ( int n ) //****************************************************************************80 // // Purpose: // // cheby_u_inverse() returns the inverse of the CHEBY_U matrix. // // Example: // // N = 11 // // 1 . . . . . . . . . . // . 1 . . . . . . . . . / 2 // 1 . 1 . . . . . . . . / 4 // . 2 . 1 . . . . . . . / 8 // 2 . 3 . 1 . . . . . . / 16 // . 5 . 4 . 1 . . . . . / 32 // 5 . 9 . 5 . 1 . . . . / 64 // . 14 . 14 . 6 . 1 . . . / 128 // 14 . 28 . 20 . 7 . 1 . . / 256 // . 42 . 48 . 27 . 8 . 1 . / 512 // 42 . 90 . 75 . 35 . 9 . 1 / 1024 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double A[N*N], the matrix. // { double *a; int i; int j; if ( n <= 0 ) { return NULL; } a = r8mat_zero_new ( n, n ); a[0+0*n] = 1.0; if ( n == 1 ) { return a; } a[1+1*n] = 0.5; if ( n == 2 ) { return a; } for ( i = 2; i < n; i++ ) { j = 0; a[i+j*n] = a[i-1+(j+1)*n] / 2.0; for ( j = 1; j < n - 1; j++ ) { a[i+j*n] = ( a[i-1+(j-1)*n] + a[i-1+(j+1)*n] ) / 2.0; } j = n - 1; a[i+j*n] = a[i-1+(j-1)*n] / 2.0; } return a; } //****************************************************************************80 double *cheby_u_polynomial ( int n, double x ) //****************************************************************************80 // // Purpose: // // cheby_u_polynomial() evaluates the Chebyshev polynomials of the second kind. // // Differential equation: // // (1-X*X) Y'' - 3 X Y' + N (N+2) Y = 0 // // Formula: // // If |X| <= 1, then // // U(N)(X) = sin ( (N+1) * arccos(X) ) / sqrt ( 1 - X^2 ) // = sin ( (N+1) * arccos(X) ) / sin ( arccos(X) ) // // else // // U(N)(X) = sinh ( (N+1) * arccosh(X) ) / sinh ( arccosh(X) ) // // First terms: // // U(0)(X) = 1 // U(1)(X) = 2 X // U(2)(X) = 4 X^2 - 1 // U(3)(X) = 8 X^3 - 4 X // U(4)(X) = 16 X^4 - 12 X^2 + 1 // U(5)(X) = 32 X^5 - 32 X^3 + 6 X // U(6)(X) = 64 X^6 - 80 X^4 + 24 X^2 - 1 // U(7)(X) = 128 X^7 - 192 X^5 + 80 X^3 - 8X // // Orthogonality: // // For integration over [-1,1] with weight // // W(X) = sqrt(1-X*X), // // we have // // < U(I)(X), U(J)(X) > = integral ( -1 <= X <= 1 ) W(X) U(I)(X) U(J)(X) dX // // then the result is: // // < U(I)(X), U(J)(X) > = 0 if I /= J // < U(I)(X), U(J)(X) > = PI/2 if I == J // // Recursion: // // U(0)(X) = 1, // U(1)(X) = 2 * X, // U(N)(X) = 2 * X * U(N-1)(X) - U(N-2)(X) // // Special values: // // U(N)(1) = N + 1 // U(2N)(0) = (-1)^N // U(2N+1)(0) = 0 // U(N)(X) = (-1)^N * U(N)(-X) // // Zeroes: // // M-th zero of U(N)(X) is X = cos( M*PI/(N+1)), M = 1 to N // // Extrema: // // M-th extremum of U(N)(X) is X = cos( M*PI/N), M = 0 to N // // Norm: // // Integral ( -1 <= X <= 1 ) ( 1 - X^2 ) * U(N)(X)^2 dX = PI/2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 May 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Parameters: // // Input, int N, the highest polynomial to compute. // // Input, double X, the point at which the polynomials // are to be computed. // // Output, double CHEBY_U_POLYNOMIAL[N+1], the values of the N+1 Chebyshev // polynomials. // { double *cx; int i; if ( n < 0 ) { return NULL; } cx = new double[n+1]; cx[0] = 1.0; if ( n < 1 ) { return cx; } cx[1] = 2.0 * x; for ( i = 2; i <= n; i++ ) { cx[i] = 2.0 * x * cx[i-1] - cx[i-2]; } return cx; } //****************************************************************************80 double *cheby_van1_matrix ( int m, double a, double b, int n, double x[] ) //****************************************************************************80 // // Purpose: // // cheby_van1_matrix() returns the CHEBY_VAN1 matrix. // // Discussion: // // Normally, the Chebyshev polynomials are defined on -1 <= XI <= +1. // Here, we assume the Chebyshev polynomials have been defined on the // interval A <= X <= B, using the mapping // XI = ( - ( B - X ) + ( X - A ) ) / ( B - A ) // so that // ChebyAB(A,B;X) = Cheby(XI). // // if ( I == 1 ) then // V(1,1:N) = 1; // elseif ( I == 2 ) then // V(2,1:N) = XI(1:N); // else // V(I,1:N) = 2.0 * XI(1:N) * V(I-1,1:N) - V(I-2,1:N); // // Example: // // N = 5, A = -1, B = +1, X = ( 1, 2, 3, 4, 5 ) // // 1 1 1 1 1 // 1 2 3 4 5 // 1 7 17 31 49 // 1 26 99 244 485 // 1 97 577 1921 4801 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2014 // // Author: // // John Burkardt // // Reference: // // Nicholas Higham, // Stability analysis of algorithms for solving confluent // Vandermonde-like systems, // SIAM Journal on Matrix Analysis and Applications, // Volume 11, 1990, pages 23-41. // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, double A, B, the interval. // // Input, int N, the number of columns of the matrix. // // Input, double X[N], the vector that defines the matrix. // // Output, double CHEBY_VAN1[M*N], the matrix. // { int i; int j; double *v; double xi; v = new double[m*n]; for ( j = 0; j < n; j++ ) { xi = ( - ( b - x[j] ) + ( x[j] - a ) ) / ( b - a ); for ( i = 0; i < m; i++ ) { if ( i == 0 ) { v[i+j*m] = 1.0; } else if ( i == 1 ) { v[i+j*m] = xi; } else { v[i+j*m] = 2.0 * xi * v[i-1+j*m] - v[i-2+j*m]; } } } return v; } //****************************************************************************80 double *cheby_van2_matrix ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van2_matrix() returns the CHEBY_VAN2 matrix. // // Discussion: // // The formula for this matrix has been slightly modified, by a scaling // factor, in order to make it closer to its inverse. // // A(I,J) = ( 1 / sqrt ( N - 1 ) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) // // Example: // // N = 4 // // 1 1 1 1 // 1/sqrt(3) * 1 COS(PI/3) COS(2*PI/3) COS(3*PI/3) // 1 COS(2*PI/3) COS(4*PI/3) COS(6*PI/3) // 1 COS(3*PI/3) COS(6*PI/3) COS(9*PI/3) // // or, in decimal, // // 0.5774 0.5774 0.5774 0.5774 // 0.5774 0.2887 -0.2887 -0.5774 // 0.5774 -0.2887 -0.2887 0.5774 // 0.5774 -0.5774 0.5774 -0.5774 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The entries of A are based on the extrema of the Chebyshev // polynomial T(n-1). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN2[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; if ( n == 1 ) { a[0+0*n] = 1.0; return a; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( i * j ) * r8_pi / ( double ) ( n - 1 ); a[i+j*n] = cos ( angle ); } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] / sqrt ( ( double ) ( n - 1 ) ); } } return a; } //****************************************************************************80 double cheby_van2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van2_determinant() returns the determinant of the CHEBY_VAN2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN2_DETERMINANT, the determinant. // { double determ; if ( n <= 0 ) { determ = 0.0; } else if ( n == 1 ) { determ = 1.0; } else { determ = r8_mop ( n / 2 ) * sqrt ( pow ( 2.0, 4 - n ) ); } return determ; } //****************************************************************************80 double *cheby_van2_inverse ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van2_inverse() returns the inverse of the CHEBY_VAN2 matrix. // // Discussion: // // if ( I == 1 or N ) .and. ( J == 1 or N ) then // A(I,J) = ( 1 / (2*sqrt(N-1)) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) // else if ( I == 1 or N ) .or. ( J == 1 or N ) then // A(I,J) = ( 1 / ( sqrt(N-1)) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) // else // A(I,J) = ( 2 / sqrt(N-1) ) * cos ( (I-1) * (J-1) * PI / (N-1) ) // // // Example: // // N = 4 // // 1/2 1 1 1/2 // 1/sqrt(3) * 1 2*COS(PI/3) 2*COS(2*PI/3) COS(3*PI/3) // 1 2*COS(2*PI/3) 2*COS(4*PI/3) COS(6*PI/3) // 1/2 COS(3*PI/3) COS(6*PI/3) 1/2 * COS(9*PI/3) // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The entries of A are based on the extrema of the Chebyshev // polynomial T(n-1). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN2_INVERSE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; if ( n == 1 ) { a[0+0*n] = 1.0; return a; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( i * j ) * r8_pi / ( double ) ( n - 1 ); a[i+j*n] = cos ( angle ); } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 2.0 * a[i+j*n] / sqrt ( ( double ) ( n - 1 ) ); } } for ( j = 0; j < n; j++ ) { a[0+j*n] = 0.5 * a[0+j*n]; a[n-1+j*n] = 0.5 * a[n-1+j*n]; } for ( i = 0; i < n; i++ ) { a[i+0*n] = 0.5 * a[i+0*n]; a[i+(n-1)*n] = 0.5 * a[i+(n-1)*n]; } return a; } //****************************************************************************80 double *cheby_van3_matrix ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van3_matrix() returns the CHEBY_VAN3 matrix. // // Discussion: // // A(I,J) = cos ( (I-1) * (J-1/2) * PI / N ) // // Example: // // N = 4 // // 1 1 1 1 // COS( PI/8) COS(3*PI/8) COS( 5*PI/8) COS( 7*PI/8) // COS(2*PI/8) COS(6*PI/8) COS(10*PI/8) COS(14*PI/8) // COS(3*PI/8) COS(9*PI/8) COS(15*PI/8) COS(21*PI/8) // // Properties: // // A is generally not symmetric: A' /= A. // // A is "almost" orthogonal. A * A' = a diagonal matrix. // // The entries of A are based on the zeros of the Chebyshev polynomial T(n). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN3[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( i * ( 2 * j + 1 ) ) * r8_pi / ( double ) ( 2 * n ); a[i+j*n] = cos ( angle ); } } return a; } //****************************************************************************80 double cheby_van3_determinant ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van3_determinant() returns the determinant of the CHEBY_VAN3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN3_DETERMINANT, the determinant. // { double determ; determ = r8_mop ( n + 1 ) * sqrt ( ( double ) ( i4_power ( n, n ) ) ) / sqrt ( pow ( 2.0, n - 1 ) ); return determ; } //****************************************************************************80 double *cheby_van3_inverse ( int n ) //****************************************************************************80 // // Purpose: // // cheby_van3_inverse() returns the inverse of the CHEBY_VAN3 matrix. // // Discussion: // // if J == 1 then // A(I,J) = (1/N) * cos ( (I-1/2) * (J-1) * PI / N ) // else if 1 < J then // A(I,J) = (2/N) * cos ( (I-1/2) * (J-1) * PI / N ) // // Example: // // N = 4 // // 1/4 1/2 cos( PI/8) 1/2 cos( 2*PI/8) 1/2 cos( 3*PI/8) // 1/4 1/2 cos(3*PI/8) 1/2 cos( 6*PI/8) 1/2 cos( 9*PI/8) // 1/4 1/2 cos(5*PI/8) 1/2 cos(10*PI/8) 1/2 cos(15*PI/8) // 1/4 1/2 cos(7*PI/8) 1/2 cos(14*PI/8) 1/2 cos(21*PI/8) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CHEBY_VAN3_INVERSE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( 2 * i + 1 ) * j ) * r8_pi / ( double ) ( 2 * n ); a[i+j*n] = cos ( angle ) / ( double ) ( n ); } } for ( j = 1; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 2.0 * a[i+j*n]; } } return a; } //****************************************************************************80 double *chow_matrix ( double alpha, double beta, int m, int n ) //****************************************************************************80 // // Purpose: // // chow_matrix() returns the CHOW matrix. // // Discussion: // // By making ALPHA small compared with BETA, the eigenvalues can // all be made very close to BETA, and this is useful as a test // of eigenvalue computing routines. // // Formula: // // if ( I = J ) // A(I,J) = ALPHA + BETA // else if ( J <= I + 1 ) then // A(I,J) = ALPHA^(I+1-J) // else // A(I,J) = 0 // // Example: // // ALPHA = 2, BETA = 3, M = 5, N = 5 // // 5 1 0 0 0 // 4 5 1 0 0 // 8 4 5 1 0 // 16 8 4 5 1 // 32 16 8 4 5 // // ALPHA = ALPHA, BETA = BETA, M = 5, N = 5 // // ALPHA+BETA 1 0 0 0 // ALPHA^2 ALPHA+BETA 1 0 0 // ALPHA^3 ALPHA^2 ALPHA+BETA 1 0 // ALPHA^4 ALPHA^3 ALPHA^2 ALPHA+BETA 1 // ALPHA^5 ALPHA^4 ALPHA^3 ALPHA^2 ALPHA+BETA // // Properties: // // A is Toeplitz: constant along diagonals. // // A is lower Hessenberg. // // A is generally not symmetric: A' /= A. // // If ALPHA is 0.0, then A is singular if and only if BETA is 0.0. // // If BETA is 0.0, then A will be singular if 1 < N. // // If BETA is 0.0 and N = 1, then A will be singular if ALPHA is 0.0. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // For 1 <= I < N-(N+1)/2, // // LAMBDA(I) = BETA + 4 * ALPHA * cos ( i * pi / ( N+2 ) )^2, // // For N-(N+1)/2+1 <= I <= N // // LAMBDA(I) = BETA // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Reference: // // TS Chow, // A class of Hessenberg matrices with known eigenvalues and inverses, // SIAM Review, // Volume 11, Number 3, 1969, pages 391-395. // // Graeme Fairweather, // On the eigenvalues and eigenvectors of a class of Hessenberg matrices, // SIAM Review, // Volume 13, Number 2, 1971, pages 220-221. // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int M, N, the order of the matrix. // // Output, double CHOW[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j - 1 ) { a[i+j*m] = 1.0; } else if ( i == j ) { a[i+j*m] = alpha + beta; } else if ( j + 1 <= i ) { a[i+j*m] = pow ( alpha, i + 1 - j ); } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double chow_determinant ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // chow_determinant() returns the determinant of the CHOW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int N, the order of the matrix. // // Output, double CHOW_DETERMINANT, the determinant. // { double angle; double determ; int i; int k; const double r8_pi = 3.141592653589793; determ = 1.0; k = n - ( n / 2 ); for ( i = 0; i < k; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 2 ); determ = determ * ( beta + 4.0 * alpha * cos ( angle ) * cos ( angle ) ); } determ = determ * pow ( beta, n - k ); return determ; } //****************************************************************************80 double *chow_eigenvalues ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // chow_eigenvalues() returns the eigenvalues of the CHOW matrix. // // Example: // // ALPHA = 2, BETA = 3, N = 5 // // 9.49395943 // 6.10991621 // 3.0 // 3.0 // 3.0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int N, the order of the matrix. // // Output, double CHOW_EIGENVALUES[N], the eigenvalues of A. // { double angle; int i; int k; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; k = n - ( n + 1 ) / 2; for ( i = 0; i < k; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 2 ); lambda[i] = beta + 4.0 * alpha * cos ( angle ) * cos ( angle ); } for ( i = k; i < n; i++ ) { lambda[i] = beta; } return lambda; } //****************************************************************************80 double *chow_inverse ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // chow_inverse() returns the inverse of the CHOW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int N, the order of the matrix. // // Output, double CHOW_INVERSE[N*N], the matrix. // { double *a; double *d; double *dp; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } if ( 0.0 == alpha && beta == 0.0 ) { cerr << "\n"; cerr << "CHOW_INVERSE(): Fatal error!\n"; cerr << " The Chow matrix is not invertible, because\n"; cerr << " ALPHA = 0 and BETA = 0.\n"; exit ( 1 ); } else if ( 0.0 == alpha && beta != 0.0 ) { for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i <= j ) { a[i+j*n] = r8_mop ( j - i ) / pow ( beta, j - i + 1 ); } else { a[i+j*n] = 0.0; } } } return a; } else if ( 0.0 != alpha && beta == 0.0 ) { if ( 1 < n ) { cerr << "\n"; cerr << "CHOW_INVERSE(): Fatal error!\n"; cerr << " The Chow matrix is not invertible, because\n"; cerr << " BETA = 0 and 1 < N.\n"; exit ( 1 ); } else { a[0+0*n] = 1.0 / alpha; return a; } } // // General case. // d = new double[n+1]; d[0] = 1.0; d[1] = beta; for ( i = 2; i <= n; i++ ) { d[i] = beta * d[i-1] + alpha * beta * d[i-2]; } dp = new double[n+2]; dp[0] = 1.0 / beta; dp[1] = 1.0; dp[2] = alpha + beta; for ( i = 3; i <= n + 1; i++ ) { dp[i] = d[i-1] + alpha * d[i-2]; } for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { a[i+j*n] = - alpha * pow ( alpha * beta, i - j ) * dp[j] * d[n-i-1] / dp[n+1]; } for ( j = i; j < n; j++ ) { a[i+j*n] = r8_mop ( i + j ) * dp[i+1] * d[n-j] / ( beta * dp[n+1] ); } } // // Free memory. // delete [] d; delete [] dp; return a; } //****************************************************************************80 double *chow_eigen_left ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // chow_eigen_left() returns the left eigenvectors for the CHOW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int N, the order of the matrix. // // Output, double CHOW_EIGEN_LEFT[N*N], the left eigenvector matrix. // { double angle; int i; int j; int k; const double r8_pi = 3.141592653589793; double *v; v = new double[n*n]; k = n - ( n + 1 ) / 2; for ( i = 0; i < k; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 2 ); for ( j = 0; j < n; j++ ) { v[i+j*n] = pow ( alpha, n - j - 1 ) * pow ( 2.0, n - j - 2 ) * pow ( cos ( angle ), n - j ) * sin ( ( double ) ( n - j + 1 ) * angle ) / sin ( angle ); } } for ( i = k; i < n; i++ ) { for ( j = 0; j < n - 2; j++ ) { v[i+j*n] = 0.0; } v[i+(n-2)*n] = - alpha; v[i+(n-1)*n] = 1.0; } return v; } //****************************************************************************80 double *chow_eigen_right ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // chow_eigen_right() returns the right eigenvectors for the CHOW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the ALPHA value. A typical value is 1.0. // // Input, double BETA, the BETA value. A typical value is 0.0. // // Input, int N, the order of the matrix. // // Output, double CHOW_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double angle; int i; int j; int k; const double r8_pi = 3.141592653589793; double *u; u = new double[n*n]; k = n - ( n + 1 ) / 2; for ( j = 0; j < k; j++ ) { angle = ( double ) ( j + 1 ) * r8_pi / ( double ) ( n + 2 ); for ( i = 0; i < n; i++ ) { u[i+j*n] = pow ( alpha, i ) * pow ( 2.0, i - 1 ) * pow ( cos ( angle ), i - 1 ) * sin ( ( double ) ( i + 2 ) * angle ) / sin ( angle ); } } for ( j = k; j < n; j++ ) { u[0+j*n] = 1.0; u[1+j*n] = - alpha; for ( i = 2; i < n; i++ ) { u[i+j*n] = 0.0; } } return u; } //****************************************************************************80 double *circulant_matrix ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // circulant_matrix() returns the CIRCULANT matrix. // // Formula: // // K = 1 + mod ( J-I, N ) // A(I,J) = X(K) // // Example: // // M = 4, N = 4, X = ( 1, 2, 3, 4 ) // // 1 2 3 4 // 4 1 2 3 // 3 4 1 2 // 2 3 4 1 // // M = 4, N = 5, X = ( 1, 2, 3, 4, 5 ) // // 1 2 3 4 5 // 5 1 2 3 4 // 4 5 1 2 3 // 3 4 5 1 2 // // M = 5, N = 4, X = ( 1, 2, 3, 4 ) // // 1 2 3 4 // 5 1 2 3 // 4 5 1 2 // 3 4 5 1 // 1 2 3 4 // // Discussion: // // Westlake lists the following "special" circulants: // // B2, X = ( T^2, 1, 2, ..., T, T+1, T, T-1, ..., 1 ), // with T = ( N - 2 ) / 2; // // B3, X = ( N+1, 1, 1, ..., 1 ); // // B5, X = ( 1, 2, 3, ..., N ). // // Properties: // // The product of two circulant matrices is a circulant matrix. // // The transpose of a circulant matrix is a circulant matrix. // // A circulant matrix C, whose first row is (c1, c2, ..., cn), can be // written as a polynomial in the upshift matrix U: // // C = c1 * I + c2 * U + c3 * U^2 + ... + cn * U^(n-1). // // A is a circulant: each row is shifted once to get the next row. // // A is generally not symmetric: A' /= A. // // A is Toeplitz: constant along diagonals. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A commutes with any other circulant matrix. // // A is normal. // // The transpose of A is also a circulant matrix. // // A has constant row sums. // // Because A has constant row sums, // it has an eigenvalue with this value, // and a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sums. // // Because A has constant column sums, // it has an eigenvalue with this value, // and a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // The inverse of A is also a circulant matrix. // // The Fourier matrix is the eigenvector matrix for every circulant matrix. // // Because the Fourier matrix F diagonalizes A, the inverse (or // pseudoinverse, if any LAMBDA is zero) can be written // // inverse ( A ) = (F*) * 1/LAMBDA * F // // A is symmetric if, for all I, X(I+1) = X(N-I+1). // // If R is an N-th root of unity, that is, R is a complex number such // that R^N = 1, then // // Y = X(1) + X(2)*R + X(3)*R^2 + ... + X(N)*R^(N-1) // // is an eigenvalue of A, with eigenvector // // ( 1, R, R^2, ..., R^(N-1) ) // // and left eigenvector // // ( R^(N-1), R^(N-2), ..., R^2, R, 1 ). // // Although there are exactly N distinct roots of unity, the circulant // may have repeated eigenvalues, because of the behavior of the polynomial. // However, the matrix is guaranteed to have N linearly independent // eigenvectors. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2008 // // Author: // // John Burkardt // // Reference: // // Philip Davis, // Circulant Matrices, // Second Edition, // Chelsea, 1994, // ISBN13: 978-0828403384, // LC: QA188.D37. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double X[N], the values in the first row of A. // // Output, double CIRCULANT[M*N], the matrix. // { double *a; int i; int j; int k; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = i4_modp ( j - i, n ); a[i+j*m] = x[k]; } } return a; } //****************************************************************************80 double circulant_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // circulant_determinant() returns the determinant of the CIRCULANT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values in the first row of A. // // Output, double CIRCULANT_DETERMINANT, the determinant. // { double determ; int i; int j; complex *lambda; complex *w; w = c8vec_unity ( n ); lambda = new complex [n]; for ( i = 0; i < n; i++ ) { lambda[i] = x[n-1]; } for ( i = n - 2; 0 <= i; i-- ) { for ( j = 0; j < n; j++ ) { lambda[j] = lambda[j] * w[j] + x[i]; } } // // First eigenvalue is "special". // determ = real ( lambda[0] ); // // Eigenvalues 2, 3 through ( N + 1 ) / 2 are paired with complex conjugates. // for ( i = 1; i < ( n + 1 ) / 2; i++ ) { determ = determ * pow ( c8_abs ( lambda[i] ), 2 ); } // // If N is even, there is another unpaired eigenvalue. // if ( ( n % 2 ) == 0 ) { determ = determ * real ( lambda[n/2] ); } // // Free memory. // delete [] lambda; delete [] w; return determ; } //****************************************************************************80 complex *circulant_eigenvalues ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // circulant_eigenvalues() returns the eigenvalues of the CIRCULANT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values in the first row of A. // // Output, complex CIRCULANT_LAMBDA[N], the eigenvalues. // { int i; int j; complex *lambda; complex *w; w = c8vec_unity ( n ); lambda = new complex [n]; for ( i = 0; i < n; i++ ) { lambda[i] = x[n-1]; } for ( i = n - 2; 0 <= i; i-- ) { for ( j = 0; j < n; j++ ) { lambda[j] = lambda[j] * w[j] + x[i]; } } // // Free memory. // delete [] w; return lambda; } //****************************************************************************80 double *circulant_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // circulant_inverse() returns the inverse of the CIRCULANT matrix. // // Discussion: // // The Moore Penrose generalized inverse is computed, so even if // the circulant is singular, this routine returns a usable result. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values that define the circulant matrix. // // Output, double CIRCULANT_INVERSE[N*N], the matrix. // { double *a; complex *b; complex *bf; complex *f; complex *fbf; int i; int j; int k; complex *lambda; lambda = circulant_eigenvalues ( n, x ); b = c8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { if ( lambda[i] != 0.0 ) { b[i+i*n] = 1.0 / conj ( lambda[i] ); } } f = fourier_matrix ( n ); bf = c8mat_zero_new ( n, n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { for ( k = 0; k < n; k++ ) { bf[i+j*n] = bf[i+j*n] + b[i+k*n] * f[k+j*n]; } } } fbf = c8mat_zero_new ( n, n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { for ( k = 0; k < n; k++ ) { fbf[i+j*n] = fbf[i+j*n] + conj ( f[k+i*n] ) * bf[k+j*n]; } } } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = real ( fbf[i+j*n] ); } } // // Free memory. // delete [] b; delete [] bf; delete [] f; delete [] fbf; delete [] lambda; return a; } //****************************************************************************80 double *circulant2_matrix ( int n ) //****************************************************************************80 // // Purpose: // // circulant2_matrix() returns the CIRCULANT2 matrix. // // Formula: // // K = 1 + mod ( J-I, N ) // A(I,J) = K // // Example: // // N = 5 // // 1 2 3 4 5 // 5 1 2 3 4 // 4 5 1 2 3 // 3 4 5 1 2 // 2 3 4 5 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is a circulant: each row is shifted once to get the next row. // // A is Toeplitz: constant along diagonals. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A commutes with any other circulant. // // A is normal. // // The inverse of A is a circulant matrix. // // The eigenvector matrix is the Fourier matrix. // // A has constant row sums. // // Because A has constant row sums, // it has an eigenvalue with this value, // and a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sums. // // Because A has constant column sums, // it has an eigenvalue with this value, // and a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // If R is an N-th root of unity, that is, R is a complex number such // that R^N = 1, then // // Y = 1 + 2*R + 3*R^2 + ... + N*R^(N-1) // // is an eigenvalue of A, with eigenvector // // ( 1, R, R^2, ..., R^(N-1) ) // // and left eigenvector // // ( R^(N-1), R^(N-2), ..., R^2, R, 1 ). // // Although there are exactly N distinct roots of unity, the circulant // may have repeated eigenvalues, because of the behavior of the polynomial. // However, the matrix is guaranteed to have N linearly independent // eigenvectors. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2008 // // Author: // // John Burkardt // // Reference: // // Philip Davis, // Circulant Matrices, // Second Edition, // Chelsea, 1994, // ISBN13: 978-0828403384, // LC: QA188.D37. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CIRCULANT2[N*N], the matrix. // { double *a; int i; int j; int k; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { k = 1 + i4_modp ( j - i, n ); a[i+j*n] = ( double ) ( k ); } } return a; } //****************************************************************************80 double circulant2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // circulant2_determinant() returns the determinant of the CIRCULANT2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CIRCULANT2_DETERMINANT, the determinant. // { double determ; int i; int j; complex *lambda; complex *w; w = c8vec_unity ( n ); lambda = new complex [n]; for ( i = 0; i < n; i++ ) { lambda[i] = complex ( n, 0 ); } for ( i = n - 1; 1 <= i; i-- ) { for ( j = 0; j < n; j++ ) { lambda[j] = lambda[j] * w[j] + complex ( i, 0 ); } } // // First eigenvalue is "special". // determ = real ( lambda[0] ); // // Eigenvalues 2, 3, through ( N + 1 ) / 2 are paired with complex conjugates. // for ( i = 1; i < ( n + 1 ) / 2; i++ ) { determ = determ * pow ( abs ( lambda[i] ), 2 ); } // // If N is even, there is another unpaired eigenvalue. // if ( ( n % 2 ) == 0 ) { determ = determ * real ( lambda[(n/2)] ); } // // Free memory. // delete [] lambda; delete [] w; return determ; } //****************************************************************************80 complex *circulant2_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // circulant2_eigenvalues() returns the eigenvalues of the CIRCULANT2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex CIRCULANT2_EIGENVALUES[N], the eigenvalues. // { int i; int j; complex *lambda; complex *w; lambda = new complex [n]; for ( i = 0; i < n; i++ ) { lambda[i] = complex ( n, 0 ); } w = c8vec_unity ( n ); for ( i = n - 1; 1 <= i; i-- ) { for ( j = 0; j < n; j++ ) { lambda[j] = lambda[j] * w[j] + complex ( i, 0 ); } } // // Free memory. // delete [] w; return lambda; } //****************************************************************************80 double *circulant2_inverse ( int n ) //****************************************************************************80 // // Purpose: // // circulant2_inverse() returns the inverse of the CIRCULANT2 matrix. // // Discussion: // // The Moore Penrose generalized inverse is computed, so even if // the circulant is singular, this routine returns a usable result. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CIRCULANT2_INVERSE[N*N], the matrix. // { double *a; complex *b; complex *bf; complex *f; complex *fct; complex *fctbf; int i; int j; complex *lambda; lambda = circulant2_eigenvalues ( n ); b = new complex [n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = c8_zero ( ); } } for ( i = 0; i < n; i++ ) { if ( lambda[i] != c8_zero ( ) ) { b[i+i*n] = 1.0 / conj ( lambda[i] ); } } f = fourier_matrix ( n ); bf = c8mat_mm_new ( n, n, n, b, f ); fct = new complex [n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { fct[i+j*n] = conj ( f[j+i*n] ); } } fctbf = c8mat_mm_new ( n, n, n, fct, bf ); a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = real ( fctbf[i+j*n] ); } } // // Free memory. // delete [] b; delete [] bf; delete [] f; delete [] fct; delete [] fctbf; delete [] lambda; return a; } //****************************************************************************80 double *clement1_matrix ( int n ) //****************************************************************************80 // // Purpose: // // clement1_matrix() returns the CLEMENT1 matrix. // // Formula: // // if ( J = I + 1 ) // A(I,J) = sqrt(I*(N-I)) // else if ( I = J + 1 ) // A(I,J) = sqrt(J*(N-J)) // else // A(I,J) = 0 // // Example: // // N = 5 // // . sqrt(4) . . . // sqrt(4) . sqrt(6) . . // . sqrt(6) . sqrt(6) . // . . sqrt(6) . sqrt(4) // . . . sqrt(4) . // // Properties: // // A is tridiagonal. // // A is banded, with bandwidth 3. // // Because A is tridiagonal, it has property A (bipartite). // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The diagonal of A is zero. // // A is singular if N is odd. // // About 64 percent of the entries of the inverse of A are zero. // // The eigenvalues are plus and minus the numbers // // N-1, N-3, N-5, ..., (1 or 0). // // If N is even, // // det ( A ) = (-1)^(N/2) * (N-1) * (N+1)^(N/2) // // and if N is odd, // // det ( A ) = 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 June 2024 // // Author: // // John Burkardt // // Reference: // // Paul Clement, // A class of triple-diagonal matrices for test purposes, // SIAM Review, // Volume 1, 1959, pages 50-52. // // Input: // // int N, the order of the matrix. // // Output: // // double CLEMENT1[N*N], the matrix. // { double *A; int i; int j; A = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( j == i + 1 ) { A[i+j*n] = sqrt ( ( double ) ( ( i + 1 ) * ( n - i - 1 ) ) ); } else if ( i == j + 1 ) { A[i+j*n] = sqrt ( ( double ) ( ( j + 1 ) * ( n - j - 1 ) ) ); } else { A[i+j*n] = 0.0; } } } return A; } //****************************************************************************80 double clement1_determinant ( int n ) //****************************************************************************80 // // Purpose: // // clement1_determinant() returns the determinant of the CLEMENT1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CLEMENT1_DETERMINANT, the determinant. // { double determ; int i; if ( ( n % 2 ) == 1 ) { determ = 0.0; } else { determ = 1.0; for ( i = 1; i <= n - 1; i = i + 2 ) { determ = determ * ( double ) ( i * ( n - i ) ); } if ( ( ( n / 2 ) % 2 ) == 1 ) { determ = - determ; } } return determ; } //****************************************************************************80 double *clement1_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // clement1_eigenvalues() returns the eigenvalues of the CLEMENT1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double CLEMENT1_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = ( double ) ( - n + 1 + 2 * i ); } return lambda; } //****************************************************************************80 double *clement1_inverse ( int n ) //****************************************************************************80 // // Purpose: // // clement1_inverse() returns the inverse of the CLEMENT1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 June 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. N must not be odd. // // Output: // // double CLEMENT1_INVERSE[N*N], the matrix. // { double *a; int i; int j; double prod; if ( ( n % 2 ) == 1 ) { cerr << "\n"; cerr << "clement1_inverse(): Fatal error!\n"; cerr << " The Clement matrix is singular for odd N.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 1; i <= n; i++ ) { if ( ( i % 2 ) == 1 ) { for ( j = i; j <= n - 1; j = j + 2 ) { if ( j == i ) { prod = 1.0 / sqrt ( ( double ) ( j * ( n - j ) ) ); } else { prod = - prod * sqrt ( ( double ) ( ( j - 1 ) * ( n + 1 - j ) ) ) / sqrt ( ( double ) ( j * ( n - j ) ) ); } a[i-1+j*n] = prod; a[j+(i-1)*n] = prod; } } } return a; } //****************************************************************************80 double *clement2_matrix ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // clement2_matrix() returns the CLEMENT2 matrix. // // Formula: // // if ( J = I + 1 ) // A(I,J) = X(I) // else if ( I = J + 1 ) // A(I,J) = Y(J) // else // A(I,J) = 0 // // Example: // // N = 5, X and Y arbitrary: // // . X(1) . . . // Y(1) . X(2) . . // . Y(2) . X(3) . // . . Y(3) . X(4) // . . . Y(4) . // // N = 5, X=(1,2,3,4), Y=(5,6,7,8): // // . 1 . . . // 5 . 2 . . // . 6 . 3 . // . . 7 . 4 // . . . 8 . // // Properties: // // A is generally not symmetric: A' /= A. // // The Clement1 and Clement2 matrices are special cases of this one. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // The diagonal of A is zero. // // A is singular if N is odd. // // About 64 percent of the entries of the inverse of A are zero. // // If N is even, // det ( A ) = (-1)^(N/2) * product ( 1 <= I <= N/2 ) // ( X(2*I-1) * Y(2*I-1) ) // and if N is odd, // det ( A ) = 0. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Reference: // // Paul Clement, // A class of triple-diagonal matrices for test purposes, // SIAM Review, // Volume 1, 1959, pages 50-52. // // Alan Edelman, Eric Kostlan, // The road from Kac's matrix to Kac's random polynomials. // In Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, // edited by John Lewis, // SIAM, 1994, pages 503-507. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Olga Taussky, John Todd, // Another look at a matrix of Mark Kac, // Linear Algebra and Applications, // Volume 150, 1991, pages 341-360. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N-1], Y[N-1], the first super and // subdiagonals of the matrix A. // // Output, double CLEMENT2[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( j == i + 1 ) { a[i+j*n] = x[i]; } else if ( i == j + 1 ) { a[i+j*n] = y[j]; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double clement2_determinant ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // clement2_determinant() returns the determinant of the CLEMENT2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X(N-1), Y(N-1), the first super and // subdiagonals of the matrix A. // // Output, double CLEMENT2_DETERMINANT, the determinant of A. // { double determ; int i; if ( ( n % 2 ) == 1 ) { determ = 0.0; } else { determ = 1.0; for ( i = 0; i < n - 1; i = i + 2 ) { determ = determ * x[i] * y[i]; } if ( ( ( n / 2 ) % 2 ) == 1 ) { determ = - determ; } } return determ; } //****************************************************************************80 double *clement2_inverse ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // clement2_inverse() returns the inverse of the CLEMENT2 matrix. // // Example: // // N = 6, X and Y arbitrary: // // 0 1/Y1 0 -X2/(Y1*Y3) 0 X2*X4/(Y1*Y3*Y5) // 1/X1 0 0 0 0 0 // 0 0 0 1/Y3 0 -X4/(Y3*Y5) // -Y2/(X1*X3) 0 1/X3 0 0 0 // 0 0 0 0 0 1/Y5 // Y2*Y4/(X1*X3*X5) 0 -Y4/(X3*X5) 0 1/X5 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 June 2008 // // Author: // // John Burkardt // // Reference: // // Paul Clement, // A class of triple-diagonal matrices for test purposes, // SIAM Review, // Volume 1, 1959, pages 50-52. // // Parameters: // // Input, int N, the order of the matrix. N must not be odd. // // Input, double X[N-1], Y[N-1], the first super and // subdiagonals of the matrix A. None of the entries // of X or Y may be zero. // // Output, double CLEMENT2_INVERSE[N*N], the matrix. // { double *a; int i; int j; double prod1; double prod2; if ( ( n % 2 ) == 1 ) { cerr << "\n"; cerr << "CLEMENT2_INVERSE(): Fatal error!\n"; cerr << " The Clement matrix is singular for odd N.\n"; exit ( 1 ); } for ( i = 0; i < n - 1 ; i++ ) { if ( x[i] == 0.0 ) { cerr << "\n"; cerr << "CLEMENT2_INVERSE(): Fatal error!\n"; cerr << " The matrix is singular\n"; cerr << " X[" << i <<"] = 0\n"; exit ( 1 ); } else if ( y[i] == 0.0 ) { cerr << "\n"; cerr << "CLEMENT2_INVERSE(): Fatal error!\n"; cerr << " The matrix is singular\n"; cerr << " Y[" << i <<"] = 0\n"; exit ( 1 ); } } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { if ( ( i % 2 ) == 0 ) { for ( j = i; j < n - 1; j = j + 2 ) { if ( j == i ) { prod1 = 1.0 / y[j]; prod2 = 1.0 / x[j]; } else { prod1 = - prod1 * x[j-1] / y[j]; prod2 = - prod2 * y[j-1] / x[j]; } a[i+(j+1)*n] = prod1; a[j+1+i*n] = prod2; } } } return a; } //****************************************************************************80 double *colleague_matrix ( int n, double c[] ) //****************************************************************************80 // // Purpose: // // colleague_matrix() returns the COLLEAGUE matrix. // // Discussion: // // The colleague matrix is an analog of the companion matrix, adapted // for use with polynomials represented by a sum of Chebyshev polynomials. // // Let the N-th degree polynomial be defined by // // P(X) = C(N)*T_N(X) + C(N-1)*T_(N-1)(X) + ... + C(1)*T1(X) + C(0)*T0(X) // // where T_I(X) is the I-th Chebyshev polynomial. // // Then the roots of P(X) are the eigenvalues of the colleague matrix A(C): // // 0 1 0 ... 0 0 0 0 ... 0 // 1/2 0 1/2 ... 0 0 0 0 ... 0 // 0 1/2 0 ... 0 - 1/(2*C(N)) * 0 0 0 ... 0 // ... ... ... ... ... ... ... ... ... ... // ... ... ... 0 1/2 ... ... ... ... 0 // ... ... ... 1/2 0 C(0) C(1) C(2) ... C(N-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 March 2015 // // Author: // // John Burkardt // // Reference: // // I J Good, // The Colleague Matrix: A Chebyshev Analogue of the Companion Matrix, // The Quarterly Journal of Mathematics, // Volume 12, Number 1, 1961, pages 61-68. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double C[0:N], the coefficients of the polynomial. // // Output, double COLLEAGUE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; if ( n == 1 ) { a[0+0*n] = - c[0] / c[1]; } else { for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 && j == 1 ) { a[i+j*n] = 1.0; } else if ( j == i - 1 || j == i + 1 ) { a[i+j*n] = 0.5; } else { a[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { a[n-1+j*n] = a[n-1+j*n] - 0.5 * c[j] / c[n]; } } return a; } //****************************************************************************80 double *combin_matrix ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_matrix() returns the COMBIN matrix. // // Discussion: // // This matrix is known as the combinatorial matrix. // // Formula: // // If ( I = J ) then // A(I,J) = ALPHA + BETA // else // A(I,J) = BETA // // Example: // // N = 5, ALPHA = 2, BETA = 3 // // 5 3 3 3 3 // 3 5 3 3 3 // 3 3 5 3 3 // 3 3 3 5 3 // 3 3 3 3 5 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a circulant matrix: each row is shifted once to get the next row. // // det ( A ) = ALPHA^(N-1) * ( ALPHA + N * BETA ). // // A has constant row sums. // // Because A has constant row sums, // it has an eigenvalue with this value, // and a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sums. // // Because A has constant column sums, // it has an eigenvalue with this value, // and a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // LAMBDA(1:N-1) = ALPHA, // LAMBDA(N) = ALPHA + N * BETA. // // The eigenvector associated with LAMBDA(N) is (1,1,1,...,1)/sqrt(N). // // The other N-1 eigenvectors are simply any (orthonormal) basis // for the space perpendicular to (1,1,1,...,1). // // A is nonsingular if ALPHA /= 0 and ALPHA + N * BETA /= 0. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Donald Knuth, // The Art of Computer Programming, // Volume 1, Fundamental Algorithms, Second Edition, // Addison-Wesley, Reading, Massachusetts, 1973, page 36. // // Parameters: // // Input, double ALPHA, BETA, scalars that define A. // // Input, int N, the order of the matrix. // // Output, double COMBIN[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = alpha + beta; } else { a[i+j*n] = beta; } } } return a; } //****************************************************************************80 double combin_condition ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_condition() returns the L1 condition of the COMBIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, scalars that define A. // // Input, int N, the order of the matrix. // // Output, double COMBIN_CONDITION, the L1 condition. // { double a_norm; double b_norm; double b_norm_bot; double b_norm_top; double cond; a_norm = fabs ( alpha + beta ) + ( double ) ( n - 1 ) * fabs ( beta ); b_norm_top = fabs ( alpha + ( double ) ( n - 1 ) * beta ) + ( double ) ( n - 1 ) * fabs ( beta ); b_norm_bot = fabs ( alpha * ( alpha + ( double ) ( n ) * beta ) ); b_norm = b_norm_top / b_norm_bot; cond = a_norm * b_norm; return cond; } //****************************************************************************80 double combin_determinant ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_determinant() returns the determinant of the COMBIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, scalars that define A. // // Input, int N, the order of the matrix. // // Output, double COMBIN_DETERMINANT, the determinant. // { double determ; determ = pow ( alpha, n - 1 ) * ( alpha + ( double ) ( n ) * beta ); return determ; } //****************************************************************************80 double *combin_eigenvalues ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_eigenvalues() returns the eigenvalues of the COMBIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, scalars that define A. // // Input, int N, the order of the matrix. // // Output, double COMBIN_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n - 1; i++ ) { lambda[i] = alpha; } lambda[n-1] = alpha + ( double ) ( n ) * beta; return lambda; } //****************************************************************************80 double *combin_inverse ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_inverse() returns the inverse of the COMBIN matrix. // // Formula: // // if ( I = J ) // A(I,J) = (ALPHA+(N-1)*BETA) / (ALPHA*(ALPHA+N*BETA)) // else // A(I,J) = - BETA / (ALPHA*(ALPHA+N*BETA)) // // Example: // // N = 5, ALPHA = 2, BETA = 3 // // 14 -3 -3 -3 -3 // -3 14 -3 -3 -3 // 1/34 * -3 -3 14 -3 -3 // -3 -3 -3 14 -3 // -3 -3 -3 -3 14 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a circulant matrix: each row is shifted once to get the next row. // // A is Toeplitz: constant along diagonals. // // det ( A ) = 1 / (ALPHA^(N-1) * (ALPHA+N*BETA)). // // A is well defined if ALPHA /= 0 and ALPHA+N*BETA /= 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Reference: // // Donald Knuth, // The Art of Computer Programming, // Volume 1, Fundamental Algorithms, Second Edition, // Addison-Wesley, Reading, Massachusetts, 1973, page 36. // // Parameters: // // Input, double ALPHA, BETA, scalars that define the matrix. // // Input, int N, the order of the matrix. // // Output, double COMBIN_INVERSE[N*N], the matrix. // { double *a; double bot; int i; int j; if ( alpha == 0.0 ) { cerr << "\n"; cerr << "COMBIN_INVERSE(): Fatal error!\n"; cerr << " The entries of the matrix are undefined\n"; cerr << " because ALPHA = 0.\n"; exit ( 1 ); } else if ( alpha + n * beta == 0.0 ) { cerr << "\n"; cerr << "COMBIN_INVERSE(): Fatal error!\n"; cerr << " The entries of the matrix are undefined\n"; cerr << " because ALPHA+N*BETA is zero.\n"; exit ( 1 ); } a = new double[n*n]; bot = alpha * ( alpha + ( double ) ( n ) * beta ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = ( alpha + ( double ) ( n - 1 ) * beta ) / bot; } else { a[i+j*n] = - beta / bot; } } } return a; } //****************************************************************************80 double *combin_eigen_right ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // combin_eigen_right() returns the right eigenvectors of the COMBIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, scalars that define A. // // Input, int N, the order of the matrix. // // Output, double COMBIN_EIGEN_RIGHT[N*N], the right eigenvectors. // { int i; int j; double *x; x = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j < n - 1 ) { if ( i == 0 ) { x[i+j*n] = 1.0; } else if ( i == j + 1 ) { x[i+j*n] = - 1.0; } else { x[i+j*n] = 0.0; } } else { x[i+j*n] = 1.0; } } } return x; } //****************************************************************************80 double *companion_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // companion_matrix() returns the COMPANION matrix. // // Discussion: // // Let the monic N-th degree polynomial be defined by // // P(t) = t^N + X(N)*t^N-1 + X(N-1)*t^N-1 + ... + X(2)*t + X(1) // // Then // // A(1,J) = X(N+1-J) for J=1 to N // A(I,I-1) = 1 for I=2 to N // A(I,J) = 0 otherwise // // A is called the companion matrix of the polynomial P(t), and the // characteristic equation of A is P(t) = 0. // // Matrices of this form are also called Frobenius matrices. // // The determinant of a matrix is unaffected by being transposed, // and only possibly changes sign if the rows are "reflected", so // there are actually many possible ways to write a companion matrix: // // A B C D A 1 0 0 0 1 0 0 0 0 1 0 0 0 1 A // 1 0 0 0 B 0 1 0 0 0 1 0 0 1 0 0 0 1 0 B // 0 1 0 0 C 0 0 1 0 0 0 1 1 0 0 0 1 0 0 C // 0 0 1 0 D 0 0 0 D C B A A B C D 0 0 0 D // // Example: // // N = 5, X = ( 1, 2, 3, 4, 5 ) // // 5 4 3 2 1 // 1 0 0 0 0 // 0 1 0 0 0 // 0 0 1 0 0 // 0 0 0 1 0 // // Properties: // // A is generally not symmetric: A' /= A. // // A is nonsingular if and only if X(1) is nonzero. // // The eigenvalues of A are the roots of P(t) = 0. // // If LAMBDA is an eigenvalue of A, then a corresponding eigenvector is // ( 1, LAMBDA, LAMBDA^2, ..., LAMBDA^(N-1) ). // // If LAMBDA is an eigenvalue of multiplicity 2, then a second // corresponding generalized eigenvector is // // ( 0, 1, 2 * LAMBDA, ..., (N-1)*LAMBDA^(N-2) ). // // For higher multiplicities, repeatedly differentiate with respect to LAMBDA. // // Any matrix with characteristic polynomial P(t) is similar to A. // // det ( A ) = +/- X(1). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989, // section 7.4.6. // // Charles Kenney, Alan Laub, // Controllability and stability radii for companion form systems, // Math. Control Signals Systems, // Volume 1, 1988, pages 239-256. // // James Wilkinson, // The Algebraic Eigenvalue Problem, // Oxford University Press, // 1965, page 12. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the coefficients of the polynomial // which define A. // // Output, double COMPANION[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { a[i+j*n] = x[n-1-j]; } else if ( i == j + 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double companion_condition ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // companion_condition() returns the L1 condition of the COMPANION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the coefficients of the polynomial // which define A. // // Output, double COMPANION_CONDITION, the L1 condition. // { double a_norm; double b_norm; int i; double t; double value; a_norm = fabs ( x[0] ); for ( i = 1; i < n; i++ ) { t = 1.0 + fabs ( x[i] ); if ( a_norm < t ) { a_norm = t; } } b_norm = 1.0 / fabs ( x[0] ); for ( i = 1; i < n; i++ ) { t = 1.0 + fabs ( x[i] / x[0] ); if ( b_norm < t ) { b_norm = t; } } value = a_norm * b_norm; return value; } //****************************************************************************80 double companion_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // companion_determinant() returns the determinant of the COMPANION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the coefficients of the polynomial // which define A. // // Output, double COMPANION_DETERMINANT, the determinant. // { double determ; if ( ( n % 2 ) == 1 ) { determ = + x[0]; } else { determ = - x[0]; } return determ; } //****************************************************************************80 double complete_symmetric_poly ( int n, int r, double x[] ) //****************************************************************************80 // // Purpose: // // complete_symmetric_poly() evaluates a complete symmetric polynomial. // // Discussion: // // N\R 0 1 2 3 // +-------------------------------------------------------- // 0 | 1 0 0 0 // 1 | 1 X1 X1^2 X1^3 // 2 | 1 X1+X2 X1^2+X1X2+X2^2 X1^3+X1^2X2+X1X2^2+X2^3 // 3 | 1 X1+X2+X3 ... // // If X = ( 1, 2, 3, 4, 5, ... ) then // // N\R 0 1 2 3 4 ... // +-------------------------------------------------------- // 0 | 1 0 0 0 0 // 1 | 1 1 1 1 1 // 2 | 1 3 7 15 31 // 3 | 1 6 25 90 301 // 4 | 1 10 65 350 1701 // 5 | 1 15 140 1050 6951 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of variables. // 0 <= N. // // Input, int R, the degree of the polynomial. // 0 <= R. // // Input, double X[N], the value of the variables. // // Output, double COMPLETE_SYMMETRIC_POLY, the value of TAU(N,R)(X). // { int i; int nn; int rr; double *tau; double value; if ( n < 0 ) { cerr << "\n"; cerr << "COMPLETE_SYMMETRIC_POLY(): Fatal error!\n"; cerr << " N < 0.\n"; exit ( 1 ); } if ( r < 0 ) { cerr << "\n"; cerr << "COMPLETE_SYMMETRIC_POLY(): Fatal error!\n"; cerr << " R < 0.\n"; exit ( 1 ); } tau = new double[1+i4_max(n,r)]; for ( i = 0; i <= i4_max ( n, r ); i++ ) { tau[i] = 0.0; } tau[0] = 1.0; for ( nn = 1; nn <= n; nn++ ) { for ( rr = 1; rr <= r; rr++ ) { tau[rr] = tau[rr] + x[nn-1] * tau[rr-1]; } } value = tau[r]; // // Free memory. // delete [] tau; return value; } //****************************************************************************80 double *companion_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // companion_inverse() returns the inverse of the COMPANION matrix. // // Example: // // N = 5, X = ( 1, 2, 3, 4, 5 ) // // 0 1 0 0 0 // 0 0 1 0 0 // 0 0 0 1 0 // 0 0 0 0 1 // 1/1 -5/1 -4/1 -3/1 -2/1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989, // section 7.4.6. // // Charles Kenney, Alan Laub, // Controllability and stability radii for companion form systems, // Math. Control Signals Systems, // Volume 1, 1988, pages 239-256. // // James Wilkinson, // The Algebraic Eigenvalue Problem, // Oxford University Press, // 1965, page 12. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the coefficients of the polynomial // which define the matrix. X(1) must not be zero. // // Output, double COMPANION_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == n - 1 ) { if ( j == 0 ) { a[i+j*n] = 1.0 / x[0]; } else { a[i+j*n] = - x[n-j] / x[0]; } } else if ( i == j - 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 complex *complex3_matrix ( ) //****************************************************************************80 // // Purpose: // // complex3_matrix() returns the COMPLEX3 matrix. // // Formula: // // 1 1 + 2i 2 + 10i // 1 + i 3i -5 + 14i // 1 + i 5i -8 + 20i // // Properties: // // A is complex. // // A is complex integral. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, complex COMPLEX3[3*3], the matrix. // { complex *a; // // Note that the matrix entries are listed by column. // static complex a_save[3*3] = { complex ( 1.0, 0.0 ), complex ( 1.0, 1.0 ), complex ( 1.0, 1.0 ), complex ( 1.0, 2.0 ), complex ( 0.0, 3.0 ), complex ( 0.0, 5.0 ), complex ( 2.0, 10.0 ), complex ( -5.0, 14.0 ), complex ( -8.0, 20.0 ) }; a = c8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 complex *complex3_inverse ( ) //****************************************************************************80 // // Purpose: // // complex3_inverse() returns the inverse of the COMPLEX3 matrix. // // Formula: // // 10 + i -2 + 6i -3 - 2i // 9 - 3i 8i -3 - 2i // -2 + 2i -1 - 2i 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, complex COMPLEX3_INVERSE[3*3], the matrix. // { complex *a; // // Note that the matrix entries are listed by column. // static complex a_save[3*3] = { complex ( 10.0, 1.0 ), complex ( 9.0, -3.0 ), complex ( -2.0, 2.0 ), complex ( -2.0, 6.0 ), complex ( 0.0, 8.0 ), complex ( -1.0, -2.0 ), complex ( -3.0, -2.0 ), complex ( -3.0, -2.0 ), complex ( 1.0, 0.0 ) }; a = c8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 double *complex_i_matrix ( ) //****************************************************************************80 // // Purpose: // // complex_i_matrix() returns the COMPLEX_I matrix. // // Discussion: // // This is a real matrix, that has some properties similar to the // imaginary unit. // // Formula: // // 0 1 // -1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is anti-involutory: A * A = - I // // A * A * A * A = I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double COMPLEX_I[2*2], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[2*2] = { 0.0, -1.0, 1.0, 0.0 }; a = r8mat_copy_new ( 2, 2, a_save ); return a; } //****************************************************************************80 double complex_i_determinant ( ) //****************************************************************************80 // // Purpose: // // complex_i_determinant() returns the determinant of the COMPLEX_I matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double COMPLEX_I_DETERMINANT, the determinant. // { double determ; determ = + 1.0; return determ; } //****************************************************************************80 double *complex_i_inverse ( ) //****************************************************************************80 // // Purpose: // // complex_i_inverse() returns the inverse of the COMPLEX_I matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double COMPLEX_I_INVERSE[2*2], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[2*2] = { 0.0, 1.0, -1.0, 0.0 }; a = r8mat_copy_new ( 2, 2, a_save ); return a; } //****************************************************************************80 double *conex1_matrix ( double alpha ) //****************************************************************************80 // // Purpose: // // conex1_matrix() returns the CONEX1 matrix. // // Discussion: // // The CONEX1 matrix is a counterexample to the LINPACK condition // number estimator RCOND available in the LINPACK routine DGECO. // // Formula: // // 1 -1 -2*ALPHA 0 // 0 1 ALPHA -ALPHA // 0 1 1+ALPHA -1-ALPHA // 0 0 0 ALPHA // // Example: // // ALPHA = 100 // // 1 -1 -200 0 // 0 1 100 -100 // 0 1 101 -101 // 0 0 0 100 // // Properties: // // A is generally not symmetric: A' /= A. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Reference: // // Alan Cline, RK Rew, // A set of counterexamples to three condition number estimators, // SIAM Journal on Scientific and Statistical Computing, // Volume 4, 1983, pages 602-611. // // Parameters: // // Input, double ALPHA, the scalar defining A. // A common value is 100.0. // // Output, double CONEX1[4*4], the matrix. // { double *a; int n = 4; a = new double[n*n]; a[0+0*n] = 1.0; a[1+0*n] = 0.0; a[2+0*n] = 0.0; a[3+0*n] = 0.0; a[0+1*n] = -1.0; a[1+1*n] = 1.0; a[2+1*n] = 1.0; a[3+1*n] = 0.0; a[0+2*n] = -2.0 * alpha; a[1+2*n] = alpha; a[2+2*n] = 1.0 + alpha; a[3+2*n] = 0.0; a[0+3*n] = 0.0; a[1+3*n] = -alpha; a[2+3*n] = -1.0 - alpha; a[3+3*n] = alpha; return a; } //****************************************************************************80 double conex1_condition ( double alpha ) //****************************************************************************80 // // Purpose: // // conex1_condition() returns the L1 condition of the CONEX1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // // Output, double CONEX1_CONDITION, the L1 condition number. // { double a_norm; double b_norm; double v1; double v2; double v3; double value; a_norm = fmax ( 3.0, 3.0 * fabs ( alpha ) + fabs ( 1.0 + alpha ) ); v1 = fabs ( 1.0 - alpha ) + fabs ( 1.0 + alpha ) + 1.0; v2 = 2.0 * fabs ( alpha ) + 1.0; v3 = 2.0 + 2.0 / fabs ( alpha ); b_norm = fmax ( v1, fmax ( v2, v3 ) ); value = a_norm * b_norm; return value; } //****************************************************************************80 double conex1_determinant ( double alpha ) //****************************************************************************80 // // Purpose: // // conex1_determinant() returns the determinant of the CONEX1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // // Output, double CONEX1_DETERMINANT, the determinant. // { double determ; determ = alpha; return determ; } //****************************************************************************80 double *conex1_inverse ( double alpha ) //****************************************************************************80 // // Purpose: // // conex1_inverse() returns the inverse of the CONEX1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // // Output, double CONEX1_INVERSE[4*4], the matrix. // { double *a; int n = 4; a = new double[n*n]; a[0+0*n] = 1.0; a[1+0*n] = 0.0; a[2+0*n] = 0.0; a[3+0*n] = 0.0; a[0+1*n] = 1.0 - alpha; a[1+1*n] = 1.0 + alpha; a[2+1*n] = -1.0; a[3+1*n] = 0.0; a[0+2*n] = alpha; a[1+2*n] = - alpha; a[2+2*n] = 1.0; a[3+2*n] = 0.0; a[0+3*n] = 2.0; a[1+3*n] = 0.0; a[2+3*n] = 1.0 / alpha; a[3+3*n] = 1.0 / alpha; return a; } //****************************************************************************80 double *conex2_matrix ( double alpha ) //****************************************************************************80 // // Purpose: // // conex2_matrix() returns the CONEX2 matrix. // // Formula: // // 1 1-1/ALPHA^2 -2 // 0 1/ALPHA -1/ALPHA // 0 0 1 // // Example: // // ALPHA = 100 // // 1 0.9999 -2 // 0 0.01 -0.01 // 0 0 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is upper triangular. // // det ( A ) = 1 / ALPHA. // // LAMBDA = ( 1, 1/ALPHA, 1 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2008 // // Author: // // John Burkardt // // Reference: // // Alan Cline, RK Rew, // A set of counterexamples to three condition number estimators, // SIAM Journal on Scientific and Statistical Computing, // Volume 4, 1983, pages 602-611. // // Parameters: // // Input, double ALPHA, the scalar defining A. // A common value is 100.0. ALPHA must not be zero. // // Output, double CONEX2[3*3], the matrix. // { double *a; int n = 3; a = new double[n*n]; if ( alpha == 0.0 ) { cerr << "\n"; cerr << "CONEX2(): Fatal error!\n"; cerr << " The input value of ALPHA was zero.\n"; exit ( 1 ); } a[0+0*n] = 1.0; a[1+0*n] = 0.0; a[2+0*n] = 0.0; a[0+1*n] = ( alpha - 1.0 ) * ( alpha + 1.0 ) / alpha / alpha; a[1+1*n] = 1.0 / alpha; a[2+1*n] = 0.0; a[0+2*n] = -2.0; a[1+2*n] = -1.0 / alpha; a[2+2*n] = 1.0; return a; } //****************************************************************************80 double conex2_condition ( double alpha ) //****************************************************************************80 // // Purpose: // // conex2_condition() returns the L1 condition of the CONEX2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // // Output, double CONEX2_CONDITION, the L1 condition number. // { double a_norm; double b_norm; double c1; double c2; double c3; double value; c1 = 1.0; c2 = fabs ( 1.0 - 1.0 / alpha / alpha ) + 1.0 / fabs ( alpha ); c3 = 3.0 + 1.0 / fabs ( alpha ); a_norm = fmax ( c1, fmax ( c2, c3 ) ); c1 = 1.0; c2 = fabs ( ( 1.0 - alpha * alpha ) / alpha ) + fabs ( alpha ); c3 = fabs ( ( 1.0 + alpha * alpha ) / alpha / alpha ) + 2.0; b_norm = fmax ( c1, fmax ( c2, c3 ) ); value = a_norm * b_norm; return value; } //****************************************************************************80 double conex2_determinant ( double alpha ) //****************************************************************************80 // // Purpose: // // conex2_determinant() returns the determinant of the CONEX2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // // Output, double CONEX2_DETERMINANT, the determinant. // { double determ; determ = 1.0 / alpha; return determ; } //****************************************************************************80 double *conex2_inverse ( double alpha ) //****************************************************************************80 // // Purpose: // // conex2_inverse() returns the inverse of the CONEX2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 September 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining A. // A common value is 100.0. ALPHA must not be zero. // // Output, double CONEX2_INVERSE[3*3], the matrix. // { double *a; int n = 3; a = new double[n*n]; if ( alpha == 0.0 ) { cerr << "\n"; cerr << "CONEX2_INVERSE(): Fatal error!\n"; cerr << " The input value of ALPHA was zero.\n"; exit ( 1 ); } a[0+0*n] = 1.0; a[1+0*n] = 0.0; a[2+0*n] = 0.0; a[0+1*n] = ( 1.0 - alpha ) * ( 1.0 + alpha ) / alpha; a[1+1*n] = alpha; a[2+1*n] = 0.0; a[0+2*n] = ( 1.0 + alpha * alpha ) / alpha / alpha; a[1+2*n] = 1.0; a[2+2*n] = 1.0; return a; } //****************************************************************************80 double *conex3_matrix ( int n ) //****************************************************************************80 // // Purpose: // // conex3_matrix() returns the CONEX3 matrix. // // Formula: // // if ( I = J and I < N ) // A(I,J) = 1.0 for 1<=I *dif1_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // dif1_eigenvalues() returns the eigenvalues of the DIF1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex DIF1_EIGENVALUES[N], the eigenvalues. // { double angle; int i; complex *lambda; const double r8_pi = 3.141592653589793; lambda = new complex [n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); lambda[i] = complex ( 0.0, 2.0 * cos ( angle ) ); } return lambda; } //****************************************************************************80 double *dif1_inverse ( int n ) //****************************************************************************80 // // Purpose: // // dif1_inverse() returns the inverse of the DIF1 matrix. // // Discussion: // // The inverse only exists when N is even. // // Example: // // N = 8 // // 0 -1 0 -1 0 -1 0 -1 // 1 0 0 0 0 0 0 0 // 0 0 0 -1 0 -1 0 -1 // 1 0 1 0 0 0 0 0 // 0 0 0 0 0 -1 0 -1 // 1 0 1 0 1 0 0 0 // 0 0 0 0 0 0 0 -1 // 1 0 1 0 1 0 1 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF1_INVERSE[N,N], the matrix. // { double *a; int i; int j; if ( ( n % 2 ) != 0 ) { cerr << "\n"; cerr << "DIF1_INVERSE(): Fatal error!\n"; cerr << " Inverse only exists for N even.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n - 1; i = i + 2 ) { for ( j = i + 1; j < n; j = j + 2 ) { a[i+j*n] = -1.0; } } for ( i = 1; i < n; i = i + 2 ) { for ( j = 0; j < i; j = j + 2 ) { a[i+j*n] = 1.0; } } return a; } //****************************************************************************80 double *dif1_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif1_null_left() returns a left null vector of the DIF1 matrix. // // Discussion: // // The null vector only exists if M is odd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF1_NULL_LEFT[M], the null vector. // { int i; double *x; if ( ( m % 2 ) == 0 ) { cerr << "\n"; cerr << "DIF1_NULL_LEFT(): Fatal error!\n"; cerr << " The matrix is not singular for even M.\n"; exit ( 1 ); } x = new double[m]; for ( i = 0; i < m; i = i + 2 ) { x[i] = 1.0; } for ( i = 1; i < m; i = i + 2 ) { x[i] = 0.0; } return x; } //****************************************************************************80 double *dif1_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif1_null_right() returns a right null vector of the DIF1 matrix. // // Discussion: // // The null vector only exists if N is odd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF1_NULL_RIGHT[N], the null vector. // { int i; double *x; if ( ( n % 2 ) == 0 ) { cerr << "\n"; cerr << "DIF1_NULL_RIGHT(): Fatal error!\n"; cerr << " The matrix is not singular for even N.\n"; exit ( 1 ); } x = new double[n]; for ( i = 0; i < n; i = i + 2 ) { x[i] = 1.0; } for ( i = 1; i < n; i = i + 2 ) { x[i] = 0.0; } return x; } //****************************************************************************80 double *dif1cyclic_matrix ( int n ) //****************************************************************************80 // // Purpose: // // dif1cyclic_matrix() returns the DIF1CYCLIC matrix. // // Example: // // N = 5 // // 0 +1 . . -1 // -1 0 +1 . . // . -1 0 +1 . // . . -1 0 +1 // +1 . . -1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is antisymmetric: A' = -A. // // A is a circulant matrix: each row is shifted once to get the next row. // // Because A is antisymmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A has constant row sum = 0. // // Because it has a constant row sum of 0, // A has an eigenvalue of 0, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum = 0. // // Because it has a constant column sum of 0, // A has an eigenvalue of 0, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF1CYCLIC[N*N], the matrix. // { double *a; int i; int im1; int ip1; a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { im1 = i4_wrap ( i - 1, 0, n - 1 ); a[i+im1*n] = - 1.0; ip1 = i4_wrap ( i + 1, 0, n - 1 ); a[i+ip1*n] = +1.0; } return a; } //****************************************************************************80 double dif1cyclic_determinant ( int n ) //****************************************************************************80 // // Purpose: // // dif1cyclic_determinant(): determinant of the DIF1CYCLIC matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF1CYCLIC_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *dif1cyclic_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif1cyclic_null_left() returns a left null vectorr of the DIF1CYCLIC matrix. // // Discussion: // // (1,1,1,...,1) is always a null vector. // // If M is even, // // (A,B,A,B,A,B,...,A,B) is also a null vector, for any A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF1CYCLIC_NULL_LEFT[M], the null vector. // { double a = 1.0; double b = 2.0; int i; double *x; x = new double[m]; if ( ( m % 2 ) != 0 ) { for ( i = 0; i < m; i++ ) { x[i] = 1.0; } } else { for ( i = 0; i < m; i = i + 2 ) { x[i] = a; x[i+1] = b; } } return x; } //****************************************************************************80 double *dif1cyclic_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif1cyclic_null_right() returns a right null vectorr of the DIF1CYCLIC matrix. // // Discussion: // // (1,1,1,...,1) is always a null vector. // // If N is even, // // (A,B,A,B,A,B,...,A,B) is also a null vector, for any A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF1CYCLIC_NULL_RIGHT[N], the null vector. // { double a = 1.0; double b = 2.0; int i; double *x; x = new double[n]; if ( ( n % 2 ) != 0 ) { for ( i = 0; i < n; i++ ) { x[i] = 1.0; } } else { for ( i = 0; i < n; i = i + 2 ) { x[i] = a; x[i+1] = b; } } return x; } //****************************************************************************80 double *dif2_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif2_matrix() returns the DIF2 matrix. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF2[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( j == i - 1 ) { a[i+j*m] = -1.0; } else if ( j == i ) { a[i+j*m] = 2.0; } else if ( j == i + 1 ) { a[i+j*m] = -1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double dif2_condition ( int n ) //****************************************************************************80 // // Purpose: // // dif2_condition() returns the L1 condition of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_CONDITION, the L1 condition. // { double a_norm; double b_norm; int i; int j; double t; double value; if ( n == 1 ) { a_norm = 2.0; } else if ( n == 2 ) { a_norm = 3.0; } else { a_norm = 4.0; } b_norm = 0.0; for ( j = 1; j <= n; j++ ) { t = 0.0; for ( i = 1; i <= n; i++ ) { if ( i <= j ) { t = t + ( double ) ( i * ( n - j + 1 ) ) / ( double ) ( n + 1 ); } else { t = t + ( double ) ( j * ( n - i + 1 ) ) / ( double ) ( n + 1 ); } } b_norm = fmax ( b_norm, t ); } value = a_norm * b_norm; return value; } //****************************************************************************80 double dif2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // dif2_determinant() returns the determinant of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_DETERMINANT, the determinant of the matrix. // { double determ; determ = ( double ) ( n + 1 ); return determ; } //****************************************************************************80 double *dif2_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // dif2_eigen_right() returns the right eigenvectors of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = sqrt ( 2.0 / ( double ) ( n + 1 ) ) * sin ( angle ); } } return a; } //****************************************************************************80 double *dif2_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // dif2_eigenvalues() returns the eigenvalues of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_EIGENVALUES[N] the eigenvalues. // { double angle; double *lambda; int i; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( 2 * ( n + 1 ) ); lambda[i] = 4.0 * sin ( angle ) * sin ( angle ); } return lambda; } //****************************************************************************80 double *dif2_inverse ( int n ) //****************************************************************************80 // // Purpose: // // dif2_inverse() returns the inverse of the DIF2 matrix. // // Formula: // // if ( I <= J ) // A(I,J) = I * (N-J+1) / (N+1) // else // A(I,J) = J * (N-I+1) / (N+1) // // Example: // // N = 4 // // 4 3 2 1 // (1/5) * 3 6 4 2 // 2 4 6 3 // 1 2 3 4 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // det ( A ) = 1 / ( N + 1 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i <= j ) { a[i+j*n] = ( double ) ( ( i + 1 ) * ( n - j ) ) / ( double ) ( n + 1 ); } else { a[i+j*n] = ( double ) ( ( j + 1 ) * ( n - i ) ) / ( double ) ( n + 1 ); } } } return a; } //****************************************************************************80 double *dif2_llt ( int n ) //****************************************************************************80 // // Purpose: // // dif2_llt() returns the lower triangular Cholesky factor of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_LLT[N*N], the matrix. // { double *a; int i; a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { a[i+i*n] = sqrt ( ( double ) ( i + 2 ) ) / sqrt ( ( double ) ( i + 1 ) ); } for ( i = 1; i < n; i++ ) { a[i+(i-1)*n] = - sqrt ( ( double ) ( i ) ) / sqrt ( ( double ) ( i + 1 ) ); } return a; } //****************************************************************************80 void dif2_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // dif2_plu() returns the PLU factors of the DIF2 matrix. // // Discussion: // // A = P * L * U // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the pivot // matrix, the unit lower triangular matrix, and the upper // triangular matrix that form the PLU factoriztion of A. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { l[i+j*n] = 1.0; } else if ( i - 1 == j ) { l[i+j*n] = - ( double ) ( i ) / ( double ) ( i + 1 ); } else { l[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { u[i+j*n] = ( double ) ( i + 2 ) / ( double ) ( i + 1 ); } else if ( i + 1 == j ) { u[i+j*n] = -1.0; } else { u[i+j*n] = 0.0; } } } return; } //****************************************************************************80 double *dif2_rhs ( int m, int k ) //****************************************************************************80 // // Purpose: // // dif2_rhs() returns the DIF2 right hand side. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the row dimension. // // Input, int K, the column dimension ( should be 2). // // Output, double DIF2_RHS[M*K], the right hand side matrix. // { double *b; int i; b = new double[m*k]; b[0+0*m]= 1.0; for ( i = 1; i < m - 1; i++ ) { b[i+0*m] = 0.0; } b[m-1+0*m] = 1.0; for ( i = 0; i < m - 1; i++ ) { b[i+1*m] = 0.0; } b[m-1+1*m] = ( double ) ( m + 1 ); return b; } //****************************************************************************80 double *dif2_rtr ( int n ) //****************************************************************************80 // // Purpose: // // dif2_rtr() returns the upper triangular Cholesky factor of the DIF2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2_RTR[N*N], the matrix. // { double *a; int i; a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { a[i+i*n] = sqrt ( ( double ) ( i + 2 ) ) / sqrt ( ( double ) ( i + 1 ) ); } for ( i = 1; i < n; i++ ) { a[i-1+i*n] = - sqrt ( ( double ) ( i ) ) / sqrt ( ( double ) ( i + 1 ) ); } return a; } //****************************************************************************80 double *dif2_solution ( int n, int k ) //****************************************************************************80 // // Purpose: // // dif2_solution() returns the DIF2 solution matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the row dimension. // // Input, int K, the column dimension ( should be 2). // // Output, double DIF2_SOLUTION[N*K], the solution matrix. // { int i; double *x; x = new double[n*k]; for ( i = 0; i < n; i++ ) { x[i+0*n] = 1.0; } for ( i = 0; i < n; i++ ) { x[i+1*n] = ( double ) ( i + 1 ); } return x; } //****************************************************************************80 double *dif2cyclic_matrix ( int n ) //****************************************************************************80 // // Purpose: // // dif2cyclic_matrix() returns the DIF2CYCLIC matrix. // // Example: // // N = 5 // // 2 -1 . . -1 // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // -1 . . -1 2 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // A is a circulant matrix: each row is shifted once to get the next row. // // A is (weakly) row diagonally dominant. // // A is (weakly) column diagonally dominant. // // A is singular. // // det ( A ) = 0. // // A is cyclic tridiagonal. // // A is Toeplitz: constant along diagonals. // // A has constant row sum = 0. // // Because it has a constant row sum of 0, // A has an eigenvalue of 0, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum = 0. // // Because it has a constant column sum of 0, // A has an eigenvalue of 0, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2CYCLIC[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( ( ( n + i - j ) % n ) == 1 ) { a[i+j*n] = -1.0; } else if ( j == i ) { a[i+j*n] = 2.0; } else if ( ( ( n + j - i ) % n ) == 1 ) { a[i+j*n] = -1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double dif2cyclic_determinant ( int n ) //****************************************************************************80 // // Purpose: // // dif2cyclic_determinant(): determinant of the DIF2CYCLIC matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DIF2CYCLIC_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *dif2cyclic_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif2cyclic_null_left() returns a left null vector of the DIF2CYCLIC matrix. // // Discussion: // // X(1:M) = 1 is a null vector. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF2CYCLIC_NULL_LEFT[M], the null vector. // { int i; double *x; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 1.0; } return x; } //****************************************************************************80 double *dif2cyclic_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // dif2cyclic_null_right() returns a right null vector of the DIF2CYCLIC matrix. // // Discussion: // // X(1:N) = 1 is a null vector. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double DIF2CYCLIC_NULL_RIGHT[N], the null vector. // { int i; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 1.0; } return x; } //****************************************************************************80 double *dorr_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // dorr_matrix() returns the DORR matrix. // // Formula: // // if ( I <= (N+1) / 2 ) // // if ( J = I - 1 ) // A[i+j*n] = - ALPHA * (N+1)^2 // else if ( J = I ) // A[i+j*n] = 2 * ALPHA * (N+1)^2 + 0.5 * (N+1) - I // else if ( J = I + 1 ) // A[i+j*n] = - ALPHA * (N+1)^2 - 0.5 * (N+1) + I // else // A[i+j*n] = 0 // // else // // if ( J = I - 1 ) // A[i+j*n] = - ALPHA * (N+1)^2 + 0.5 * (N+1) - I // else if ( J = I ) // A[i+j*n] = 2 * ALPHA * (N+1)^2 - 0.5 * (N+1) + I // else if ( J = I + 1 ) // A[i+j*n] = - ALPHA * (N+1)^2 // else // A[i+j*n] = 0 // // Example: // // ALPHA = 7, N = 5 // // 506 -254 0 0 0 // -252 505 -253 0 0 // 0 -252 504 -252 0 // 0 0 -253 505 -252 // 0 0 0 -254 506 // // Properties: // // A is generally not symmetric: A' /= A. // // A is row diagonally dominant, since the absolute value of the diagonal // entry always equals ( or exceeds, I = 1 and N ) the sum of the // absolute values of the two off diagonal row entries. // // A is irreducibly diagonally dominant, and hence nonsingular. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is an M matrix. // // 0 < INVERSE(A). // // A is centrosymmetric: A[i+j*n] = A(N+1-I,N+1-J). // // A is symmetrizable. There is a positive definite diagonal matrix // D so that INVERSE(D)*A*D is symmetric. // // The eigenvalues of A are positive, so the matrix // INVERSE(D)*A*D is positive definite. // // The Gauss-Seidel and Jacobi iterative methods for solving // A*x = b both converge. Furthermore, if RHO(GS) is the // spectral radius of the Gauss-Seidel iteration matrix, and // RHO(J) the spectral radius of the Jacobi iteration matrix, // then RHO(GS) = RHO(J)^2 < 1. // // A is ill-conditioned for small values of ALPHA. The // test case used N = 100, and ALPHA=0.01, 0.003, 0.001 and // 1.0D-10. The matrix A was already very ill-conditioned for // ALPHA = 0.003, with the minimum eigenvalue being 1.8D-12, and // the maximum one being 199.87. // // The columns of INVERSE(A) vary greatly in norm. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 March 2015 // // Author: // // John Burkardt // // Reference: // // Fred Dorr, // An example of ill-conditioning in the numerical solution of // singular perturbation problems, // Mathematics of Computation, // Volume 25, Number 114, 1971, pages 271-283. // // Parameters: // // Input, double ALPHA, scalar that defines the matrix. // A typical value of ALPHA is 0.01. // // Input, int N, the order of the matrix. // // Output, double DORR[N*N], the matrix. // { double *a; int i; int j; double np1_r8; a = new double[n*n]; np1_r8 = ( double ) ( n + 1 ); for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { if ( i <= ( n + 1 ) / 2 ) { if ( j == i - 1 ) { a[i-1+(j-1)*n] = - alpha * pow ( np1_r8, 2 ); } else if ( j == i ) { a[i-1+(j-1)*n] = 2.0 * alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i + 1 ) { a[i-1+(j-1)*n] = - alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } else { a[i-1+(j-1)*n] = 0.0; } } else { if ( j == i - 1 ) { a[i-1+(j-1)*n] = - alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i ) { a[i-1+(j-1)*n] = 2.0 * alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } else if ( j == i + 1 ) { a[i-1+(j-1)*n] = - alpha * pow ( np1_r8, 2 ); } else { a[i-1+(j-1)*n] = 0.0; } } } } return a; } //****************************************************************************80 double dorr_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // dorr_determinant() computes the determinant of the DORR matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, scalar that defines the matrix. // A typical value of ALPHA is 0.01. // // Input, int N, the order of the matrix. // // Output, double DORR_DETERMINANT, the determinant. // { double determ_nm1; double determ_nm2; int i; int j; double np1_r8; double value; double *x; double *y; double *z; // // Form the three diagonals. // x = new double[n-1]; y = new double[n]; z = new double[n-1]; np1_r8 = ( double ) ( n + 1 ); for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i <= ( n + 1 ) / 2 ) { if ( j == i - 1 ) { x[i-2] = - alpha * pow ( np1_r8, 2 ); } else if ( j == i ) { y[i-1] = 2.0 * alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i + 1 ) { z[i-1] = - alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } } else { if ( j == i - 1 ) { x[i-2] = - alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i ) { y[i-1] = 2.0 * alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } else if ( j == i + 1 ) { z[i-1] = - alpha * pow ( np1_r8, 2 ); } } } } // // Compute the determinant. // determ_nm1 = y[n-1]; value = determ_nm1; if ( 1 < n ) { determ_nm2 = determ_nm1; determ_nm1 = y[n-2] * y[n-1] - z[n-2] * x[n-2]; value = determ_nm1; for ( i = n - 3; 0 <= i; i-- ) { value = y[i] * determ_nm1 - z[i] * x[i] * determ_nm2; determ_nm2 = determ_nm1; determ_nm1 = value; } } // // Free memory. // delete [] x; delete [] y; delete [] z; return value; } //****************************************************************************80 double *dorr_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // dorr_inverse() returns the inverse of the DORR matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 March 2015 // // Author: // // John Burkardt // // Reference: // // CM daFonseca, J Petronilho, // Explicit Inverses of Some Tridiagonal Matrices, // Linear Algebra and Its Applications, // Volume 325, 2001, pages 7-21. // // Parameters: // // Input, double ALPHA, scalar that defines the matrix. // A typical value of ALPHA is 0.01. // // Input, int N, the order of the matrix. // // Output, double DORR_INVERSE[N*N], the inverse of the matrix. // { double *a; double *d; double *e; int i; int j; double np1_r8; double *x; double *y; double *z; // // Form the three diagonals. // x = new double[n-1]; y = new double[n]; z = new double[n-1]; np1_r8 = ( double ) ( n + 1 ); for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i <= ( n + 1 ) / 2 ) { if ( j == i - 1 ) { x[i-2] = - alpha * pow ( np1_r8, 2 ); } else if ( j == i ) { y[i-1] = 2.0 * alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i + 1 ) { z[i-1] = - alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } } else { if ( j == i - 1 ) { x[i-2] = - alpha * pow ( np1_r8, 2 ) + 0.5 * np1_r8 - ( double ) ( i ); } else if ( j == i ) { y[i-1] = 2.0 * alpha * pow ( np1_r8, 2 ) - 0.5 * np1_r8 + ( double ) ( i ); } else if ( j == i + 1 ) { z[i-1] = - alpha * pow ( np1_r8, 2 ); } } } } // // Compute the inverse. // a = new double[n]; d = new double[n]; d[n-1] = y[n-1]; for ( i = n - 2; 0 <= i; i-- ) { d[i] = y[i] - x[i] * z[i]/ d[i+1]; } e = new double[n]; e[0] = y[0]; for ( i = 1; i < n; i++ ) { e[i] = y[i] - x[i-1] * z[i-1] / e[i-1]; } a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j <= i; j++ ) { a[i+j*n] = r8_mop ( i + j ) * r8vec_product ( i - j, x+j ) * r8vec_product ( n - i - 1, d+i+1 ) / r8vec_product ( n - j, e+j ); } for ( j = i + 1; j < n; j++ ) { a[i+j*n] = r8_mop ( i + j ) * r8vec_product ( j - i, z+i) * r8vec_product ( n - j - 1, d+j+1) / r8vec_product ( n - i, e+i); } } // // Free memory. // delete [] d; delete [] e; delete [] x; delete [] y; delete [] z; return a; } //****************************************************************************80 double *downshift_matrix ( int n ) //****************************************************************************80 // // Purpose: // // downshift_matrix() returns the DOWNSHIFT matrix. // // Formula: // // if ( I-J == 1 mod ( n ) ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 4 // // 0 0 0 1 // 1 0 0 0 // 0 1 0 0 // 0 0 1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero/one matrix. // // A is generally not symmetric: A' /= A. // // A is nonsingular. // // A is a permutation matrix. // // det ( A ) = (-1)^(N-1) // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a circulant matrix: each row is shifted once to get the next row. // // A is a Hankel matrix: constant along anti-diagonals. // // A is an N-th root of the identity matrix. // Therefore, the inverse of A = A^(N-1). // // Any circulant matrix generated by a column vector v can be regarded as // the Krylov matrix ( v, A*v, A^2*V, ..., A^(N-1)*v). // // The inverse of A is the upshift operator. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DOWNSHIFT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i4_modp ( i - j, n ) == 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double downshift_condition ( int n ) //****************************************************************************80 // // Purpose: // // downshift_condition() returns the L1 condition of the DOWNSHIFT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DOWNSHIFT_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 1.0; b_norm = 1.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double downshift_determinant ( int n ) //****************************************************************************80 // // Purpose: // // downshift_determinant() returns the determinant of the DOWNSHIFT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DOWNSHIFT_DETERMINANT, the determinant. // { double determ; if ( ( n % 2 ) == 0 ) { determ = - 1.0; } else { determ = + 1.0; } return determ; } //****************************************************************************80 complex *downshift_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // downshift_eigenvalues() returns the eigenvalues of the DOWNSHIFT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex DOWNSHIFT_EIGENVALUES[N], the eigenvalues. // { complex *lambda; lambda = c8vec_unity ( n ); return lambda; } //****************************************************************************80 double *downshift_inverse ( int n ) //****************************************************************************80 // // Purpose: // // downshift_inverse() returns the inverse of the DOWNSHIFT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DOWNSHIFT[N*N], the inverse. // { double *a; a = upshift_matrix ( n ); return a; } //****************************************************************************80 double *eberlein_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // eberlein_matrix() returns the EBERLEIN matrix. // // Formula: // // if ( I = J ) // A(I,J) = - ( 2 * I - 1 ) * ( N - 1 ) - ( I - 1 ) * ALPHA + 2 * ( I - 1 )^2 // else if ( J = I + 1 ) // A(I,J) = I * ( N + ALPHA - I ) // else if ( J = I - 1 ) // A(I,J) = ( I - 1 ) * ( N - I + 1 ) // else // A(I,J) = 0 // // Example: // // N = 5, ALPHA = 2 // // -4 6 0 0 0 // 4 -12 10 0 0 // 0 6 -16 12 0 // 0 0 6 -16 12 // 0 0 0 4 -12 // // Properties: // // A is generally not symmetric: A' /= A. // // The matrix is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // The sum of the entries in any row except the last one is ALPHA. // // The sum of the entries in the last row is -(N-1)*ALPHA. // // The sum of the entries in any column is zero. // // A is singular. // // det ( A ) = 0 // // A has the LEFT null vector ( 1, 1, ..., 1 ). // // LAMBDA(I) = - ( I - 1 ) * ( ALPHA + I ). // // Left eigenvectors are // // V^J(I) = 1/COMB(N-1,I-1) * sum ( 0 <= K <= min ( I, J ) ) [ (-1)**K * // COMB(N-1-K,N-I) * COMB(J-1,K) * COMB(ALPHA+J-1+K, K ) // // For ALPHA = -2, ..., -2*(N-1), the matrix is defective with two or more // pairs of eigenvectors coalescing. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Reference: // // Patricia Eberlein, // A Two-Parameter Test Matrix, // Mathematics of Computation, // Volume 18, 1964, pages 296-298. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double EBERLEIN[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { if ( j == i ) { a[i-1+(j-1)*n] = - ( ( double ) ( ( 2 * i - 1 ) * ( n - 1 ) ) + ( double ) ( i - 1 ) * alpha - ( double ) ( 2 * ( i - 1 ) * ( i - 1 ) ) ); } else if ( j == i + 1 ) { a[i-1+(j-1)*n] = ( double ) ( i ) * ( ( double ) ( n - i ) + alpha ); } else if ( j == i - 1 ) { a[i-1+(j-1)*n] = ( double ) ( ( i - 1 ) * ( n - i + 1 ) ); } else { a[i-1+(j-1)*n] = 0.0; } } } return a; } //****************************************************************************80 double eberlein_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // eberlein_determinant() returns the determinant of the EBERLEIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double EBERLEIN_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *eberlein_eigenvalues ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // eberlein_eigenvalues() returns the eigenvalues of the EBERLEIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double EBERLEIN_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = - ( double ) ( i ) * ( alpha + ( double ) ( i + 1 ) ); } return lambda; } //****************************************************************************80 double *eberlein_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // eberlein_null() returns a left null vector of the EBERLEIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double EBERLEIN_NULL_LEFT[M], the null vector. // { int i; double *x; x = new double[m]; for ( i = 0; i < m; i++ ) { x[i] = 1.0; } return x; } //****************************************************************************80 double *eulerian_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // eulerian_matrix() returns the EULERIAN matrix. // // Discussion: // // A run in a permutation is a sequence of consecutive ascending values. // // E(I,J) is the number of permutations of I objects which contain // exactly J runs. // // Example: // // N = 7 // // 1 0 0 0 0 0 0 // 1 1 0 0 0 0 0 // 1 4 1 0 0 0 0 // 1 11 11 1 0 0 0 // 1 26 66 26 1 0 0 // 1 57 302 302 57 1 0 // 1 120 1191 2416 1191 120 1 // // Recursion: // // E(I,J) = J * E(I-1,J) + (I-J+1) * E(I-1,J-1). // // Properties: // // A is generally not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is nonnegative. // // A is unit lower triangular. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Reference: // // Dennis Stanton, Dennis White, // Constructive Combinatorics, // Springer Verlag, 1986. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double EULERIAN[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; a[0+0*m] = 1.0; for ( j = 1; j < n; j++ ) { a[0+j*m] = 0.0; } for ( i = 1; i < m; i++ ) { a[i+0*m] = 1.0; for ( j = 1; j < n; j++ ) { a[i+j*m] = ( double ) ( j + 1 ) * a[i-1+j*m] + ( double ) ( i - j + 1 ) * a[i-1+(j-1)*m]; } } return a; } //****************************************************************************80 double eulerian_determinant ( int n ) //****************************************************************************80 // // Purpose: // // eulerian_determinant() returns the determinant of the EULERIAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EULERIAN_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *eulerian_inverse ( int n ) //****************************************************************************80 // // Purpose: // // eulerian_inverse() computes the inverse of the EULERIAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EULERIAN_INVERSE[N*N], the inverse of the Eulerian matrix. // { double *a; double *b; int i; int j; int k; double temp; // // Set up the Eulerian matrix. // b = eulerian_matrix ( n, n ); // // Compute the inverse A of a unit lower triangular matrix B. // a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i < j ) { a[i+j*n] = 0.0; } else if ( i == j ) { a[i+j*n] = 1.0; } else if ( j < i ) { temp = 0.0; for ( k = j; k < i; k++ ) { temp = temp + b[i+k*n] * a[k+j*n]; } a[i+j*n] = - temp; } } } // // Free memory. // delete [] b; return a; } //****************************************************************************80 double *exchange_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // exchange_matrix() returns the EXCHANGE matrix. // // Formula: // // if ( I + J = N + 1 ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // M = 4, N = 5 // // 0 0 0 0 1 // 0 0 0 1 0 // 0 0 1 0 0 // 0 1 0 0 0 // // M = 5, N = 5 // // 0 0 0 0 1 // 0 0 0 1 0 // 0 0 1 0 0 // 0 1 0 0 0 // 1 0 0 0 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero/one matrix. // // A is nonsingular. // // A is a permutation matrix. // // A has property A. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a Hankel matrix: constant along anti-diagonals. // // A is involutory: A * A = I. // // A is a square root of the identity matrix. // // A is orthogonal: A' * A = A * A' = I. // // det ( A ) = ( -1 )^(N/2). // // There are N/2 eigenvalues of -1, and (N+1)/2 eigenvalues of 1. // // For each pair of distinct vector indices I1 and I2 that sum to N+1, there // is an eigenvector which has a 1 in the I1 and I2 positions and 0 elsewhere, // and there is an eigenvector for -1, with a 1 in the I1 position and a -1 // in the I2 position. If N is odd, then there is a single eigenvector // associated with the index I1 = (N+1)/2, having a 1 in that index and zero // elsewhere, associated with the eigenvalue 1. // // If H is a Hankel matrix, then J*H and H*J are Toepliz matrices. // // If T is a Toeplitz matrix, then J*T and T*J are Hankel matrices. // // The exchange matrix is also called: // * the "counter-identity matrix", // * the "anti-identity matrix", // * the "reversal matrix". // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double EXCHANGE[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i + j == n - 1 ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double exchange_condition ( int n ) //****************************************************************************80 // // Purpose: // // exchange_condition() returns the L1 condition of the EXCHANGE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EXCHANGE_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 1.0; b_norm = 1.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double exchange_determinant ( int n ) //****************************************************************************80 // // Purpose: // // exchange_determinant() returns the determinant of the EXCHANGE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EXCHANGE_DETERMINANT, the determinant. // { double determ; if ( ( ( n / 2 ) % 2 ) == 0 ) { determ = 1.0; } else { determ = - 1.0; } return determ; } //****************************************************************************80 double *exchange_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // exchange_eigenvalues() returns the eigenvalues of the EXCHANGE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EXCHANGE_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < ( n / 2 ); i++ ) { lambda[i] = - 1.0; } for ( i = ( n / 2 ); i < n; i++ ) { lambda[i] = 1.0; } return lambda; } //****************************************************************************80 double *exchange_inverse ( int n ) //****************************************************************************80 // // Purpose: // // exchange_inverse() returns the inverse of the EXCHANGE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EXCHANGE_INVERSE[N*N], the matrix. // { double *a; a = exchange_matrix ( n, n ); return a; } //****************************************************************************80 double *exchange_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // exchange_eigen_right() returns the right eigenvectors of the EXCHANGE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double EXCHANGE_EIGEN_RIGHT[N*N], the eigenvector matrix. // { int i; int j; int n2; double *x; x = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = 0.0; } } n2 = n / 2; for ( j = 0; j < n2; j++ ) { i = n - 1 - j; x[j+j*n] = 1.0; x[i+j*n] = -1.0; x[j+i*n] = 1.0; x[i+i*n] = 1.0; } if ( ( n % 2 ) == 1 ) { x[n2+n2*n] = 1.0; } return x; } //****************************************************************************80 double *fibonacci1_matrix ( int n, double f1, double f2 ) //****************************************************************************80 // // Purpose: // // fibonacci1_matrix() returns the FIBONACCI1 matrix. // // Example: // // N = 5 // F1 = 1, F2 = 2 // // 1 2 3 5 8 // 2 3 5 8 13 // 3 5 8 13 21 // 5 8 13 21 34 // 8 13 21 34 55 // // Properties: // // A is symmetric: A' = A. // // If F1 and F2 are integral, then so is A. // // If A is integral, then det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a Hankel matrix: constant along anti-diagonals. // // If B is the Fibonacci iteration matrix: // // B * A(F1,F2) = A(F2,F2+F1) = A(F2,F3) // // and in general, // // B^N * A(F1,F2) = A(F(N+1),F(N+2)) // // For 2 < N, the matrix is singular, because row 3 is the sum // of row 1 and row 2. // // For 2 <= N, // rank ( A ) = 2 // // If N = 1, then // det ( A ) = 1 // else if N = 2 then // det ( A ) = -1 // else if 1 < N then // det ( A ) = 0 // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double F1, F2, the first two elements of the sequence // that will generate the Fibonacci sequence. // // Output, double FIBONACCI1[N*N], the matrix. // { double *a; double fn; double fnm1; double fnm2; int i; int j; int k; a = new double[n*n]; a[0+0*n] = f1; a[1+0*n] = f2; a[0+1*n] = f2; fnm2 = f1; fnm1 = f2; fn = fnm1 + fnm2; for ( k = 2; k <= n + n - 2; k++ ) { i = i4_min ( k, n - 1 ); j = i4_max ( 0, k - n + 1 ); while ( 0 <= i && j < n ) { a[i+j*n] = fn; i = i - 1; j = j + 1; } fnm2 = fnm1; fnm1 = fn; fn = fnm1 + fnm2; } return a; } //****************************************************************************80 double fibonacci1_determinant ( int n, double f1, double f2 ) //****************************************************************************80 // // Purpose: // // fibonacci1_determinant() returns the determinant of the FIBONACCI1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double F1, F2, the first two elements of the sequence // that will generate the Fibonacci sequence. // // Output, double FIBONACCI1_DETERMINANT, the determinant. // { double determ; if ( n == 1 ) { determ = 1.0; } else if ( n == 2 ) { determ = -1.0; } else { determ = 0.0; } return determ; } //****************************************************************************80 double *fibonacci1_null_left ( int m, int n, double f1, double f2 ) //****************************************************************************80 // // Purpose: // // fibonacci1_null_left() returns a left null vector of the FIBONACCI1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double F1, F2, the first two elements of the sequence // that will generate the Fibonacci sequence. // // Output, double FIBONACCI1_NULL_LEFT[M], a null vector. // { int i; double *x; if ( m < 3 ) { cerr << "\n"; cerr << "FIBONACCI1_NULL_LEFT(): Fatal error!\n"; cerr << " 3 <= M is required.\n"; exit ( 1 ); } x = new double[m]; for ( i = 1; i <= m - 3; i++ ) { x[i-1] = 0.0; } x[m-3] = - 1.0; x[m-2] = - 1.0; x[m-1] = + 1.0; return x; } //****************************************************************************80 double *fibonacci1_null_right ( int m, int n, double f1, double f2 ) //****************************************************************************80 // // Purpose: // // fibonacci1_null_right() returns a right null vector of the FIBONACCI1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double F1, F2, the first two elements of the sequence // that will generate the Fibonacci sequence. // // Output, double FIBONACCI1_NULL_RIGHT[N], a null vector. // { int i; double *x; if ( n < 3 ) { cerr << "\n"; cerr << "FIBONACCI1_NULL_RIGHT(): Fatal error!\n"; cerr << " 3 <= N is required.\n"; exit ( 1 ); } x = new double[n]; for ( i = 1; i <= n - 3; i++ ) { x[i-1] = 0.0; } x[n-3] = - 1.0; x[n-2] = - 1.0; x[n-1] = + 1.0; return x; } //****************************************************************************80 double *fibonacci2_matrix ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_matrix() returns the FIBONACCI2 matrix. // // Example: // // N = 5 // // 0 1 0 0 0 // 1 1 0 0 0 // 0 1 1 0 0 // 0 0 1 1 0 // 0 0 0 1 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero/one matrix. // // If N = 1 then // det ( A ) = 0 // else // det ( A ) = -1 // // If 1 < N, then A is unimodular. // // When applied to a Fibonacci1 matrix B, the Fibonacci2 matrix // A produces the "next" Fibonacci1 matrix C = A*B. // // Let PHI be the golden ratio (1+sqrt(5))/2. // // For 2 <= N, the eigenvalues and eigenvectors are: // // LAMBDA(1) = PHI, vector = (1,PHI,PHI^2,...PHI^(N-1)); // LAMBDA(2:N-1) = 1 vector = (0,0,0,...,0,1); // LAMBDA(N) = 1 - PHI. vector = (1,1-PHI,(1-PHI)^2,...(1-PHI)^(N-1)); // // Note that there is only one eigenvector corresponding to 1. // Hence, for 3 < N, the matrix is defective. This fact means, // for instance, that the convergence of the eigenvector in the power // method will be very slow. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 May 2021 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i == 1 ) { if ( j == 2 ) { a[i-1+(j-1)*n] = 1.0; } else { a[i-1+(j-1)*n] = 0.0; } } else { if ( j == i - 1 || j == i ) { a[i-1+(j-1)*n] = 1.0; } else { a[i-1+(j-1)*n] = 0.0; } } } } return a; } //****************************************************************************80 double fibonacci2_condition ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_condition() returns the L1 condition of the FIBONACCI2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2015 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; if ( n == 1 ) { cout << "\n"; cout << "FIBONACCI2_CONDITION(): Fatal error!\n"; cout << " The condition number is infinite for N=1\n"; exit ( 1 ); } if ( n == 1 ) { a_norm = 0.0; } else if ( n == 2 ) { a_norm = 2.0; } else { a_norm = 3.0; } b_norm = ( double ) ( n ); value = a_norm * b_norm; return value; } //****************************************************************************80 double fibonacci2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_determinant(): determinant of the FIBONACCI2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 May 2021 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2_DETERMINANT, the determinant. // { double determ; if ( n == 1 ) { determ = 0.0; } else { determ = -1.0; } return determ; } //****************************************************************************80 double *fibonacci2_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_eigen_right(): right eigenvectors of the FIBONACCI2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 May 2021 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2_EIGEN_RIGHT[N*N], the matrix. // { double *a; int i; int j; double p; double phi; a = new double[n*n]; phi = ( 1.0 + sqrt ( 5.0 ) ) / 2.0; // // Column 1. // j = 0; p = 1.0; for ( i = 0; i < n; i++ ) { a[i+j*n] = p; p = p * phi; } // // Columns 2:N-1 // for ( j = 1; j <= n - 2; j++ ) { for ( i = 0; i < n - 1; i++ ) { a[i+j*n] = 0.0; } i = n - 1; a[i+j*n] = 1.0; } // // Column N // j = n - 1; p = 1.0; for ( i = 0; i < n; i++ ) { a[i+j*n] = p; p = p * ( 1.0 - phi ); } return a; } //****************************************************************************80 double *fibonacci2_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_eigenvalues() returns the eigenvalues of the FIBONACCI2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; double phi; lambda = new double[n]; if ( n == 1 ) { lambda[0] = 0.0; } else { phi = 0.5 * ( 1.0 + sqrt ( 5.0 ) ); lambda[0] = phi; for ( i = 2; i < n; i++ ) { lambda[i-1] = 1.0; } lambda[n-1] = 1.0 - phi; } return lambda; } //****************************************************************************80 double *fibonacci2_inverse ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci2_inverse() returns the inverse of the FIBONACCI2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double FIBONACCI2_INVERSE[N*N], the matrix. // { double *a; int i; int j; double s; if ( n == 1 ) { cerr << "\n"; cerr << "FIBONACCI2_INVERSE(): Fatal error!\n"; cerr << " The inverse does not exist for N = 1.\n"; exit ( 1 ); } a = new double[n*n]; // // Column 1. // j = 1; s = - 1.0; for ( i = 1; i <= n; i++ ) { a[i-1+(j-1)*n] = s; s = - s; } // // Column 2 // j = 2; a[1-1+(j-1)*n] = 1.0; for ( i = 2; i <= n; i++ ) { a[i-1+(j-1)*n] = 0.0; } // // Columns 3:N // for ( j = 3; j <= n; j++ ) { for ( i = 1; i <= j - 1; i++ ) { a[i-1+(j-1)*n] = 0.0; } s = 1.0; for ( i = j; i <= n; i++ ) { a[i-1+(j-1)*n] = s; s = - s; } } return a; } //****************************************************************************80 double *fibonacci3_matrix ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci3_matrix() returns the FIBONACCI3 matrix. // // Example: // // N = 5 // // 1 -1 0 0 0 // 1 1 -1 0 0 // 0 1 1 -1 0 // 0 0 1 1 -1 // 0 0 0 1 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The determinant of A is the Fibonacci number F(N+1). // // A is a special case of the TRIS tridiagonal scalar matrix. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FIBONACCI3[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( j == i - 1 || j == i ) { a[i+j*n] = 1.0; } else if ( j == i + 1 ) { a[i+j*n] = - 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double fibonacci3_determinant ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci3_determinant() returns the determinant of the FIBONACCI3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FIBONACCI3_DETERMINANT, the determinant. // { double determ; int f1; int f2; int f3; int i; f1 = 0; f2 = 0; f3 = 1; for ( i = 1; i <= n; i++ ) { f1 = f2; f2 = f3; f3 = f1 + f2; } determ = ( double ) ( f3 ); return determ; } //****************************************************************************80 complex *fibonacci3_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci3_eigenvalues() returns the eigenvalues of the FIBONACCI3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex FIBONACCI3_EIGENVALUES[N], the eigenvalues. // { double angle; int i; complex *lambda; const double r8_pi = 3.141592653589793; lambda = new complex [n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); lambda[i] = complex ( 1.0, 2.0 * cos ( angle ) ); } return lambda; } //****************************************************************************80 double *fibonacci3_inverse ( int n ) //****************************************************************************80 // // Purpose: // // fibonacci3_inverse() returns the inverse of the FIBONACCI3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Reference: // // CM daFonseca, J Petronilho, // Explicit Inverses of Some Tridiagonal Matrices, // Linear Algebra and Its Applications, // Volume 325, 2001, pages 7-21. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FIBONACCI3_INVERSE[N*N], the inverse of the matrix. // { double *a; double *d; int i; int j; d = new double[n]; d[n-1] = 1.0; for ( i = n - 2; 0 <= i; i-- ) { d[i] = 1.0 + 1.0 / d[i+1]; } a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j <= i; j++ ) { a[i+j*n] = r8_mop ( i + j ) * r8vec_product ( n - 1 - i, d + i + 1 ) / r8vec_product ( n - j, d ); } for ( j = i + 1; j < n; j++ ) { a[i+j*n] = r8vec_product ( n - 1 - j, d + j + 1 ) / r8vec_product ( n - i, d ); } } // // Free memory. // delete [] d; return a; } //****************************************************************************80 double *fiedler_matrix ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // fiedler_matrix() returns the FIEDLER matrix. // // Discussion: // // See page 159 of the Todd reference. // // Formula: // // A(I,J) = abs ( X(I) - X(J) ) // // Example: // // M = 5, N = 5, X = ( 1, 2, 3, 5, 9 ) // // 0 1 2 4 8 // 1 0 1 3 7 // 2 1 0 2 6 // 4 3 2 0 4 // 8 7 6 4 0 // // Properties: // // A has a zero diagonal. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // det ( A ) = (-1)^N * 2^(N-2) // * ( X(1) - X(N) ) * product ( 2 <= I <= N ) ( X(I) - X(I-1) ). // // NOTE: the formula for the determinant seems to be correct only // if the X's are sorted in ascending order// // // A is nonsingular if the X(I) are distinct. // // The inverse is cyclic tridiagonal; that is, it is tridiagonal, except // for nonzero (1,N) and (N,1) entries. // // A has a dominant positive eigenvalue, and all others are negative. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Reference: // // Gabor Szego, // Solution to problem 3705, // American Mathematical Monthly, // Volume 43, Number 4, 1936, pages 246-259. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double X[ max (M,N) ], the values that define A. // // Output, double FIEDLER[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = fabs ( x[i] - x[j] ); } } return a; } //****************************************************************************80 double fiedler_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // fiedler_determinant() returns the determinant of the FIEDLER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values that define A. // // Output, double FIEDLER_DETERMINANT, the determinant. // { double determ; int i; int j; double t; double *y; y = new double[n]; determ = pow ( 2.0, n - 2 ); if ( ( n % 2 ) == 1 ) { determ = - determ; } for ( i = 0; i < n; i++ ) { y[i] = x[i]; } for ( i = 0; i < n - 1; i++ ) { for ( j = i + 1; j < n; j++ ) { if ( y[j] < y[i] ) { t = y[j]; y[j] = y[i]; y[i] = t; determ = - determ; } } } determ = determ * ( y[n-1] - y[0] ); for ( i = 1; i < n; i++ ) { determ = determ * ( y[i] - y[i-1] ); } // // Free memory. // delete [] y; return determ; } //****************************************************************************80 double *fiedler_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // fiedler_inverse() returns the inverse of the FIEDLER matrix. // // Discussion: // // This routine is only correct if the X values are in ascending (or // descending) order. It would be a simple matter to handle the general // case but I have not set that up. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the values that define A. // For this routine, it is assumed that the X values are sorted. // // Output, double FIEDLER_INVERSE[N*N], the matrix. // { double *a; double d1; double d2; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } d1 = 0.5 / ( x[n-1] - x[0] ); d2 = 0.5 / ( x[0] - x[1] ); a[0+(n-1)*n] = + d1; a[0+ 0 *n] = + d1 + d2; a[0+ 1 *n] = - d2; for ( i = 1; i < n - 1; i++ ) { d1 = 0.5 / ( x[i-1] - x[i] ); d2 = 0.5 / ( x[i] - x[i+1] ); a[i+(i-1)*n] = - d1; a[i+ i *n] = + d1 + d2; a[i+(i+1)*n] = - d2; } d1 = 0.5 / ( x[n-2] - x[n-1] ); d2 = 0.5 / ( x[n-1] - x[0] ); a[n-1+(n-2)*n] = - d1; a[n-1+(n-1)*n] = d1 + d2; a[n-1+ 0 *n] = + d2; return a; } //****************************************************************************80 double *forsythe_matrix ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // forsythe_matrix() returns the FORSYTHE matrix. // // Discussion: // // The Forsythe matrix represents a Jordan canonical matrix, perturbed // by a rank one update. // // Formula: // // If ( I = J ) // A(I,J) = BETA // else if ( J = I + 1 ) // A(I,J) = 1 // else if ( I = N and J = 1 ) then // A(I,J) = ALPHA // else // A(I,J) = 0 // // Example: // // ALPHA = 2, BETA = 3, N = 5 // // 3 1 0 0 0 // 0 3 1 0 0 // 0 0 3 1 0 // 0 0 0 3 1 // 2 0 0 0 3 // // Properties: // // A is generally not symmetric: A' /= A. // // A is Toeplitz: constant along diagonals. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The characteristic equation of A is // // ( BETA - LAMBDA )^N - (-1)^N*ALPHA = 0 // // The eigenvalues of A are // // LAMBDA(I) = BETA // + abs ( ALPHA )^1/N * exp ( 2 * I * PI * sqrt ( - 1 ) / N ) // // Gregory and Karney consider the special case where BETA is 0, // and ALPHA is a "small" value. In that case, the characteristic // equation is LAMBDA^N - ALPHA = 0, and the eigenvalues are the // N-th root of ALPHA times the N roots of unity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, double ALPHA, BETA, define the matrix. A typical // value of ALPHA is the square root of the machine precision; a typical // value of BETA is 0.0. // // Input, int N, the order of the matrix. // // Output, double FORSYTHE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i ) { a[i+j*n] = beta; } else if ( j == i + 1 ) { a[i+j*n]= 1.0; } else if ( i == n - 1 && j == 0 ) { a[i+j*n] = alpha; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double forsythe_determinant ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // forsythe_determinant() returns the determinant of the FORSYTHE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, define the matrix. A typical // value of ALPHA is the square root of the machine precision; a typical // value of BETA is 0.0. // // Input, int N, the order of the matrix. // // Output, double FORSYTHE_DETERMINANT, the determinant. // { double value; value = r8_mop ( n - 1 ) * alpha + pow ( beta, n ); return value; } //****************************************************************************80 complex *forsythe_eigenvalues ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // forsythe_eigenvalues() returns the eigenvalues of the FORSYTHE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, BETA, define the matrix. A typical // value of ALPHA is the square root of the machine precision; a typical // value of BETA is 0.0. // // Input, int N, the order of the matrix. // // Output, complex FORSYTHE_EIGENVALUES[N], the eigenvalues. // { double angle; complex c8_i; int i; complex *lambda; const double r8_pi = 3.141592653589793; complex w; c8_i = complex ( 0.0, 1.0 ); lambda = new complex [n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( 2 * ( i + 1 ) ) * r8_pi / ( double ) ( n ); w = exp ( c8_i * angle ); lambda[i] = beta + pow ( fabs ( alpha ), 1.0 / ( double ) ( n ) ) * w; } return lambda; } //****************************************************************************80 double *forsythe_inverse ( double alpha, double beta, int n ) //****************************************************************************80 // // Purpose: // // forsythe_inverse() returns the inverse of the Forsythe matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, double ALPHA, BETA, define the matrix. // The Forsythe matrix does not have an inverse if both ALPHA and BETA are zero. // // Input, int N, the order of the matrix. // // Output, double FORSYTHE_INVERSE[N*N], the matrix. // { double *a; int i; int j; double z; a = new double[n*n]; if ( beta == 0.0 && alpha == 0.0 ) { cerr << "\n"; cerr << "FORSYTHE_INVERSE(): Fatal error!\n"; cerr << " The Forsythe matrix is not invertible if\n"; cerr << " both ALPHA and BETA are 0.\n"; exit ( 1 ); } else if ( beta == 0.0 ) { for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == n - 1 ) { a[i+j*n] = 1.0 / alpha; } else if ( j == i - 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } } // // Set up the original Jordan matrix as B. // else { // // Compute inverse of unperturbed Jordan matrix. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i <= j ) { a[i+j*n] = - pow ( - 1.0 / beta, j + 1 - i ); } else { a[i+j*n] = 0.0; } } } // // Add rank one perturbation. // z = - 1.0 / beta; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] - alpha * pow ( z, n + 1 + j - i ) / ( 1.0 - alpha * pow ( z, n ) ); } } } return a; } //****************************************************************************80 complex *fourier_matrix ( int n ) //****************************************************************************80 // // Purpose: // // fourier_matrix() returns the FOURIER matrix. // // Discussion: // // Multiplication of a vector of data by A is equivalent to // computing the discrete Fourier transform of the data. Multiplication by // the Hermitian (complex-conjugate-transpose) of A is equivalent // to computing the inverse discrete Fourier transform. // // Formula: // // A(I,J) = exp ( 2 * PI * sqrt ( -1 ) * (I-1) * (J-1) / N ) / sqrt ( N ) // // or // // A(I,J) = W^((I-1)*(J-1)) / sqrt(N) // // where W is the N-th root of unity. // // Example: // // N = 3 // // 1 1 1 // 1/sqrt(3) * 1 J K // 1 K J // // where // // J = EXP(2*PI*EYE/3) = cos ( 2*PI/3 ) + EYE * sin ( 2 * PI / 3 ) // K = EXP(4*PI*EYE/3) = cos ( 4*PI/3 ) + EYE * sin ( 4 * PI / 3 ) // // or, using the root of unity form, with W = the fourth root of unity, // // N = 4 // // 1 1 1 1 1 1 1 1 // 1 W W^2 W^3 1 W -1 -W // 1/sqrt(4) * 1 W^2 W^4 W^6 = 1/2 * 1 -1 1 -1 // 1 W^3 W^6 W^9 1 -W -1 W // // Properties: // // A is complex. // // A is symmetric: A' = A. // // A is unitary, that is, the inverse of A is the complex // conjugate of A: INVERSE(A) = CONJUGATE(A) // // The fourth power of A is the identity, that is, A*A*A*A = I. // // The eigenvalues of A must have the values +1, -1, +i or -i. // // A is a Vandermonde matrix based on the N roots of unity, scaled // by sqrt(N). // // A is the eigenvector matrix of any circulant matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex FOURIER[N*N], the Fourier matrix. // { complex *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new complex [n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = 2.0 * r8_pi * ( double ) ( i * j ) / ( double ) ( n ); a[i+j*n] = exp ( c8_i ( ) * angle ) / sqrt ( ( double ) ( n ) ); } } return a; } //****************************************************************************80 complex fourier_determinant ( int n ) //****************************************************************************80 // // Purpose: // // fourier_determinant() returns the determinant of the FOURIER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex FOURIER_DETERMINENT, the determinant. // { complex determ; if ( ( n % 8 ) == 0 || ( n % 8 ) == 7 ) { determ = complex ( 0.0, 1.0 ); } else if ( ( n % 8 ) == 1 || ( n % 8 ) == 6 ) { determ = complex ( 1.0, 0.0 ); } else if ( ( n % 8 ) == 2 || ( n % 8 ) == 5 ) { determ = complex ( -1.0, 0.0 ); } else if ( ( n % 8 ) == 3 || ( n % 8 ) == 4 ) { determ = complex ( 0.0, -1.0 ); } return determ; } //****************************************************************************80 complex *fourier_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // fourier_eigenvalues() returns the eigenvalues of the FOURIER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex FOURIER_EIGENVALUES[N], the eigenvalues. // { int i; complex *lambda; lambda = new complex [n]; lambda[0] = 1.0; for ( i = 1; i < n; i = i + 1 ) { lambda[i] = complex ( - 1.0, 0.0 ); } for ( i = 2; i < n; i = i + 1 ) { lambda[i] = complex ( 0.0, 1.0 ); } for ( i = 3; i < n; i = i + 1 ) { lambda[i] = complex ( 1.0, 0.0 ); } for ( i = 4; i < n; i = i + 1 ) { lambda[i] = complex ( 0.0, - 1.0 ); } return lambda; } //****************************************************************************80 complex *fourier_inverse ( int n ) //****************************************************************************80 // // Purpose: // // fourier_inverse() returns the inverse of the FOURIER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, complex FOURIER_INVERSE[N*N], the matrix. // { complex *a; int i; int j; complex t; a = fourier_matrix ( n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { t = conj ( a[i+j*n] ); a[i+j*n] = conj ( a[j+i*n] ); a[j+i*n] = t; } } return a; } //****************************************************************************80 double *fourier_cosine_matrix ( int n ) //****************************************************************************80 // // Purpose: // // fourier_cosine_matrix() returns the FOURIER_COSINE matrix. // // Discussion: // // The matrix is related to the discrete Fourier Cosine Transform. // // Example: // // N = 5 // // 0.447214 0.447214 0.447214 0.447214 0.447214 // 0.601501 0.371748 0.000000 -0.371748 -0.601501 // 0.511667 -0.195440 -0.632456 -0.195439 0.511667 // 0.371748 -0.601501 0.000000 0.601501 -0.371748 // 0.195439 -0.511667 0.632456 -0.511668 0.195439 // // Properties: // // A * A' = I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FOURIER_COSINE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { i = 0; a[i+j*n] = 1.0 / sqrt ( ( double ) ( n ) ); for ( i = 1; i < n; i++ ) { angle = ( double ) ( i * ( 2 * j + 1 ) ) * r8_pi / ( double ) ( 2 * n ); a[i+j*n] = sqrt ( 2.0 ) * cos ( angle ) / sqrt ( ( double ) ( n ) ); } } return a; } //****************************************************************************80 double fourier_cosine_determinant ( int n ) //****************************************************************************80 // // Purpose: // // fourier_cosine_determinant(): determinant of the FOURIER_COSINE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FOURIER_COSINE_DETERMINANT, the determinant. // { double determ; if ( ( n % 2 ) == 1 ) { determ = + 1.0; } else { determ = - 1.0; } return determ; } //****************************************************************************80 double *fourier_cosine_inverse ( int n ) //****************************************************************************80 // // Purpose: // // fourier_cosine_inverse() returns the inverse of the FOURIER_COSINE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FOURIER_COSINE_INVERSE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { i = 0; a[j+i*n] = 1.0 / sqrt ( ( double ) ( n ) ); for ( i = 1; i < n; i++ ) { angle = ( double ) ( i * ( 2 * j + 1 ) ) * r8_pi / ( double ) ( 2 * n ); a[j+i*n] = sqrt ( 2.0 ) * cos ( angle ) / sqrt ( ( double ) ( n ) ); } } return a; } //****************************************************************************80 double *fourier_sine_matrix ( int n ) //****************************************************************************80 // // Purpose: // // fourier_sine_matrix() returns the FOURIER_SINE matrix. // // Discussion: // // The matrix is related to the discrete Fourier Sine Transform. // // This matrix is occasionally known as the "Newman" matrix. // // Formula: // // A(I,J) = sqrt ( 2 / (N+1) ) * SIN ( I * J * PI / (N+1) ) // // Example: // // N = 5 // // 0.288675 0.5 0.577350 0.5 0.288675 // 0.5 0.5 0.0 -0.5 -0.5 // 0.577350 0.0 -0.577350 0.0 0.577350 // 0.5 -0.5 0.0 0.5 -0.5 // 0.288675 -0.5 0.577350 -0.5 0.288675 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is orthogonal: A' * A = A * A' = I. // // A is involutory: A * A = I. // // A is generally not positive definite. // // All eigenvalues of A have absolute value 1. // // A is the eigenvector matrix of the second difference matrix (-1,2,-1). // // A can be used to compute the Discrete Fourier Sine Transform of // a set of data X, // DFST ( X ) = A * X // A second multiplication by A recovers the original data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Nicholas Higham, Desmond Higham, // Large growth factors in Gaussian elimination with pivoting, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, 1989, pages 155-164. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int N, the order of the matrix. // // Output, FOURIER_SINE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = sin ( angle ) * sqrt ( 2.0 / ( double ) ( n + 1 ) ); } } return a; } //****************************************************************************80 double fourier_sine_determinant ( int n ) //****************************************************************************80 // // Purpose: // // fourier_sine_determinant() returns the determinant of the FOURIER_SINE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FOURIER_SINE_DETERMINANT, the determinant. // { double determ; if ( ( n % 2 ) == 1 ) { determ = + 1.0; } else { determ = - 1.0; } return determ; } //****************************************************************************80 double *fourier_sine_inverse ( int n ) //****************************************************************************80 // // Purpose: // // fourier_sine_inverse() returns the inverse of the FOURIER_SINE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Nicholas Higham, Desmond Higham, // Large growth factors in Gaussian elimination with pivoting, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, 1989, pages 155-164. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FOURIER_SINE_INVERSE[N*N], the matrix. // { double *a; a = fourier_sine_matrix ( n ); return a; } //****************************************************************************80 double *frank_matrix ( int n ) //****************************************************************************80 // // Purpose: // // frank_matrix() returns the FRANK matrix. // // Formula: // // if ( I <= J ) // A(I,J) = N+1-J // else if ( J = I-1 ) // A(I,J) = N-J // else // A(I,J) = 0.0 // // Example: // // N = 5 // // 5 4 3 2 1 // 4 4 3 2 1 // . 3 3 2 1 // . . 2 2 1 // . . . 1 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is upper Hessenberg. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // det ( A ) = 1. // // A is unimodular. // // The eigenvalues of A are related to the zeros of the Hermite // polynomials. // // The eigenvalues of A are real and positive, and occur in reciprocal // pairs, LAMBDA and 1/LAMBDA. // // if N is odd, then 1 is an eigenvalue. // // For N = 12, the eigenvalues of A range from 32.2 to 0.031, with // the smaller eigenvalues having a condition number of 10^7, // meaning that a change in the matrix of order 10^(-7) can // result in a change in the eigenvalue of order 1. The actual // eigenvalues are: // // 0.031028060644010 // 0.049507429185278 // 0.081227659240405 // 0.143646519769220 // 0.284749720558478 // 0.6435053190048555 // 1.55398870913210790 // 3.511855948580757194 // 6.961533085567122113 // 12.311077408868526120 // 20.198988645877079428 // 32.228891501572160750 // // The (N/2) smaller eigenvalues of A are ill-conditioned. // // For large N, the computation of the determinant of A // comes out very far from its correct value of 1. // // Simple linear systems: // x = (0,0,0,...,1), A*x = (1,1,1,...,1) // x = (1,1,1,...,1), A*x = ( n*(n+1)/2 (entry 1), // (n+1-i)*(n+4-i)/2 (entries i = 2 to n) // // The condition number grows slightly faster than n! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 May 2008 // // Author: // // John Burkardt // // Reference: // // Patricia Eberlein, // A note on the matrices denoted by $B n$, // SIAM Journal on Applied Mathematics, // Volume 20, 1971, pages 87-92. // // WL Frank, // Computing eigenvalues of complex matrices by determinant // evaluation, and by methods of Danilewski and Wielandt, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, 1958, pages 378-392. // // Gene Golub, James Wilkinson, // Ill-conditioned eigensystems and the computation of the Jordan // canonical form, // SIAM Review, // Volume 18, Number 4, 1976, pages 578-619. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Heinz Rutishauser, // On test matrices, // Programmation en Mathematiques Numeriques, // Editions Centre Nat. Recherche Sci., Paris, 165, // 1966, pages 349-365. // // James Varah, // A generalization of the Frank matrix, // SIAM Journal on Scientific and Statistical Computing, // Volume 7, 1986, pages 835-839. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // James Wilkinson, // Error analysis of floating-point computation, // Numerische Mathematik, // Volume 2, 1960, pages 319-340. // // James Wilkinson, // The Algebraic Eigenvalue Problem, // Oxford University Press, 1965, pages 92-93. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FRANK[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i <= j ) { a[i-1+(j-1)*n] = ( double ) ( n + 1 - j ); } else if ( j == i - 1 ) { a[i-1+(j-1)*n] = ( double ) ( n - j ); } else { a[i-1+(j-1)*n] = 0.0; } } } return a; } //****************************************************************************80 double frank_determinant ( int n ) //****************************************************************************80 // // Purpose: // // frank_determinant() returns the determinant of the FRANK matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FRANK_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *frank_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // frank_eigenvalues() returns the eigenvalues of the Frank matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 April 2014 // // Author: // // John Burkardt // // Reference: // // James Varah, // A generalization of the Frank matrix, // SIAM Journal on Scientific and Statistical Computing, // Volume 7, Number 3, August 1986, pages 835-839. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FRANK_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = hermite_roots ( n ); for ( i = 0; i < n; i++ ) { lambda[i] = lambda[i] * sqrt ( 2.0 ); } for ( i = 0; i < n; i++ ) { lambda[i] = pow ( 0.5 * lambda[i] + sqrt ( 0.25 * lambda[i] * lambda[i] + 1.0 ), 2 ); } return lambda; } //****************************************************************************80 double *frank_inverse ( int n ) //****************************************************************************80 // // Purpose: // // frank_inverse() returns the inverse of the FRANK matrix. // // Formula: // // if ( I = J-1 ) then // A(I,J) = -1 // else if ( I = J ) then // if ( I = 1 ) then // A(I,J) = 1 // else // A(I,J) = N + 2 - I // else if ( J < I ) then // A(I,J) = - (N+1-I) * A(I-1,J) // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 -1 0 0 0 // -4 5 -1 0 0 // 12 -15 4 -1 0 // -24 30 -8 3 -1 // 24 -30 8 -3 2 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower Hessenberg. // // det ( A ) = 1. // // A is unimodular. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double FRANK_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= n; j++ ) { if ( i == j - 1 ) { a[i-1+(j-1)*n] = - 1.0; } else if ( i == j ) { if ( i == 1 ) { a[i-1+(j-1)*n] = 1.0; } else { a[i-1+(j-1)*n] = ( double ) ( n + 2 - i ); } } else if ( j < i ) { a[i-1+(j-1)*n] = - ( double ) ( n + 1 - i ) * a[i-2+(j-1)*n]; } else { a[i-1+(j-1)*n] = 0.0; } } } return a; } //****************************************************************************80 double *frank_rhs ( int m, int k ) //****************************************************************************80 // // Purpose: // // frank_rhs() returns the FRANK right hand side. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the row dimension. // // Input, int K, the column dimension ( should be 2). // // Output, double FRANK_RHS[M*K], the right hand side matrix. // { double *b; int i; b = new double[m*k]; for ( i = 0; i < m; i++ ) { b[i+0*m] = 1.0; } b[0+1*m] = ( double ) ( ( m * ( m + 1 ) ) / 2 ); for ( i = 2; i <= m; i++ ) { b[i-1+1*m] = ( double ) ( ( ( m + 1 - i ) * ( m + 4 - i ) ) / 2 ); } return b; } //****************************************************************************80 double *frank_solution ( int n, int k ) //****************************************************************************80 // // Purpose: // // frank_solution() returns the FRANK solution matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the row dimension. // // Input, int K, the column dimension ( should be 2). // // Output, double FRANK_SOLUTION[N*K], the solution matrix. // { int i; double *x; x = new double[n*k]; for ( i = 0; i < n - 1; i++ ) { x[i+0*n] = 0.0; } x[n-1+0*n] = 1.0; for ( i = 0; i < n; i++ ) { x[i+1*n] = 1.0; } return x; } //****************************************************************************80 double *gegenbauer_matrix ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gegenbauer_matrix(): Gegenbauer to monomial conversion matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 April 2024 // // Author: // // John Burkardt // // Input: // // int N: the order of A. // // double alpha: the parameter. // // Output: // // double A(N,N): the matrix. // { double *A; double c1; double c2; int i; int j; int nn; A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } if ( n <= 0 ) { return A; } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 2.0 * alpha; // // Perform convex sum. // Translating "(n+1) C(n+1) = 2 (n+alpha) x C(n) - ( n + 2 alpha - 1 ) C(n-1)" // drove me nuts, between indexing at 1 rather than 0, and dealing with // the interpretation of "n+1", because I now face the rare "off by 2" error! // for ( j = 2; j < n; j++ ) { nn = j - 1; c1 = ( 2.0 * nn + 2.0 * alpha ) / ( nn + 1 ); c2 = ( - nn - 2.0 * alpha + 1.0 ) / ( nn + 1 ); for ( i = 1; i <= j; i++ ) { A[i+j*n] = c1 * A[i-1+(j-1)*n]; } for ( i = 0; i <= j - 2; i++ ) { A[i+j*n] = A[i+j*n] + c2 * A[i+(j-2)*n]; } } return A; } //****************************************************************************80 double *gegenbauer_inverse ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gegenbauer_inverse(): monomial to Gegenbauer conversion matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 April 2024 // // Author: // // John Burkardt // // Input: // // int n: the order of A. // // double alpha: the parameter. // // Output: // // double A[N,N]: the matrix. // { double *A; double bot; int i; int ilo; int j; double top; A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } if ( n <= 0 ) { return A; } for ( j = 0; j < n; j++ ) { ilo = ( j % 2 ); for ( i = ilo; i <= j; i = i + 2 ) { top = ( i + alpha ) * r8_factorial ( j ) * tgamma ( alpha ); bot = pow ( 2.0, j ) * r8_factorial ( ( j - i ) / 2 ) * tgamma ( ( j + i ) / 2 + alpha + 1.0 ); A[i+j*n] = top / bot; } } return A; } //****************************************************************************80 double *gfpp_matrix ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gfpp_matrix() returns the GFPP matrix. // // Discussion: // // The GFPP matrix has a maximal growth factor for Gauss elimination. // // Formula: // // if ( I = J or J = N ) // A(I,J) = 1.0 // else if ( J < I ) // A(I,J) = - abs ( ALPHA ) // else // A(I,J) = 0 // // Example: // // N = 5, ALPHA = 1 // // A = // // 1 0 0 0 1 // -1 1 0 0 1 // -1 -1 1 0 1 // -1 -1 -1 1 1 // -1 -1 -1 -1 1 // // P = Identity // // L = // // 1 0 0 0 0 // -1 1 0 0 0 // -1 -1 1 0 0 // -1 -1 -1 1 0 // -1 -1 -1 -1 1 // // U = // // 1 0 0 0 1 // 0 1 0 0 2 // 0 0 1 0 4 // 0 0 0 1 8 // 0 0 0 0 16 // // Properties: // // A is generally not symmetric: A' /= A. // // If ALPHA is between 0 and 1, then Gaussian elimination with partial // pivoting yields a controllable growth factor of (1+ALPHA)^(N-1). // and a P factor which is the identity, an L factor equal to the lower // triangle of A, and an U factor which is equal to the identity matrix, // except that the last column is // // [ 1, ALPHA+1, (ALPHA+1)^2, ...(ALPHA+1)^N-1 ]. // // If ALPHA is not between 0 and 1, then Gauss elimination WITHOUT // pivoting will yield the same pivot growth factor and PLU factorization // just described, but Gauss elimination with partial pivoting will not. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 April 2015 // // Author: // // John Burkardt // // Reference: // // Nicholas Higham, Desmond Higham, // Large growth factors in Gaussian elimination with pivoting, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, 1989, pages 155-164. // // Lloyd Trefethen, David Bau, // Numerical Linear Algebra, // SIAM, 1997, pages 165-166. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, determines subdiagonal elements. // // Output, double GFPP[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j || j == n - 1 ) { a[i+j*n] = 1.0; } else if ( j < i ) { a[i+j*n] = - fabs ( alpha ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double gfpp_condition ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gfpp_condition() returns the L1 condition of the GFPP matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 October 2021 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // double ALPHA, determines subdiagonal elements. // // Output: // // double GFPP_CONDITION, the L1 condition. // { double a_norm; double *b; double b_norm; double value; a_norm = fmax ( ( double ) n, 1.0 + ( double ) ( n - 1 ) * fabs ( alpha ) ); b = gfpp_inverse ( n, alpha ); b_norm = r8mat_norm_l1 ( n, n, b ); value = a_norm * b_norm; delete [] b; return value; } //****************************************************************************80 double gfpp_determinant ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gfpp_determinant() returns the determinant of the GFPP matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, determines subdiagonal elements. // // Output, double GFPP_DETERMINANT, the determinant. // { double value; value = pow ( 1.0 + fabs ( alpha ), n - 1 ); return value; } //****************************************************************************80 double *gfpp_inverse ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // gfpp_inverse() returns the inverse of the GFPP matrix. // // Example: // // N = 5, ALPHA = 1 // // 0.5000 -0.2500 -0.1250 -0.0625 -0.0625 // 0 0.5000 -0.2500 -0.1250 -0.1250 // 0 0 0.5000 -0.2500 -0.2500 // 0 0 0 0.5000 -0.5000 // 0.5000 0.2500 0.1250 0.0625 0.0625 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, determines subdiagonal elements. // // Output, double GFPP_INVERSE[N*N], the inverse matrix. // { double *a; double *l; double *l_inverse; double *lp_inverse; double *p; double *p_inverse; double *u; double *u_inverse; p = new double[n*n]; l = new double[n*n]; u = new double[n*n]; gfpp_plu ( n, alpha, p, l, u ); p_inverse = r8mat_transpose_new ( n, n, p ); l_inverse = tri_l1_inverse ( n, l ); lp_inverse = r8mat_mm_new ( n, n, n, l_inverse, p_inverse ); u_inverse = tri_u_inverse ( n, u ); a = r8mat_mm_new ( n, n, n, u_inverse, lp_inverse ); // // Release memory. // delete [] l; delete [] l_inverse; delete [] lp_inverse; delete [] p; delete [] p_inverse; delete [] u; delete [] u_inverse; return a; } //****************************************************************************80 void gfpp_plu ( int n, double alpha, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // gfpp_plu() returns the PLU factorization of the GFPP matrix. // // Discussion // // This factorization assumes that Gaussian elimination is performed // without pivoting. If ALPHA is not between 0 and 1, then the // PLU factors returned here will not be the PLU factors derived // from Gaussian elimination with pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, determines subdiagonal elements. // // Output, double P[N*N], L[N*N], U[N*N], the P, L, U factors // of the matrix. // { int i; int j; double u_sum; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } i = j; l[i+j*n] = 1.0; for ( i = j + 1; i < n; i++ ) { l[i+j*n] = - fabs ( alpha ); } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { u[i+j*n] = 1.0; } else { u[i+j*n] = 0.0; } } } u[0+(n-1)*n] = 1.0; u_sum = 1.0; for ( i = 1; i < n; i++ ) { u[i+(n-1)*n] = 1.0 + fabs ( alpha ) * u_sum; u_sum = u_sum + u[i+(n-1)*n]; } return; } //****************************************************************************80 double *givens_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // givens_matrix() returns the GIVENS matrix. // // Discussion: // // Note that this is NOT the "Givens rotation matrix". This // seems to be more commonly known as the Moler matrix. // // Formula: // // A(I,J) = 2 * min ( I, J ) - 1 // // Example: // // N = 5 // // 1 1 1 1 1 // 1 3 3 3 3 // 1 3 5 5 5 // 1 3 5 7 7 // 1 3 5 7 9 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is positive definite. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The inverse of A is tridiagonal. // // A has a simple Cholesky factorization. // // A has eigenvalues // // LAMBDA(I) = 0.5 * sec ( ( 2 * I - 1 ) * PI / ( 4 * N ) )^2 // // The condition number P(A) is approximately 16 N^2 / PI^2. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2008 // // Author: // // John Burkardt // // Reference: // // Morris Newman, John Todd, // Example A9, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double GIVENS[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( 2 * i4_min ( i, j ) + 1 ); } } return a; } //****************************************************************************80 double givens_condition ( int n ) //****************************************************************************80 // // Purpose: // // givens_condition() returns the L1 condition of the GIVENS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GIVENS_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = ( double ) ( n * n ); if ( n == 1 ) { b_norm = 1.0; } else { b_norm = 2.0; } value = a_norm * b_norm; return value; } //****************************************************************************80 double givens_determinant ( int n ) //****************************************************************************80 // // Purpose: // // givens_determinant() returns the determinant of the GIVENS matrix. // // Discussion: // // Since a formula for the eigenvalues is known, we compute the // determinant as the product of those values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GIVENS_DETERMINANT, the determinant. // { double angle; int i; const double r8_pi = 3.141592653589793; double value; value = 1.0; for ( i = 0; i < n; i++ ) { angle = ( double ) ( 2 * i + 1 ) * r8_pi / ( double ) ( 4 * n ); value = value * 0.5 / pow ( cos ( angle ), 2 ); } return value; } //****************************************************************************80 double *givens_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // givens_eigenvalues() returns the eigenvalues of the GIVENS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GIVENS_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( 2 * i + 1 ) * r8_pi / ( double ) ( 4 * n ); lambda[i] = 0.5 / pow ( cos ( angle ), 2 ); } return lambda; } //****************************************************************************80 double *givens_inverse ( int n ) //****************************************************************************80 // // Purpose: // // givens_inverse() returns the inverse of the GIVENS matrix. // // Formula: // // if ( I = J = 1 ) // A(I,J) = 1.5 // else if ( I = J < N ) // A(I,J) = 1.0 // else if ( I = J = N ) // A(I,J) = 0.5 // else if ( J = I + 1 or J = I - 1 ) // A(I,J) = -0.5 // else // A(I,J) = 0 // // Example: // // N = 5 // // 3 -1 0 0 0 // -1 2 -1 0 0 // 1/2 * 0 -1 2 -1 0 // 0 0 -1 2 -1 // 0 0 0 -1 1 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GIVENS_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { if ( i == 0 ) { a[i+j*n] = 1.5; } else if ( i < n - 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.5; } } else if ( i == j + 1 ) { a[i+j*n] = - 0.5; } else if ( i == j - 1 ) { a[i+j*n] = - 0.5; } else { a[i+j*n] = 0.0; } } } return a; } //*****************************************************************************/ double *givens_llt ( int n ) //*****************************************************************************/ // // Purpose: // // givens_llt() returns the Cholesky factor of the GIVENS matrix. // // Example: // // N = 5 // // 1 0 0 0 0 // 1 sqrt(2) 0 0 0 // 1 sqrt(2) sqrt(2) 0 0 // 1 sqrt(2) sqrt(2) sqrt(2) 0 // 1 sqrt(2) sqrt(2) sqrt(2) sqrt(2) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GIVENS_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; j = 0; for ( i = 0; i < n; i++ ) { a[i+j*n] = 1.0; } for ( i = 0; i < n; i++ ) { for ( j = 1; j <= i; j++ ) { a[i+j*n] = sqrt ( 2.0 ); } for ( j = i + 1; j < n; j++ ) { a[i+j*n] = 0.0; } } return a; } //****************************************************************************80 void givens_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // givens_plu() returns the PLU factors of the GIVENS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } for ( i = j; i < n; i++ ) { l[i+j*n] = 1.0; } } i = 0; for ( j = 0; j < n; j++ ) { u[i+j*n] = 1.0; } for ( i = 1; i < n; i++ ) { for ( j = 0; j < i; j++ ) { u[i+j*n] = 0.0; } for ( j = i; j < n; j++ ) { u[i+j*n] = 2.0; } } return; } //****************************************************************************80 double *gk323_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // gk323_matrix() returns the GK323 matrix. // // Discussion: // // This matrix is occasionally known as the "Todd" matrix. // // Formula: // // A(I,J) = abs ( I - J ) // // Example: // // N = 5 // // 0 1 2 3 4 // 1 0 1 2 3 // 2 1 0 1 2 // 3 2 1 0 1 // 4 3 2 1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a special case of the Fiedler matrix. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // det ( A ) = (-1)^(N-1) * 2^(N-2) * ( N - 1 ). // // A has a dominant positive eigenvalue, and N-1 real negative eigenvalues. // // If N = 2 mod 4, then -1 is an eigenvalue, with an eigenvector // of the form ( 1, -1, -1, 1, 1, -1, -1, 1, ... ). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double GK322[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( abs ( i - j ) ); } } return a; } //****************************************************************************80 double gk323_determinant ( int n ) //****************************************************************************80 // // Purpose: // // gk323_determinant() returns the determinant of the GK323 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GK322_DETERMINANT, the determinant. // { double determ; determ = r8_mop ( n - 1 ) * ( double ) ( i4_power ( 2, n - 2 ) * ( n - 1 ) ); return determ; } //****************************************************************************80 double *gk323_inverse ( int n ) //****************************************************************************80 // // Purpose: // // gk323_inverse() returns the inverse of the GK323 matrix. // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double GK323_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { if ( i == 0 || i == n - 1 ) { a[i+j*n] = - 0.5 * ( double ) ( n - 2 ) / ( double ) ( n - 1 ); } else { a[i+j*n] = - 1.0; } } else if ( i == j + 1 || i == j - 1 ) { a[i+j*n] = 0.5; } else if ( i == 0 && j == n - 1 ) { a[i+j*n] = 0.5 / ( double ) ( n - 1 ); } else if ( i == n - 1 && j == 0 ) { a[i+j*n] = 0.5 / ( double ) ( n - 1 ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *gk324_matrix ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // gk324_matrix() returns the GK324 matrix. // // Discussion: // // This is Gregory and Karney example matrix 3.24. // // Example: // // M = N = 5 // // X = ( 11, 12, 13, 14 ) // // 1 1 1 1 1 // 11 1 1 1 1 // 11 12 1 1 1 // 11 12 13 1 1 // 11 12 13 14 1 // // Properties: // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, // * double X[N-1], the first N-1 entries of the // last row, if M <= N, // or // * double X[N], the N entries of the last row, // if N < M. // // Output, double GK324[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i <= j ) { a[i+j*m] = 1.0; } else { a[i+j*m] = x[j]; } } } return a; } //****************************************************************************80 double gk324_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // gk324_determinant() returns the determinant of the GK324 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N-1], the first N-1 entries of the // last row. // // Output, double GK324_DETERMINANT, the determinant. // { double determ; int i; determ = 1.0; for ( i = 0; i < n - 1; i++ ) { determ = determ * ( 1.0 - x[i] ); } return determ; } //****************************************************************************80 double *gk324_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // gk324_inverse() returns the inverse of the GK324 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N-1], the first N-1 entries of the // last row. // // Output, double GK324_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i < n - 1 ) { if ( j < i ) { a[i+j*n] = 0.0; } else if ( j == i ) { a[i+j*n] = 1.0 / ( 1.0 - x[i] ); } else if ( j == i + 1 ) { a[i+j*n] = - 1.0 / ( 1.0 - x[i] ); } else if ( i + 1 < j ) { a[i+j*n] = 0.0; } } else if ( i == n - 1 ) { if ( j == 0 ) { a[i+j*n] = - x[0] / ( 1.0 - x[0] ); } else if ( j < n - 1 ) { a[i+j*n] = ( x[j-1] - x[j] ) / ( 1.0 - x[j] ) / ( 1.0 - x[j-1] ); } else if ( j == n - 1 ) { a[i+j*n] = 1.0 / ( 1.0 - x[n-2] ); } } } } return a; } //****************************************************************************80 double *grcar_matrix ( int m, int n, int k ) //****************************************************************************80 // // Purpose: // // grcar_matrix() returns the GRCAR matrix. // // Formula: // // if ( I == J+1 ) // A(I,J) = -1.0 // else if ( I <= J .and. J <= I + K ) then // A(I,J) = 1.0 // else // A(I,J) = 0.0 // // Example: // // M = 5, N = 5, K = 2 // // 1 1 1 0 0 // -1 1 1 1 0 // 0 -1 1 1 1 // 0 0 -1 1 1 // 0 0 0 -1 1 // // Properties: // // The diagonal and first K superdiagonals are 1, while the first // subdiagonal is -1. // // A is banded, with bandwidth K+2. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is upper Hessenberg. // // A is Toeplitz: constant along diagonals. // // A is generally not symmetric: A' /= A. // // The eigenvalues are sensitive. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2008 // // Author: // // John Burkardt // // Reference: // // Joseph Grcar, // Operator coefficient methods for linear equations, // Technical Report SAND89-8691, // Sandia National Laboratories, // Albuquerque, New Mexico, 1989. // // NM Nachtigal, Lothar Reichel, Lloyd Trefethen, // A hybrid GMRES algorithm for nonsymmetric linear systems, // SIAM Journal on Matrix Analysis and Applications, // Volume 13, 1992, pages 796-825. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int K, the number of superdiagonals of 1's. // 0 <= K <= N-1. // // Output, double GRCAR[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j + 1 ) { a[i+j*m] = -1.0; } else if ( i <= j && j <= i + k ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double *hadamard_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // hadamard_matrix() returns the HADAMARD matrix. // // Discussion: // // A Hadamard matrix is a square matrix A of order N, whose entries are // only +1's or -1's, with the property that: // // A * A' = N * I. // // A Hadamard matrix must be of order 1, 2, or else a multiple of 4. // It is not known whether a Hadamard matrix exists for every multiple // of 4. // // The method used here allows the user to request a Hadamard matrix // of any rectangular order, M by N. The algorithm then essentially // finds the largest powers of 2 that are less than or equal to M and // N, and produces a Hadamard-like matrix in that space, setting the // rest of the matrix to 0. Thus, the matrix returned by this routine // is only a Hadamard matrix if M = N = a power of 2. // // Formula: // // The following recursive formula is used to produce a series of // Hadamard matrices of increasing size. // // H(0) = [1] // // H(1) = [ H(0) H(0) ] = [ 1 1] // [ H(0) -H(0) ] [ 1 -1] // // H(2) = [ H(1) H(1) ] = [ 1 1 1 1] // [ H(1) -H(1) ] [ 1 -1 1 -1] // [ 1 1 -1 -1] // [ 1 -1 -1 1] // // and so on. // // Properties: // // All entries of a Hadamard matrix are either +1 or -1. Matrices // produced by this routine will be +1 or -1 up to a certain row // and column, beyond which the entries will be zero. // // The Hadamard matrices produced by this routine have the property // that the first row and column are entirely 1's, although this // is not a requirement for a Hadamard matrix. // // The matrices produced by this algorithm are (loosely) symmetric, // although that is not required for a Hadamard matrix. // // Hadamard matrices exhibit the maximum possible relative growth of pivot // elements during Gaussian elimination with complete pivoting. // // The inverse of a Hadamard matrix of order N is A itself, // scaled by 1.0/N. Thus 1.0/sqrt(N) times a Hadamard matrix // yields a symmetric matrix which is its own inverse, or // "involutory". // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // William Pratt, // Digital Image Processing, // John Wiley and Sons, 1978. // // Herbert Ryser, // Combinatorial Mathematics, // John Wiley and Sons, 1963. // // Input: // // int M, N, the order of the matrix. // // Output: // // double HADAMARD[M*N], the matrix. // { double *a; int i; int j; int nn; if ( m <= 0 ) { cerr << "\n"; cerr << "HADAMARD(): Fatal error!\n"; cerr << " Input value of M = " << m << "\n"; cerr << " but M must be positive.\n"; exit ( 1 ); } if ( n <= 0 ) { cerr << "\n"; cerr << "HADAMARD(): Fatal error!\n"; cerr << " Input value of N = " << n << "\n"; cerr << " but N must be positive.\n"; exit ( 1 ); } a = new double[m*n]; a[0+0*m] = 1.0; nn = 1; while ( nn < n || nn < m ) { for ( i = 0; i < nn; i++ ) { for ( j = 0; j < nn; j++ ) { if ( i + 1 <= m && j + 1 + nn <= n ) { if ( 2 * nn <= n ) { a[i+(j+nn)*m] = a[i+j*m]; } else { a[i+(j+nn)*m] = 0.0; } } if ( i + 1 + nn <= m && j + 1 <= n ) { if ( 2 * nn <= m ) { a[i+nn+j*m] = a[i+j*m]; } else { a[i+nn+j*m] = 0.0; } } if ( i + 1 + nn <= m && j + 1 + nn <= n ) { if ( 2 * nn <= m && 2 * nn <= n ) { a[i+nn+(j+nn)*m] = - a[i+j*m]; } else { a[i+nn+(j+nn)*m] = 0.0; } } } } nn = 2 * nn; } return a; } //****************************************************************************80 double *hamming_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // hamming_matrix() computes the HAMMING matrix. // // Example: // // M = 3, N = 7 // // 1 1 1 0 1 0 0 // 1 1 0 1 0 1 0 // 1 0 1 1 0 0 1 // // 7 6 5 3 4 2 1 <-- binary interpretation of columns // // Discussion: // // For a given order M, the Hamming matrix is a rectangular array // of M rows and (2^M)-1 columns. The entries of the matrix are // 0 and 1. The columns of A should be interpreted as the binary // representations of the integers between 1 and (2^M)-1. // // We can also think of the columns as representing nonempty subsets // of an M set. With this perspective, the columns of the matrix // are listed by order of size of subset. For a given size, the columns // are ordered lexicographically. // // The Hamming matrix can be viewed as an embodiment of the Hamming // code. The nonsingleton columns correspond to data bits, and the // singleton columns correspond to check bits. Each row of the // matrix represents a condition that the data bits and check bits // must satisfy. // // Properties: // // A has full row rank. // // The last M columns of A contain the M by M identity matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero-one matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // N must be equal to (2^M)-1. // // Output, double HAMMING[M*N], the matrix. // { double *a; int *b; int i; int j; if ( n != i4_power ( 2, m ) - 1 ) { cerr << "\n"; cerr << "HAMMING(): Fatal error!\n"; cerr << " M = " << m << "\n"; cerr << " N = " << n << "\n"; cerr << " but N = 2^M-1 is required.\n"; exit ( 1 ); } a = r8mat_zero_new ( m, n ); b = new int[m]; for ( i = 0; i < m; i++ ) { b[i] = 0; } for ( j = n - 1; 0 <= j; j-- ) { bvec_next_grlex ( m, b ); for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( b[i] ); } } delete [] b; return a; } //*****************************************************************************/ double *hamming_null_right ( int m, int n ) //*****************************************************************************/ // // Purpose: // // hamming_null_right() returns a right null vector of the HAMMING matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double HAMMING_NULL_RIGHT[N], a null vector // { int j; double *x; if ( n != ( i4_power ( 2, m ) - 1 ) ) { cerr << "\n"; cerr << "HAMMING_NULL_RIGHT(): Fatal error!\n"; cerr << " M = " << m << "\n"; cerr << " N = " << n << "\n"; cerr << " but N = 2^M-1 is required.\n"; exit ( 1 ); } if ( m < 2 ) { cerr << "\n"; cerr << "HAMMING_NULL_RIGHT(): Fatal error!\n"; cerr << " M must be at least 2.\n"; exit ( 1 ); } x = new double[n]; x[0] = 1.0; for ( j = 1; j < n - m; j++ ) { x[j] = 0.0; } for ( j = n - m; j < n; j++ ) { x[j] = -1.0; } return x; } //****************************************************************************80 double *hankel_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // hankel_matrix() returns the HANKEL matrix. // // Formula: // // A(I,J) = X(I+J-1) // // Example: // // N = 5, X = ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) // // 1 2 3 4 5 // 2 3 4 5 6 // 3 4 5 6 7 // 4 5 6 7 8 // 5 6 7 8 9 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is a Hankel matrix: constant along anti-diagonals. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[2*N-1], the vector that defines A. // // Output, double HANKEL[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = x[j+i]; } } return a; } //****************************************************************************80 double *hankel_n_matrix ( int n ) //****************************************************************************80 // // Purpose: // // hankel_n_matrix() returns the HANKEL_N matrix. // // Formula: // // A(I,J) = I+J-1 for I+J-1 <= N // = 0 otherwise // // Example: // // N = 5 // // 1 2 3 4 5 // 2 3 4 5 0 // 3 4 5 0 0 // 4 5 0 0 0 // 5 0 0 0 0 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is a Hankel matrix: constant along anti-diagonals. // // determinant ( A ) = (-1)^(N/2) * N^N // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HANKEL_N[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n - j; i++ ) { a[i+j*n] = ( double ) ( i + j + 1 ); } for ( i = n - j; i < n; i++ ) { a[i+j*n] = 0.0; } } return a; } //****************************************************************************80 double hankel_n_condition ( int n ) //****************************************************************************80 // // Purpose: // // hankel_n_condition() returns the L1 condition of the HANKEL_N matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double VALUE, the L1 condition. // { double a_norm; double b_norm; int i; int j; double *v; double value; v = new double[n]; v[0] = 1.0 / ( double ) ( n ); for ( i = 1; i < n; i++ ) { v[i] = 0.0; for ( j = 0; j < i; j++ ) { v[i] = v[i] - ( double ) ( n + j - i ) * v[j]; } v[i] = v[i] / ( double ) ( n ); } a_norm = ( double ) ( ( n * ( n + 1 ) ) / 2 ); b_norm = 0.0; for ( i = 0; i < n; i++ ) { b_norm = b_norm + fabs ( v[i] ); } value = a_norm * b_norm; delete [] v; return value; } //****************************************************************************80 double hankel_n_determinant ( int n ) //****************************************************************************80 // // Purpose: // // hankel_n_determinant() returns the determinant of the HANKEL_N matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double DETERM, the determinant. // { double determ; determ = r8_mop ( n / 2 ) * ( double ) ( i4_power ( n, n ) ); return determ; } //****************************************************************************80 double *hankel_n_inverse ( int n ) //****************************************************************************80 // // Purpose: // // hankel_n_inverse() returns the inverse of the HANKEL_N matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HANKEL_N_INVERSE[N*N], the matrix. // { double *b; int i; int j; double *v; v = new double[n]; v[0] = 1.0 / ( double ) ( n ); for ( i = 1; i < n; i++ ) { v[i] = 0.0; for ( j = 0; j < i; j++ ) { v[i] = v[i] - ( double ) ( n + j - i ) * v[j]; } v[i] = v[i] / ( double ) ( n ); } b = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n - 1 - j; i++ ) { b[i+j*n] = 0.0; } for ( i = n - 1 - j; i < n; i++ ) { b[i+j*n] = v[i+j-n+1]; } } // // Free memory. // delete [] v; return b; } //****************************************************************************80 double *hanowa_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // hanowa_matrix() returns the HANOWA matrix. // // Formula: // // If ( I = J ) // A(I,J) = ALPHA // else if ( I <= N/2 and J = I + N/2 ) // A(I,J) = -I // else if ( N/2 < I and J = I - N/2 ) // A(I,J) = I-N/2 // else // A(I,J) = 0 // // Example: // // ALPHA = 17, N = 6 // // 17 0 0 -1 0 0 // 0 17 0 0 -2 0 // 0 0 17 0 0 -3 // 1 0 0 17 0 0 // 0 2 0 0 17 0 // 0 0 3 0 0 17 // // Properties: // // A is generally not symmetric: A' /= A. // // A is nonsingular. // // A is antisymmetric: A' = -A. // // Because A is antisymmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A has complex eigenvalues // // LAMBDA(2*I-1) = ALPHA + I * sqrt ( -1 ) // LAMBDA(2*I) = ALPHA - I * sqrt ( -1 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Reference: // // E Hairer, SP Norsett, G Wanner, // Solving Ordinary Differential Equations I: Nonstiff Problems, // Springer Verlag, 1987, pages 86-87. // // Parameters: // // Input, double ALPHA, the scalar defining the Hanowa matrix. A // typical value is -1.0. // // Input, int N, the order of the matrix. N must be even. // // Output, double HANOWA[N*N], the matrix. // { double *a; int i; int j; if ( ( n % 2 ) != 0 ) { cerr << "\n"; cerr << "HANOWA(): Fatal error!\n"; cerr << " Input N = " << n << "\n"; cerr << " but N must be a multiple of 2.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = alpha; } else if ( i + 1 <= n/2 && j == i + n / 2 ) { a[i+j*n] = - ( double ) ( i + 1 ); } else if ( n / 2 < i + 1 && j == i - n / 2 ) { a[i+j*n] = ( double ) ( i + 1 - n / 2 ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double hanowa_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // hanowa_determinant() returns the determinant of the HANOWA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining the Hanowa matrix. A // typical value is -1.0. // // Input, int N, the order of the matrix. N must be even. // // Output, double HANOWA_DETERMINANT, the determinant. // { double determ; int i; if ( ( n % 2 ) != 0 ) { cerr << "\n"; cerr << "HANOWA_DETERMINANT(): Fatal error!\n"; cerr << " Input N = " << n << "\n"; cerr << " but N must be a multiple of 2.\n"; exit ( 1 ); } determ = 1.0; for ( i = 1; i <= n / 2; i++ ) { determ = determ * ( alpha * alpha + ( double ) ( i * i ) ); } return determ; } //****************************************************************************80 complex *hanowa_eigenvalues ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // hanowa_eigenvalues() returns the eigenvalues of the HANOWA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining the Hanowa matrix. A // typical value is -1.0. // // Input, int N, the order of the matrix. N must be even. // // Output, complex HANOWA_EIGENVALUES[N], the eigenvalues. // { int i; complex *lambda; if ( ( n % 2 ) != 0 ) { cerr << "\n"; cerr << "HANOWA_EIGENVALUES(): Fatal error!\n"; cerr << " Input N = " << n << "\n"; cerr << " but N must be a multiple of 2.\n"; exit ( 1 ); } lambda = new complex [n]; for ( i = 1; i <= n / 2; i++ ) { lambda[2*i-2] = complex ( alpha, i ); lambda[2*i-1] = complex ( alpha, - i ); } return lambda; } //****************************************************************************80 double *hanowa_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // hanowa_inverse() returns the inverse of the Hanowa matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining the Hanowa matrix. A // typical value is -1.0. // // Input, int N, the order of A. N must be even. // // Output, double HANOWA_INVERSE[N*N], the matrix. // { double *a; int i; double i_r8; int j; int n2; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } n2 = n / 2; for ( i = 0; i < n2; i++ ) { i_r8 = ( double ) ( i + 1 ); a[i +i*n] = alpha / ( alpha * alpha + i_r8 * i_r8 ); a[i+n2+i*n] = - i_r8 / ( alpha * alpha + i_r8 * i_r8 ); a[i+n2+(i+n2)*n] = alpha / ( alpha * alpha + i_r8 * i_r8 ); a[i +(i+n2)*n] = + i_r8 / ( alpha * alpha + i_r8 * i_r8 ); } return a; } //****************************************************************************80 double *harman_matrix ( ) //****************************************************************************80 // // Purpose: // // harman_matrix() returns the HARMAN matrix. // // Formula: // // 1.00 0.85 0.81 0.86 0.47 0.40 0.30 0.38 // 0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.41 // 0.81 0.88 1.00 0.80 0.38 0.32 0.24 0.34 // 0.86 0.83 0.80 1.00 0.44 0.33 0.33 0.36 // 0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63 // 0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58 // 0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54 // 0.38 0.41 0.34 0.36 0.63 0.58 0.54 1.00 // // Properties: // // A is symmetric. // // A is a correlation matrix for 8 physical variables measured // for 305 girls. // // The rows and columns of the matrix correspond to the variables // 1) height // 2) arm span // 3) length of forearm // 4) length of lower leg // 5) weight // 6) bitrochanteric diameter // 7) chest girth // 8) chest width // // The largest two eigenvalues are // // LAMBDA(1) = 4.67 // // with eigenvector // // V(1) = 0.40, 0.39, 0.38, 0.39, 0.35, 0.31, 0.29, 0.31 // // and // // LAMBDA(2)= 1.77 // // with eigevector // // V(2) = 0.28 0.33 0.34 0.30 -0.39, -0.40 -0.44 -0.31 // // The best rank 2 approximation to the matrix, in the least squares // sense, is // // [ V(1) V(2) ] * Diag ( LAMBDA(1), LAMBDA(2) ) * [ V(1) V(2) ]' // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 June 2002 // // Author: // // John Burkardt // // Reference: // // HH Harman, // Modern Factor Analysis, // The University of Chicago Press, 1960. // // Lawrence Huber, Jacqueline Meulman, Willem Heiser, // Two Purposes for Matrix Factorization: A Historical Appraisal, // SIAM Review, // Volume 41, Number 1, pages 68-82. // // Parameters: // // Output, double HARMAN[8*8], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[8*8] = { 1.00, 0.85, 0.81, 0.86, 0.47, 0.40, 0.30, 0.38, 0.85, 1.00, 0.88, 0.83, 0.38, 0.33, 0.28, 0.41, 0.81, 0.88, 1.00, 0.80, 0.38, 0.32, 0.24, 0.34, 0.86, 0.83, 0.80, 1.00, 0.44, 0.33, 0.33, 0.36, 0.47, 0.38, 0.38, 0.44, 1.00, 0.76, 0.73, 0.63, 0.40, 0.33, 0.32, 0.33, 0.76, 1.00, 0.58, 0.58, 0.30, 0.28, 0.24, 0.33, 0.73, 0.58, 1.00, 0.54, 0.38, 0.41, 0.34, 0.36, 0.63, 0.58, 0.54, 1.00 }; a = r8mat_copy_new ( 8, 8, a_save ); return a; } //****************************************************************************80 double harman_condition ( ) //****************************************************************************80 // // Purpose: // // harman_condition() returns the L1 condition of the HARMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double HARMAN_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 5.07; b_norm = 15.200976381839961; value = a_norm * b_norm; return value; } //****************************************************************************80 double harman_determinant ( ) //****************************************************************************80 // // Purpose: // // harman_determinant() returns the determinant of the HARMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 October 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HARMAN_DETERMINANT, the determinant. // { double determ; determ = 0.0009547789295599994; return determ; } //****************************************************************************80 double *harman_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // harman_eigenvalues() returns the eigenvalues of the HARMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double HARMAN_EIGENVALUES[8], the eigenvalues. // { double *lambda; static double lambda_save[8] = { 0.099201798857265, 0.133696389888429, 0.186209771388667, 0.230071772282960, 0.422934636563082, 0.479706233283900, 1.770649533376934, 4.677529864358766 }; lambda = r8vec_copy_new ( 8, lambda_save ); return lambda; } //****************************************************************************80 double *harman_inverse ( ) //****************************************************************************80 // // Purpose: // // harman_inverse() returns the inverse of the HARMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double HARMAN_INVERSE[8*8], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[8*8] = { 5.505750442924552, -2.024827472733320, -0.525564377998213, -2.414725599885703, -0.742871704140835, -0.432339085897328, 0.506363394364808, 0.231316810459756, -2.024827472733320, 6.632253606390529, -3.266421707396942, -1.157009948040102, 0.941928425100928, 0.010152122779319, -0.318255180872113, -0.850127918526706, -0.525564377998213, -3.266421707396943, 4.945029645612116, -0.799896971199349, -0.384019974978888, -0.082141525217929, 0.342191583208235, 0.250391407726364, -2.414725599885702, -1.157009948040101, -0.799896971199349, 4.769523661962869, -0.343306754780455, 0.462478615948815, -0.415704081428472, 0.119432120786903, -0.742871704140835, 0.941928425100928, -0.384019974978887, -0.343306754780455, 3.941357428629264, -1.549806320843210, -1.467270532044103, -0.641583610147637, -0.432339085897328, 0.010152122779319, -0.082141525217929, 0.462478615948815, -1.549806320843210, 2.524233450449795, -0.122867685019045, -0.399766570085388, 0.506363394364808, -0.318255180872113, 0.342191583208235, -0.415704081428472, -1.467270532044103, -0.122867685019045, 2.276170982094793, -0.262113772509967, 0.231316810459756, -0.850127918526706, 0.250391407726364, 0.119432120786903, -0.641583610147637, -0.399766570085388, -0.262113772509967, 1.910127138708912 }; a = r8mat_copy_new ( 8, 8, a_save ); return a; } //****************************************************************************80 double *hartley_matrix ( int n ) //****************************************************************************80 // // Purpose: // // hartley_matrix() returns the HARTLEY matrix. // // Formula: // // A(I,J) = SIN ( 2*PI*(i-1)*(j-1)/N ) + COS( 2*PI*(i-1)*(j-1)/N ) // // Example: // // N = 5 // // 1.0000 1.0000 1.0000 1.0000 1.0000 // 1.0000 1.2601 -0.2212 -1.3968 -0.6420 // 1.0000 -0.2212 -0.6420 1.2601 -1.3968 // 1.0000 -1.3968 1.2601 -0.6420 -0.2212 // 1.0000 -0.6420 -1.3968 -0.2212 1.2601 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A arises in the Hartley transform. // // A * A = N * I, in other words, A is "almost" involutory, // and inverse ( A ) = ( 1 / N ) * A. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2008 // // Author: // // John Burkardt // // Reference: // // D Bini, P Favati, // On a matrix algebra related to the discrete Hartley transform, // SIAM Journal on Matrix Analysis and Applications, // Volume 14, 1993, pages 500-507. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HARTLEY[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = 2.0 * r8_pi * ( double) ( i * j ) / ( double ) ( n ); a[i+j*n] = sin ( angle ) + cos ( angle ); } } return a; } //****************************************************************************80 double hartley_condition ( int n ) //****************************************************************************80 // // Purpose: // // hartley_condition() returns the L1 condition of the HARTLEY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HARTLEY_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = ( double ) ( n ); b_norm = 1.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double hartley_determinant ( int n ) //****************************************************************************80 // // Purpose: // // hartley_determinant() returns the determinant of the HARTLEY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HARTLEY_DETERMINANT, the determinant. // { double determ; determ = sqrt ( ( double ) i4_power ( n, n ) ); if ( n % 4 != 1 ) { determ = - determ; } return determ; } //****************************************************************************80 double *hartley_inverse ( int n ) //****************************************************************************80 // // Purpose: // // hartley_inverse() returns the inverse of the HARTLEY matrix. // // Formula: // // A(I,J) = (1/N) * SIN ( 2*PI*(i-1)*(j-1)/N ) + COS( 2*PI*(i-1)*(j-1)/N ) // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Reference: // // D Bini, P Favati, // On a matrix algebra related to the discrete Hartley transform, // SIAM Journal on Matrix Analysis and Applications, // Volume 14, 1993, pages 500-507. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HARTLEY_INVERSE[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = 2.0 * r8_pi * ( double ) ( i * j ) / ( double ) ( n ); a[i+j*n] = ( sin ( angle ) + cos ( angle ) ) / ( double ) ( n ); } } return a; } //****************************************************************************80 double *helmert_matrix ( int n ) //****************************************************************************80 // // Purpose: // // helmert_matrix() returns the HELMERT matrix. // // Formula: // // If I = 1 then // A(I,J) = 1 / sqrt ( N ) // else if J < I then // A(I,J) = 1 / sqrt ( I * ( I - 1 ) ) // else if J = I then // A(I,J) = (1-I) / sqrt ( I * ( I - 1 ) ) // else // A(I,J) = 0 // // Discussion: // // The matrix given above by Helmert is the classic example of // a family of matrices which are now called Helmertian or // Helmert matrices. // // A matrix is a (standard) Helmert matrix if it is orthogonal, // and the elements which are above the diagonal and below the // first row are zero. // // If the elements of the first row are all strictly positive, // then the matrix is a strictly Helmertian matrix. // // It is possible to require in addition that all elements below // the diagonal be strictly positive, but in the reference, this // condition is discarded as being cumbersome and not useful. // // A Helmert matrix can be regarded as a change of basis matrix // between a pair of orthonormal coordinate bases. The first row // gives the coordinates of the first new basis vector in the old // basis. Each later row describes combinations of (an increasingly // extensive set of) old basis vectors that constitute the new // basis vectors. // // Helmert matrices have important applications in statistics. // // Example: // // N = 5 // // 0.4472 0.4472 0.4472 0.4472 0.4472 // 0.7071 -0.7071 0 0 0 // 0.4082 0.4082 -0.8165 0 0 // 0.2887 0.2887 0.2887 -0.8660 0 // 0.2236 0.2236 0.2236 0.2236 -0.8944 // // Properties: // // A is generally not symmetric: A' /= A. // // A is orthogonal: A' * A = A * A' = I. // // Because A is orthogonal, it is normal: A' * A = A * A'. // // A is not symmetric: A' /= A. // // det ( A ) = (-1)^(N+1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Reference: // // HO Lancaster, // The Helmert Matrices, // American Mathematical Monthly, // Volume 72, 1965, pages 4-12. // // Input: // // int N, the order of the matrix. // // Output: // // double HELMERT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; // // A begins with the first row, diagonal, and lower triangle set to 1. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { a[i+j*n] = 1.0 / sqrt ( ( double ) ( n ) ); } else if ( j < i ) { a[i+j*n] = 1.0 / sqrt ( ( double ) ( i * ( i + 1 ) ) ); } else if ( i == j ) { a[i+j*n] = - sqrt ( ( double ) ( i ) ) / sqrt ( ( double ) ( i + 1 ) ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double helmert_determinant ( int n ) //****************************************************************************80 // // Purpose: // // helmert_determinant() returns the determinant of the HELMERT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HELMERT_DETERMINANT, the determinant. // { double determ; if ( ( n % 2 ) == 0 ) { determ = -1.0; } else { determ = +1.0; } return determ; } //****************************************************************************80 double *helmert_inverse ( int n ) //****************************************************************************80 // // Purpose: // // helmert_inverse() returns the inverse of the HELMERT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HELMERT_INVERSE[N*N], the inverse matrix. // { double *a; a = helmert_matrix ( n ); r8mat_transpose_in_place ( n, a ); return a; } //****************************************************************************80 double *helmert2_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // helmert2_matrix() returns the HELMERT2 matrix. // // Formula: // // Row 1 = the vector, divided by its L2 norm. // // Row 2 is computed by the requirements that it be orthogonal to row 1, // be nonzero only from columns 1 to 2, and have a negative diagonal. // // Row 3 is computed by the requirements that it be orthogonal to // rows 1 and 2, be nonzero only from columns 1 to 3, and have a // negative diagonal, and so on. // // Properties: // // The first row of A should be the vector X, divided by its L2 norm. // // A is orthogonal: A' * A = A * A' = I. // // A is not symmetric: A' /= A. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Reference: // // HO Lancaster, // The Helmert Matrices, // American Mathematical Monthly, // Volume 72, 1965, pages 4-12. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the first row. // X must not have 0 L2 norm, and its first entry must not be 0. // // Output, double HELMERT2[N*N], the matrix. // { double *a; int i; int j; double s; double *w; double x_norm_l2; a = new double[n*n]; w = new double[n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } x_norm_l2 = r8vec_norm_l2 ( n, x ); if ( x_norm_l2 == 0.0 ) { cerr << "\n"; cerr << "HELMERT2(): Fatal error!\n"; cerr << " Input vector has zero L2 norm.\n"; exit ( 1 ); } if ( x[0] == 0.0 ) { cerr << "\n"; cerr << "HELMERT2(): Fatal error!\n"; cerr << " Input vector has X[0] = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { w[i] = pow ( x[i] / x_norm_l2, 2 ); } for ( j = 0; j < n; j++ ) { a[0+j*n] = sqrt ( w[j] ); } for ( i = 1; i < n; i++ ) { s = 0.0; for ( j = 0; j < i; j++ ) { s = s + w[j]; } for ( j = 0; j < i; j++ ) { a[i+j*n] = sqrt ( w[i] * w[j] / ( s + w[i] ) / s ); } a[i+i*n] = - sqrt ( s / ( s + w[i] ) ); } // // Free memory. // delete [] w; return a; } //****************************************************************************80 double *helmert2_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // helmert2_inverse() returns the inverse of the HELMERT2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the first row. // // Output, double *HELMERT2_INVERSE[N*N], the inverse matrix. // { double *a; a = helmert2_matrix ( n, x ); r8mat_transpose_in_place ( n, a ); return a; } //****************************************************************************80 double *hermite_matrix ( int n ) //****************************************************************************80 // // Purpose: // // hermite_matrix() returns the HERMITE matrix. // // Example: // // Example: // // N = 11 // // 1 . -2 . 12 . -120 . 1680 . -30240 // . 2 . -12 . 120 . -1680 . 30240 . // . . 4 . -48 . 720 . -13440 . 302400 // . . . 8 . -160 . 3360 . -80640 . // . . . . 16 . -480 . 13440 . -403200 // . . . . . 32 . -1344 . 48384 . // . . . . . . 64 . -3584 . 161280 // . . . . . . . 128 . -9216 . // . . . . . . . . 256 . -23040 // . . . . . . . . . 512 . // . . . . . . . . . . 1024 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower triangular. // // det ( A ) = 2^((N*(N-1))/2) // // LAMBDA(I) = 2^(I-1). // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is reducible. // // Successive diagonals are zero, positive, zero, negative. // // A is generally not normal: A' * A /= A * A'. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2024 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double HERMITE[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 2.0; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { A[i+j*n] = - 2.0 * ( double ) ( j - 1 ) * A[i+(j-2)*n]; } else { A[i+j*n] = 2.0 * A[i-1+(j-1)*n] - 2.0 * ( double ) ( j - 1 ) * A[i+(j-2)*n]; } } } return A; } //****************************************************************************80 double hermite_determinant ( int n ) //****************************************************************************80 // // Purpose: // // hermite_determinant() returns the determinant of the HERMITE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HERMITE_DETERMINANT, the determinant. // { double determ; int power; power = ( n * ( n - 1 ) ) / 2; determ = ( double ) ( i4_power ( 2, power ) ); return determ; } //****************************************************************************80 double *hermite_inverse ( int n ) //****************************************************************************80 // // Purpose: // // hermite_inverse() returns the inverse of the HERMITE matrix. // // Example: // // N = 11 (each column must be divided by the factor below it) // // 1 . 2 . 12 . 120 . 1680 . 30240 // . 1 . 6 . 60 . 840 . 15120 . // . . 1 . 12 . 180 . 3360 . 75600 // . . . 1 . 20 . 420 . 10080 . // . . . . 1 . 30 . 840 . 25200 // . . . . . 1 . 42 . 1512 . // . . . . . . 1 . 56 . 2520 // . . . . . . . 1 . 72 . // . . . . . . . . 1 . 90 // . . . . . . . . . 1 . // . . . . . . . . . . 1 // // /1 /2 /4 /8 /16 /32 /64 /128 /256 /512 /1024 // // Properties: // // A is generally not symmetric: A' /= A. // // A is nonnegative. // // A is lower triangular. // // det ( A ) = 1 / 2^((N*(N-1))/2) // // LAMBDA(I) = 1 / 2^(I-1) // // A is reducible. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2024 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double HERMITE_INVERSE[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 0.5; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { A[i+j*n] = ( ( double ) ( j - 1 ) * A[i+(j-2)*n] ) / 2.0; } else { A[i+j*n] = ( ( double ) ( j - 1 ) * A[i+(j-2)*n] + A[i-1+(j-1)*n] ) / 2.0; } } } return A; } //****************************************************************************80 double *hermite_roots ( int order ) //****************************************************************************80 // // Purpose: // // hermite_roots() computes the roots of a Hermite polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the polynomial. // // Output, double HERMITE_ROOTS[ORDER], the roots. // { double dx; double dp0; double dp1; double dp2; double eps; int i; int j; double p0; double p1; double p2; double s; int step; int step_max = 10; double x; double *xtab; xtab = new double[order]; eps = DBL_EPSILON; s = pow ( 2 * order + 1, 1.0 / 6.0 ); for ( i = 0; i < ( order + 1 ) / 2; i++ ) { if ( i == 0 ) { x = s * s * s - 1.85575 / s; } else if ( i == 1 ) { x = x - 1.14 * pow ( order, 0.426 ) / x; } else if ( i == 2 ) { x = 1.86 * x - 0.86 * xtab[order-1]; } else if ( i == 3 ) { x = 1.91 * x - 0.91 * xtab[order-2]; } else { x = 2.0 * x - xtab[order+1-i]; } for ( step = 1; step <= step_max; step++ ) { p1 = 1.0; dp1 = 0.0; p2 = x; dp2 = 1.0; for ( j = 2; j <= order; j++ ) { p0 = p1; dp0 = dp1; p1 = p2; dp1 = dp2; p2 = x * p1 - 0.5 * ( double ) ( j - 1 ) * p0; dp2 = x * dp1 + p1 - 0.5 * ( double ) ( j - 1 ) * dp0; } dx = p2 / dp2; x = x - dx; if ( fabs ( dx ) <= eps * ( fabs ( x ) + 1.0 ) ) { break; } } xtab[ i ] = - x; xtab[order-i-1] = + x; } return xtab; } //****************************************************************************80 double *herndon_matrix ( int n ) //****************************************************************************80 // // Purpose: // // herndon_matrix() returns the HERNDON matrix. // // Formula: // // c = ( n * ( n + 1 ) * ( 2 * n - 5 ) ) / 6 // a(n,n) = - 1 / c // do i = 1, n - 1 // a(i,n) = a(n,i) = i / c // a(i,i) = ( c - i*i ) / c // do j = 1, i - 1 // a(i,j) = a(j,i) = - i * j / c // } // } // // Example: // // N = 5 // // 0.96 -0.08 -0.12 -0.16 0.04 // -0.08 0.84 -0.24 -0.32 0.08 // -0.12 -0.24 0.64 -0.48 0.12 // -0.16 -0.32 -0.48 0.36 0.16 // 0.04 0.08 0.12 0.16 -0.04 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal: A' * A = A * A'. // // The eigenvalues of A are: // // 1 (multiplicity N-2), // 6 / ( P * ( N + 1 ), // P / ( N * ( 5 - 2 * N ) ), // // where // // P = 3 + sqrt ( ( 4 * N - 3 ) * ( N - 1 ) * 3 / ( N + 1 ) ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Reference: // // John Herndon, // Algorithm 52, A Set of Test Matrices, // Communications of the ACM, // April, 1961. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HERNDON[N*N], the matrix. // { double *a; double c; int i; int j; a = new double[n*n]; c = ( double ) ( n * ( n + 1 ) * ( 2 * n - 5 ) ) / 6.0; a[n-1+(n-1)*n] = - 1.0 / c; for ( i = 0; i < n - 1; i++ ) { a[i +(n-1)*n] = ( double ) ( i + 1 ) / c; a[n-1+ i *n] = ( double ) ( i + 1 ) / c; a[i + i *n] = ( c - ( double ) ( ( i + 1 ) * ( i + 1 ) ) ) / c; for ( j = 0; j < i; j++ ) { a[i+j*n] = - ( double ) ( ( i + 1 ) * ( j + 1 ) ) / c; a[j+i*n] = - ( double ) ( ( i + 1 ) * ( j + 1 ) ) / c; } } return a; } //****************************************************************************80 double herndon_determinant ( int n ) //****************************************************************************80 // // Purpose: // // herndon_determinant() returns the determinant of the HERNDON matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HERNDON_DETERMINANT, the determinant. // { double determ; determ = 6.0 / ( double ) ( ( n + 1 ) * n * ( 5 - 2 * n ) ); return determ; } //****************************************************************************80 double *herndon_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // herndon_eigenvalues() returns the eigenvalues of the HERNDON matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HERNDON_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; double p; lambda = new double[n]; p = 3.0 + sqrt ( ( double ) ( ( 4 * n - 3 ) * ( n - 1 ) * 3 ) / ( double ) ( n + 1 ) ); for ( i = 0; i < n - 2; i++ ) { lambda[i] = 1.0; } lambda[n-2] = 6.0 / ( p * ( double ) ( n + 1 ) ); lambda[n-1] = p / ( double ) ( n * ( 5 - 2 * n ) ); return lambda; } //****************************************************************************80 double *herndon_inverse ( int n ) //****************************************************************************80 // // Purpose: // // herndon_inverse() returns the inverse of the HERNDON matrix. // // Formula: // // if ( I == N ) // A(I,J) = J // else if ( J == N ) // A(I,J) = I // else if ( I == J ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 0 0 0 1 // 0 1 0 0 2 // 0 0 1 0 3 // 0 0 0 1 4 // 1 2 3 4 5 // // Properties: // // A is symmetric. // // A is border-banded. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Reference: // // John Herndon, // Algorithm 52, A Set of Test Matrices, // Communications of the ACM, // April, 1961. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HERNDON_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == n - 1 ) { a[i+j*n] = ( double ) ( i + 1 ); } else if ( i == n - 1 ) { a[i+j*n] = ( double ) ( j + 1 ); } else if ( i == j ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } /******************************************************************************/ complex *hess4_matrix ( ) /******************************************************************************/ /* Purpose: hess4_matrix() returns the HESS4 matrix. Discussion: HESS4 is simply an example of a 4x4 complex upper Hessenberg matrix. Example: 4+8i 7+6i 7+10i 7+10i 9+9i 8+1i 8+10i 2 +5i 0 8+3i 7+ 2i 7 +8i 0 0 4+10i 0 +1i Properties: A is integral. A is not symmetric. A is complex. A is upper Hessenberg. Licensing: This code is distributed under the MIT license. Modified: 12 March 2018 Author: John Burkardt Parameters: Output, complex HESS4[4*4], the matrix. */ { complex *a; static complex a_save[4*4] = { complex ( 4, 8 ), complex ( 9, 9 ), complex ( 0, 0 ), complex ( 0, 0 ), complex ( 7, 6 ), complex ( 8, 1 ), complex ( 8, 3 ), complex ( 0, 0 ), complex ( 7,10 ), complex ( 8,10 ), complex ( 7, 2 ), complex ( 4,10 ), complex ( 7,10 ), complex ( 2, 5 ), complex ( 7, 8 ), complex ( 0, 1 ) }; a = c8mat_copy_new ( 4, 4, a_save ); return a; } /******************************************************************************/ complex hess4_determinant ( ) /******************************************************************************/ /* Purpose: hess4_determinant() returns the determinant of the HESS4 matrix. Licensing: This code is distributed under the MIT license. Modified: 12 March 2018 Author: John Burkardt Parameters: Output, complex HESS4_DETERMINANT-, the determinant. */ { complex value; value = complex ( 6.393999999999999E+03, -4.548000000000000E+03 ); return value; } /******************************************************************************/ complex *hess4_eigen_right ( ) /******************************************************************************/ /* Purpose: hess4_eigen_right() returns the right eigenvectors of the HESS4 matrix. Licensing: This code is distributed under the MIT license. Modified: 12 March 2018 Author: John Burkardt Parameters: Output, complex HESS4_EIGEN_RIGHT[4*4], the right eigenvector matrix. */ { complex *a; static complex a_save[4*4] = { complex ( -0.330070042547862, - 0.222298022567869 ), complex ( 1.000000000000000, + 0.000000000000000 ), complex ( 0.257417722386482, + 0.309094498615456 ), complex ( -0.842630039297297, + 0.197751498603984 ), complex ( 1.000000000000000, + 0.000000000000000 ), complex ( 0.503205870426247, - 0.824241552742355 ), complex ( -0.215016769732540, + 0.275479867860766 ), complex ( -0.238196952722339, + 0.597205448629795 ), complex ( 0.335490948571943, - 0.068002965084462 ), complex ( -0.768179408120474, + 0.010513990305666 ), complex ( 1.000000000000000, + 0.000000000000000 ), complex ( -0.972653465585451, - 0.104040336437224 ), complex ( 0.952157320531579, + 0.250709960744793 ), complex ( 1.000000000000000, + 0.000000000000000 ), complex ( 0.501508766439785, - 0.172182272014276 ), complex ( 0.218561824850003, + 0.044757232962382 ) }; a = c8mat_copy_new ( 4, 4, a_save ); return a; } /******************************************************************************/ complex *hess4_eigenvalues ( ) /******************************************************************************/ /* Purpose: hess4_eigenvalues() returns the eigenvalues of the HESS4 matrix. Licensing: This code is distributed under the MIT license. Modified: 12 March 2018 Author: John Burkardt Parameters: Output, complex HESS4_EIGENVALUES[4], the eigenvalues. */ { complex *lambda; static complex lambda_save[4] = { complex ( 3.324431041502838, - 2.742026572531628 ), complex ( 0.568541187348097, + 6.826204344246118 ), complex ( -5.153228803481162, - 8.729936381660266 ), complex ( 20.260256574630240, + 16.645758609945791 ) }; lambda = c8vec_copy_new ( 4, lambda_save ); return lambda; } /******************************************************************************/ complex *hess4_inverse ( ) /******************************************************************************/ /* Purpose: hess4_inverse() returns the inverse of the HESS4 matrix. Licensing: This code is distributed under the MIT license. Modified: 12 March 2018 Author: John Burkardt Parameters: Output, complex HESS4_INVERSE[4*4], the matrix. */ { complex *b; static complex b_save[4*4] = { complex ( 0.055479592005787, - 0.046555961144460 ), complex ( 0.098221887702513, + 0.072992359285429 ), complex ( 0.003980766488315, + 0.005177436032039 ), complex ( -0.048947708484049, + 0.045728154803651 ), complex ( 0.008223391741817, - 0.036847046349424 ), complex ( 0.151056059735374, + 0.029715821031667 ), complex ( 0.146615375569659, - 0.028025222381794 ), complex ( -0.018713432435338, + 0.036423414026287 ), complex ( -0.072930346088215, + 0.062294774161839 ), complex ( -0.013605643493308, - 0.002639735159144 ), complex ( -0.103971410909060, - 0.013897712983173 ), complex ( 0.034460691461767, - 0.089345132191411 ), complex ( -0.165446110076836, - 0.054339835569198 ), complex ( 0.008483821182396, + 0.004783299771276 ), complex ( -0.060517409011307, - 0.035851294367129 ), complex ( 0.012773614147975, + 0.031294087761181 ) }; b = c8mat_copy_new ( 4, 4, b_save ); return b; } //****************************************************************************80 double *hess5_matrix ( ) //****************************************************************************80 // // Purpose: // // hess5_matrix() returns the HESS5 matrix. // // Discussion: // // HESS5 is simply an example of a 4x4 complex upper Hessenberg matrix. // // Example: // // 9 4 1 3 2 // 4 3 1 7 1 // 0 3 1 2 4 // 0 0 5 5 1 // 0 0 0 1 2 // // Properties: // // A is integral. // // A is not symmetric. // // A is upper Hessenberg. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2018 // // Author: // // John Burkardt // // Parameters: // // Output, double HESS5[5*5], the matrix. // { double *a; static double a_save[5*5] = { 9.0, 4.0, 0.0, 0.0, 0.0, 4.0, 3.0, 3.0, 0.0, 0.0, 1.0, 1.0, 1.0, 5.0, 0.0, 3.0, 7.0, 2.0, 5.0, 1.0, 2.0, 1.0, 4.0, 1.0, 2.0 }; a = r8mat_copy_new ( 5, 5, a_save ); return a; } //****************************************************************************80 double hess5_determinant ( ) //****************************************************************************80 // // Purpose: // // hess5_determinant() returns the determinant of the HESS5 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2018 // // Author: // // John Burkardt // // Parameters: // // Output, double HESS5_DETERMINANT, the determinant. // { double value; value = 1479.0; return value; } //****************************************************************************80 complex *hess5_eigen_right ( ) //****************************************************************************80 // // Purpose: // // hess5_eigen_right() returns the right eigenvectors of the HESS5 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2018 // // Author: // // John Burkardt // // Parameters: // /// Output, complex HESS5_EIGEN_RIGHT[5*5], the right eigenvector matrix. // { complex *a; static complex a_save[5*5] = { complex ( -0.4048,+0.0000 ), complex ( 1.0000,+0.0000 ), complex ( 0.0565,+0.0000 ), complex ( 0.1687,+0.0000 ), complex ( -0.8231,+0.0000 ), complex ( -0.2788,-0.1981 ), complex ( 1.0000,+0.0000 ), complex ( -0.0712,-0.9695 ), complex ( -0.3560,+0.6933 ), complex ( 0.1938,-0.0411 ), complex ( -0.2788,+0.1981 ), complex ( 1.0000,+0.0000 ), complex ( -0.0712,+0.9695 ), complex ( -0.3560,+0.6933 ), complex ( 0.1938,+0.0411 ), complex ( 1.0000,+0.0000 ), complex ( 0.0372,+0.0000 ), complex ( -0.2064,+0.0000 ), complex ( -0.5057,+0.0000 ), complex ( -0.0966,+0.0000 ), complex ( 1.0000,+0.0000 ), complex ( 0.5780,+0.0000 ), complex ( 0.1887,+0.0000 ), complex ( 0.1379,+0.0000 ), complex ( 0.0139,+0.0000 ) }; a = c8mat_copy_new ( 5, 5, a_save ); return a; } //****************************************************************************80 complex *hess5_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // hess5_eigenvalues() returns the eigenvalues of the HESS5 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2018 // // Author: // // John Burkardt // // Parameters: // // Output, complex HESS5_EIGENVALUES[5], the eigenvalues. // { complex *lambda; static complex lambda_save[5] = { complex ( 1.795071645585215, + 0.000000000000000 ), complex ( -0.484650565840867, + 3.050399870879445 ), complex ( -0.484650565840867, - 3.050399870879445 ), complex ( 7.232089690415871, + 0.000000000000000 ), complex ( 11.942139795680633, + 0.000000000000000 ) }; lambda = c8vec_copy_new ( 5, lambda_save ); return lambda; } //****************************************************************************80 double *hess5_inverse ( ) //****************************************************************************80 // // Purpose: // // hess5_inverse() returns the inverse of the HESS5 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2018 // // Author: // // John Burkardt // // Parameters: // // Output, double HESS5_INVERSE[5*5], the matrix. // { double *b; static double b_save[5*5] = { 0.131845841784990, -0.024340770791075, 0.073022312373225, -0.081135902636917, 0.040567951318458, -0.046653144016227, 0.054766734279919, -0.164300202839757, 0.182555780933063, -0.091277890466531, -0.129141311697093, 0.311020960108181, 0.066937119675456, -0.074374577417174, 0.037187288708587, 0.008789722785666, -0.068289384719405, 0.204868154158215, -0.005409060175794, 0.002704530087897, 0.145368492224476, -0.590939824205544, -0.227180527383367, 0.141311697092630, 0.429344151453685 }; b = r8mat_copy_new ( 5, 5, b_save ); return b; } //****************************************************************************80 double *hilbert_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // hilbert_matrix() returns the HILBERT matrix. // // Formula: // // A(I,J) = 1 / ( I + J - 1 ) // // Example: // // N = 5 // // 1/1 1/2 1/3 1/4 1/5 // 1/2 1/3 1/4 1/5 1/6 // 1/3 1/4 1/5 1/6 1/7 // 1/4 1/5 1/6 1/7 1/8 // 1/5 1/6 1/7 1/8 1/9 // // Properties: // // A is a Hankel matrix: constant along anti-diagonals. // // A is positive definite. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is totally positive. // // A is a Cauchy matrix. // // A is nonsingular. // // A is very ill-conditioned. // // The entries of the inverse of A are all integers. // // The sum of the entries of the inverse of A is N*N. // // The ratio of the absolute values of the maximum and minimum // eigenvalues is roughly EXP(3.5*N). // // The determinant of the Hilbert matrix of order 10 is // 2.16417... * 10^(-53). // // If the (1,1) entry of the 5 by 5 Hilbert matrix is changed // from 1 to 24/25, the matrix is exactly singular. And there // is a similar rule for larger Hilbert matrices. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 July 2008 // // Author: // // John Burkardt // // Reference: // // MD Choi, // Tricks or treats with the Hilbert matrix, // American Mathematical Monthly, // Volume 90, 1983, pages 301-312. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Nicholas Higham, // Accuracy and Stability of Numerical Algorithms, // Society for Industrial and Applied Mathematics, Philadelphia, PA, // USA, 1996; section 26.1. // // Donald Knuth, // The Art of Computer Programming, // Volume 1, Fundamental Algorithms, Second Edition // Addison-Wesley, Reading, Massachusetts, 1973, page 37. // // Morris Newman, John Todd, // Example A13, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, 1958, pages 466-476. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 1.0 / ( double ) ( i + j + 1 ); } } return a; } //****************************************************************************80 double hilbert_determinant ( int n ) //****************************************************************************80 // // Purpose: // // hilbert_determinant() returns the determinant of the HILBERT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HILBERT_DETERMINANT, the determinant. // { double bottom; double determ; int i; int j; double top; top = 1.0; for ( i = 0; i < n; i++ ) { for ( j = i + 1; j < n; j++ ) { top = top * ( double ) ( ( j - i ) * ( j - i ) ); } } bottom = 1.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { bottom = bottom * ( double ) ( i + j + 1 ); } } determ = top / bottom; return determ; } //****************************************************************************80 double *hilbert_inverse ( int n ) //****************************************************************************80 // // Purpose: // // hilbert_inverse() returns the inverse of the HILBERT matrix. // // Formula: // // A(I,J) = (-1)^(I+J) * (N+I-1)! * (N+J-1)! / // [ (I+J-1) * ((I-1)!*(J-1)!)^2 * (N-I)! * (N-J)! ] // // Example: // // N = 5 // // 25 -300 1050 -1400 630 // -300 4800 -18900 26880 -12600 // 1050 -18900 79380 -117600 56700 // -1400 26880 -117600 179200 -88200 // 630 -12600 56700 -88200 44100 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is almost impossible to compute accurately by general routines // that compute the inverse. // // A is the exact inverse of the Hilbert matrix; however, if the // Hilbert matrix is stored on a finite precision computer, and // hence rounded, A is actually a poor approximation // to the inverse of that rounded matrix. Even though Gauss elimination // has difficulty with the Hilbert matrix, it can compute an approximate // inverse matrix whose residual is lower than that of the // "exact" inverse. // // All entries of A are integers. // // The sum of the entries of A is N^2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double HILBERT_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; // // Set the (1,1) entry. // a[0+0*n] = ( double ) ( n * n ); // // Define Row 1, Column J by recursion on Row 1 Column J-1 // i = 0; for ( j = 1; j < n; j++ ) { a[i+j*n] = - a[i+(j-1)*n] * ( double ) ( ( n + j ) * ( i + j ) * ( n - j ) ) / ( double ) ( ( i + j + 1 ) * j * j ); } // // Define Row I by recursion on row I-1 // for ( i = 1; i < n; i++ ) { for ( j = 0; j < n; j++ ) { a[i+j*n] = - a[i-1+j*n] * ( double ) ( ( n + i ) * ( i + j ) * ( n - i ) ) / ( double ) ( ( i + j + 1 ) * ( i ) * ( i ) ); } } return a; } //****************************************************************************80 double *hoffman_matrix ( double omega ) //****************************************************************************80 // // Purpose: // // hoffman_matrix() computes the HOFFMAN matrix. // // Discussion: // // This matrix comes from a 4x11 linear programming problem. // // Example: // // c = cos ( THETA ) // c2 = cos ( 2 THETA ) // s = sin ( THETA ) // s2 = sin ( 2 THETA ) // t = tan ( THETA ) // w = OMEGA // // 1 0 0 0 0 0 0 0 0 0 0 // 0 1 0 c -wc c2 -2wcc c2 2wcc c wc // 0 0 1 ts/w c tsw/w c2 -2ss/2 c2 -ts/w c // 0 0 0 (c-1)/c w 0 2w 4ss -2wc2 4ss w*(1-2c) // // Discussion: // // In 1951, Alan Hoffman presented the first example of a "circle", // that is, a linear programming problem which causes the linear // programming algorithm to fall into a cycle of operations. // Because of the possibility of such occurrences, the linear // programming algorithm was refined to avoid such cycles. // // The matrix represents a system of 3 linear equations and 11 variables, // A * x = b // and one linear constraint // c' * x = z // with the added condition // 0 <= x. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Reference: // // George Dantzig, // Linear Programming and Extensions, // Princeton University Press, 1963. // // Jon Lee, // Hoffman's Circle Untangled, // SIAM Review, // Volume 39, Number 1, March 1997, pages 98-105. // // Parameters: // // Input, double OMEGA, a value which is required to be // greater than ( 1 - cos ( THETA ) ) / ( 1 - 2 cos ( THETA ) ) // where THETA is 2 * pi / 5. This limit is roughly 1.809. // // Output, double HOFFMAN[4*11], the matrix. // { double *a; double c; double c2; int m = 4; int n = 11; const double r8_pi = 3.141592653589793; double s; double s2; double t; double theta; theta = 2.0 * r8_pi / 5.0; c = cos ( theta ); if ( omega <= ( 1.0 - c ) / ( 1.0 - 2.0 * c ) ) { cerr << "\n"; cerr << "HOFFMAN(): Fatal error!\n"; cerr << " Illegal input value of OMEGA.\n"; exit ( 1 ); } a = new double[m*n]; c2 = cos ( 2.0 * theta ); s = sin ( theta ); s2 = sin ( 2.0 * theta ); t = tan ( theta ); a[0+0*m] = 1.0; a[0+1*m] = 0.0; a[0+2*m] = 0.0; a[0+3*m] = 0.0; a[0+4*m] = 0.0; a[0+5*m] = 0.0; a[0+6*m] = 0.0; a[0+7*m] = 0.0; a[0+8*m] = 0.0; a[0+9*m] = 0.0; a[0+10*m] = 0.0; a[1+0*m] = 0.0; a[1+1*m] = 1.0; a[1+2*m] = 0.0; a[1+3*m] = c; a[1+4*m] = - omega * c; a[1+5*m] = c2; a[1+6*m] = - 2.0 * omega * c * c; a[1+7*m] = c2; a[1+8*m] = 2.0 * omega * c * c; a[1+9*m] = c; a[1+10*m] = omega * c; a[2+0*m] = 0.0; a[2+1*m] = 0.0; a[2+2*m] = 1.0; a[2+3*m] = t * s / omega; a[2+4*m] = c; a[2+5*m] = t * s2 / omega; a[2+6*m] = c2; a[2+7*m] = - 2.0 * s * s / omega; a[2+8*m] = c2; a[2+9*m] = - t * s / omega; a[2+10*m] = c; a[3+0*m] = 0.0; a[3+1*m] = 0.0; a[3+2*m] = 0.0; a[3+3*m] = ( c - 1.0 ) / c; a[3+4*m] = omega; a[3+5*m] = 0.0; a[3+6*m] = 2.0 * omega; a[3+7*m] = 4.0 * s * s; a[3+8*m] = - 2.0 * omega * c2; a[3+9*m] = 4.0 * s * s; a[3+10*m] = omega * ( 1.0 - 2.0 * c ); return a; } //****************************************************************************80 double *hoffman_rhs ( ) //****************************************************************************80 // // Purpose: // // hoffman_rhs() returns the HOFFMAN right hand side. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double HOFFMAN_RHS[3], the right hand side vector. // { double *b; static double b_save[3] = { 1.0, 0.0, 0.0 }; b = r8vec_copy_new ( 3, b_save ); return b; } //****************************************************************************80 double *hoffman_optimum ( ) //****************************************************************************80 // // Purpose: // // hoffman_optimum() returns the HOFFMAN optimum solution. // // Discussion: // // X = (/ 1, 0 /) is both the unique optimum and the only // basic feasible solution. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double HOFFMAN_OPTIMUM[2], the optimum solution. // { double *x; static double x_save[2] = { 1.0, 0.0 }; x = r8vec_copy_new ( 2, x_save ); return x; } //****************************************************************************80 double *householder_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // householder_matrix() constructs a HOUSEHOLDER matrix. // // Discussion: // // A Householder matrix is also called an elementary reflector. // // Formula: // // A = I - ( 2 * X * X' ) / ( X' * X ) // // Example: // // N = 5, X = ( 1, 1, 1, 0, -1 ) // // 1/2 -1/2 -1/2 0 1/2 // -1/2 1/2 -1/2 0 1/2 // -1/2 -1/2 1/2 0 1/2 // 0 0 0 1 0 // 1/2 1/2 1/2 0 1/2 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is orthogonal: A' * A = A * A' = I. // // inverse ( A ) = A. // // det ( A ) = -1. // // A is unimodular. // // If Y and Z are nonzero vectors of equal length, and // X = ( Y - Z ) / NORM(Y-Z), // then // A * Y = Z. // // A represents a reflection through the plane which // is perpendicular to the vector X. In particular, A*X = -X. // // LAMBDA(1) = -1; // LAMBDA(2:N) = +1. // // If X is the vector used to define H, then X is the eigenvector // associated with the eigenvalue -1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989. // // Pete Stewart, // Introduction to Matrix Computations, // Academic Press, 1973, // // James Wilkinson, // The Algebraic Eigenvalue Problem, // Oxford University Press, 1965. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the // Householder matrix. // // Output, double HOUSEHOLDER[N*N], the matrix. // { double *a; int i; int j; double xdot; a = r8mat_identity ( n ); xdot = r8vec_dot_product ( n, x, x ); if ( 0.0 < xdot ) { for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { a[i+j*n] = a[i+j*n] - 2.0 * x[i] * x[j] / xdot; } } } return a; } //****************************************************************************80 double householder_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // householder_determinant() returns the determinant of a HOUSEHOLDER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the // Householder matrix. // // Output, double HOUSEHOLDER_DETERMINANT, the determinant. // { double determ; determ = -1.0; return determ; } //****************************************************************************80 double *householder_eigenvalues ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // householder_eigenvalues() returns the eigenvalues of a HOUSEHOLDER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the // Householder matrix. // // Output, double HOUSEHOLDER_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; lambda[0] = -1.0; for ( i = 1; i < n; i++ ) { lambda[i] = +1.0; } return lambda; } //****************************************************************************80 double *householder_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // householder_inverse() returns the inverse of a HOUSEHOLDER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the vector that defines the // Householder matrix. // // Output, double HOUSEHOLDER_INVERSE[N*N], the eigenvalues. // { double *a; a = householder_matrix ( n, x ); return a; } //****************************************************************************80 void i4_factor ( int n, int maxfactor, int &nfactor, int factor[], int exponent[], int &nleft ) //****************************************************************************80 // // Purpose: // // i4_factor() factors an I4 into prime factors. // // Discussion: // // The factorization may be incomplete. The remaining unresolved // factor is given as NLEFT: // // N = NLEFT * Product ( 1 <= I <= NFACTOR ) FACTOR(I)^EXPONENT(I). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the integer to be factored. N may be positive, // negative, or 0. // // Input, int MAXFACTOR, the maximum number of prime factors for // which storage has been allocated. // // Output, int &NFACTOR, the number of prime factors of N discovered // by the routine. // // Output, int FACTOR[MAXFACTOR], the prime factors of N. // // Output, int EXPONENT[MAXFACTOR]. EXPONENT(I) is the power of // the FACTOR(I) in the representation of N. // // Output, int &NLEFT, the factor of N that the routine could not // divide out. If NLEFT is 1, then N has been completely factored. // Otherwise, NLEFT represents factors of N involving large primes. // { int i; int maxprime; int p; nfactor = 0; for ( i = 0; i < maxfactor; i++ ) { factor[i] = 0; } for ( i = 0; i < maxfactor; i++ ) { exponent[i] = 0; } nleft = n; if ( n == 0 ) { return; } if ( abs ( n ) == 1 ) { nfactor = 1; factor[0] = 1; exponent[0] = 1; return; } // // Find out how many primes we stored. // maxprime = prime ( -1 ); // // Try dividing the remainder by each prime. // for ( i = 1; i <= maxprime; i++ ) { p = prime ( i ); if ( abs ( nleft ) % p == 0 ) { if ( nfactor < maxfactor ) { nfactor = nfactor + 1; factor[nfactor-1] = p; exponent[nfactor-1] = 0; for ( ; ; ) { exponent[nfactor-1] = exponent[nfactor-1] + 1; nleft = nleft / p; if ( abs ( nleft ) % p != 0 ) { break; } } if ( abs ( nleft ) == 1 ) { break; } } } } return; } //****************************************************************************80 int i4_huge ( ) //****************************************************************************80 // // Purpose: // // i4_huge() returns a "huge" I4. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 May 2003 // // Author: // // John Burkardt // // Parameters: // // Output, int I4_HUGE, a "huge" I4. // { return 2147483647; } //****************************************************************************80 bool i4_is_even ( int i ) //****************************************************************************80 // // Purpose: // // i4_is_even() returns TRUE if an I4 is even. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the value to be tested. // // Output, bool I4_IS_EVEN, is TRUE if I is even. // { bool value; value = ( ( i % 2 ) == 0 ); return value; } //****************************************************************************80 bool i4_is_odd ( int i ) //****************************************************************************80 // // Purpose: // // i4_is_odd() returns TRUE if an I4 is odd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the values to be tested. // // Output, bool I4_IS_ODD, is TRUE if I is odd. // { bool value; value = ( ( i % 2 ) != 0 ); return value; } //****************************************************************************80 bool i4_is_prime ( int n ) //****************************************************************************80 // // Purpose: // // i4_is_prime() reports whether an I4 is prime. // // Discussion: // // A simple, unoptimized sieve of Erasthosthenes is used to // check whether N can be divided by any integer between 2 // and SQRT(N). // // Note that negative numbers, 0 and 1 are not considered prime. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the integer to be tested. // // Output, bool I4_IS_PRIME, is TRUE if N is prime, and FALSE // otherwise. // { int i; int nhi; if ( n <= 0 ) { return false; } if ( n == 1 ) { return false; } if ( n <= 3 ) { return true; } nhi = ( int ) ( sqrt ( ( double ) ( n ) ) ); for ( i = 2; i <= nhi; i++ ) { if ( ( n % i ) == 0 ) { return false; } } return true; } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // i4_log_10() returns the integer part of the logarithm base 10 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // i4_max() returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // i4_min() returns the smaller of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // i4_modp() returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cerr << "\n"; cerr << "I4_MODP(): Fatal error!\n"; cerr << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // i4_power() returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER(): Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER(): Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_rise ( int x, int n ) //****************************************************************************80 // // Purpose: // // i4_rise() computes the rising factorial function [X]^N. // // Discussion: // // [X}^N = X * ( X + 1 ) * ( X + 2 ) * ... * ( X + N - 1 ). // // Note that the number of ways of arranging N objects in M ordered // boxes is [M}^N. (Here, the ordering in each box matters). Thus, // 2 objects in 2 boxes have the following 6 possible arrangements: // // -/12, 1/2, 12/-, -/21, 2/1, 21/-. // // Moreover, the number of non-decreasing maps from a set of // N to a set of M ordered elements is [M]^N / N!. Thus the set of // nondecreasing maps from (1,2,3) to (a,b,c,d) is the 20 elements: // // aaa, abb, acc, add, aab, abc, acd, aac, abd, aad // bbb, bcc, bdd, bbc, bcd, bbd, ccc, cdd, ccd, ddd. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int X, the argument of the rising factorial function. // // Input, int N, the order of the rising factorial function. // If N = 0, RISE = 1, if N = 1, RISE = X. Note that if N is // negative, a "falling" factorial will be computed. // // Output, int I4_RISE, the value of the rising factorial function. // { int i; int value; value = 1; if ( 0 < n ) { for ( i = 1; i <= n; i++ ) { value = value * x; x = x + 1; } } else if ( n < 0 ) { for ( i = -1; n <= i; i-- ) { value = value * x; x = x - 1; } } return value; } //****************************************************************************80 int i4_sign ( int i ) //****************************************************************************80 // // Purpose: // // i4_sign() returns the sign of an I4. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the value whose sign is desired. // // Output, int I4_SIGN, the sign of I. { int value; if ( i < 0 ) { value = -1; } else { value = 1; } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // i4_uniform_ab() returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Input: // // int A, B, the limits of the interval. // // int &SEED, the "seed" value, which should NOT be 0. // // Output: // // int I4_UNIFORM, a number between A and B. // // int &SEED, an updated seed. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB(): Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // i4_wrap() forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I Value // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 void i4mat_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // i4mat_print() prints an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // i4mat_print_some() prints some of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col:"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << j - 1; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to INCX) entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << a[i-1+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int i4vec_index ( int n, int a[], int aval ) //****************************************************************************80 // // Purpose: // // i4vec_index() returns the location of the first occurrence of a given value. // // Discussion: // // An I4VEC is a vector of integer values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be searched. // // Input, int AVAL, the value to be indexed. // // Output, int I4VEC_INDEX, the first location in A which has the // value AVAL, or -1 if no such index exists. // { int i; int index; for ( i = 1; i <= n; i++ ) { if ( a[i-1] == aval ) { index = i; return index; } } index = -1; return index; } //****************************************************************************80 int *i4vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // i4vec_indicator_new() sets an I4VEC to the indicator vector. // // Discussion: // // An I4VEC is a vector of integer values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 February 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, int I4VEC_INDICATOR_NEW[N], the initialized array. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = i + 1; } return a; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // i4vec_print() prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 double *idempotent_random_matrix ( int n, int rank, int key ) //****************************************************************************80 // // Purpose: // // idempotent_random_matrix() returns the idempotent_random matrix. // // Discussion: // // The idempotent_random matrix is a random idempotent matrix of rank K. // // Properties: // // A is idempotent: A * A = A // // If A is invertible, then A must be the identity matrix. // In other words, unless A is the identity matrix, it is singular. // // I - A is also idempotent. // // All eigenvalues of A are either 0 or 1. // // rank(A) = trace(A) // // A is a projector matrix. // // The matrix I - 2A is involutory, that is ( I - 2A ) * ( I - 2A ) = I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 June 2011 // // Author: // // John Burkardt // // Reference: // // Alston Householder, John Carpenter, // The singular values of involutory and of idempotent matrices, // Numerische Mathematik, // Volume 5, 1963, pages 234-237. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RANK, the rank of A. // 0 <= RANK <= N. // // Input, int KEY, a positive value that selects the data. // // Output, double idempotent_random[N*N], the matrix. // { double *a; int i; int j; int k; double *q; double value; a = new double[n*n]; if ( rank < 0 || n < rank ) { cerr << "\n"; cerr << "idempotent_random(): Fatal error!\n"; cerr << " RANK must be between 0 and N.\n"; cerr << " Input value = " << rank << "\n"; exit ( 1 ); } // // Get a random orthogonal matrix Q. // q = orthogonal_random_matrix ( n, key ); // // Compute Q' * D * Q, where D is the diagonal eigenvalue matrix // of RANK 1's followed by N-RANK 0's. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { value = 0.0; for ( k = 0; k < rank; k++ ) { value = value + q[k+i*n] * q[k+j*n]; } a[i+j*n] = value; } } // // Free memory. // delete [] q; return a; } //****************************************************************************80 double idempotent_random_determinant ( int n, int rank, int key ) //****************************************************************************80 // // Purpose: // // idempotent_random_determinant() returns the determinant of the idempotent_random matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RANK, the rank of A. // // Input, int KEY, a positive value that selects the data. // // Output, double idempotent_random_DETERMINANT, the determinant. // { double determ; if ( rank == n ) { determ = 1.0; } else { determ = 0.0; } return determ; } //****************************************************************************80 double *idempotent_random_eigenvalues ( int n, int rank, int key ) //****************************************************************************80 // // Purpose: // // idempotent_random_eigenvalues() returns the eigenvalues of the idempotent_random matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RANK, the rank of A. // // Input, int KEY, a positive value that selects the data. // // Output, double idempotent_random_EIGENVALUES[N] the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < rank; i++ ) { lambda[i] = 1.0; } for ( i = rank; i < n; i++ ) { lambda[i] = 0.0; } return lambda; } //****************************************************************************80 double *idempotent_random_eigen_right ( int n, int rank, int key ) //****************************************************************************80 // // Purpose: // // idempotent_random_eigen_right() returns the right eigenvectors of the idempotent_random matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2011 // // Author: // // John Burkardt // // Reference: // // Alston Householder, John Carpenter, // The singular values of involutory and of idempotent matrices, // Numerische Mathematik, // Volume 5, 1963, pages 234-237. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RANK, the rank of A. // 0 <= RANK <= N. // // Input, int KEY, a positive value that selects the data. // // Output, double idempotent_random_EIGEN_RIGHT[N*N], the matrix. // { double *x; double *y; y = orthogonal_random_matrix ( n, key ); x = r8mat_transpose_new ( n, n, y ); // // Free memory. // delete [] y; return x; } //****************************************************************************80 double *identity_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // identity_matrix() returns the IDENTITY matrix. // // Formula: // // if ( I = J ) // A[i+j*n] = 1 // else // A[i+j*n] = 0 // // Example: // // M = 4, N = 5 // // 1 0 0 0 0 // 0 1 0 0 0 // 0 0 1 0 0 // 0 0 0 1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero/one matrix. // // A is nonsingular. // // A is involutory: A * A = I. // // A is diagonal. // // Because A is diagonal, it has property A. // // A is symmetric: A' = A. // // A is a circulant matrix: each row is shifted once to get the next row. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // LAMBDA(1:N) = 1 // // The matrix of eigenvectors of A is A. // // det ( A ) = 1. // // A is unimodular. // // For any vector v, A*v = v. // // For any matrix B, A*B = B*A=B. // // A is persymmetric: A[i+j*n] = A(N+1-J,N+1-I). // // A is centrosymmetric: A[i+j*n] = A(N+1-I,N+1-J). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double IDENTITY[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double identity_condition ( int n ) //****************************************************************************80 // // Purpose: // // identity_condition() returns the L1 condition of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 1.0; b_norm = 1.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double identity_determinant ( int n ) //****************************************************************************80 // // Purpose: // // identity_determinant() returns the determinant of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *identity_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // identity_eigenvalues() returns the eigenvalues of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = 1.0; } return lambda; } //****************************************************************************80 double *identity_inverse ( int n ) //****************************************************************************80 // // Purpose: // // identity_inverse() returns the inverse of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *identity_eigen_left ( int n ) //****************************************************************************80 // // Purpose: // // identity_eigen_left() returns the left eigenvectors of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_EIGEN_LEFT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *identity_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // identity_eigen_right() returns the right eigenvectors of the IDENTITY matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IDENTITY_EIGEN_RIGHT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *ijfact1_matrix ( int n ) //****************************************************************************80 // // Purpose: // // ijfact1_matrix() returns the IJFACT1 matrix. // // Discussion: // // This matrix is sometimes called the IJ-factorial matrix. // // Formula: // // A(I,J) = (I+J)! // // Example: // // N = 4 // // 2 6 24 120 // 6 24 120 720 // 24 120 720 5040 // 120 720 5040 40320 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is a Hankel matrix: constant along anti-diagonals. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Reference: // // MJC Gover, // The explicit inverse of factorial Hankel matrices, // Department of Mathematics, University of Bradford, 1993. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IJFACT1[N*N], the matrix. // { double *a; int fact; int i; int ihi; int ilo; int k; a = new double[n*n]; fact = 1; for ( k = 2; k <= 2 * n; k++ ) { fact = fact * k; ilo = i4_max ( 1, k - n ); ihi = i4_min ( n, k - 1 ); for ( i = ilo; i <= ihi; i++ ) { a[i-1+(k-i-1)*n] = ( double ) ( fact ); } } return a; } //****************************************************************************80 double ijfact1_determinant ( int n ) //****************************************************************************80 // // Purpose: // // ijfact1_determinant() returns the determinant of the IJFACT1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IJFACT1_DETERMINANT, the determinant. // { double determ; int i; int ip1; int nmi; int np1; determ = 1.0; for ( i = 1; i <= n - 1; i++ ) { ip1 = i + 1; nmi = n - i; determ = determ * r8_factorial ( ip1 ) * r8_factorial ( nmi ); } np1 = n + 1; determ = determ * r8_factorial ( np1 ); return determ; } //****************************************************************************80 double *ijfact2_matrix ( int n ) //****************************************************************************80 // // Purpose: // // ijfact2_matrix() returns the IJFACT2 matrix. // // Formula: // // A(I,J) = 1 / ( (I+J)! ) // // Example: // // N = 4 // // 1/2 1/6 1/24 1/120 // 1/6 1/24 1/120 1/720 // 1/24 1/120 1/720 1/5040 // 1/120 1/720 1/5040 1/40320 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is a Hankel matrix: constant along anti-diagonals. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Reference: // // MJC Gover, // The explicit inverse of factorial Hankel matrices, // Department of Mathematics, University of Bradford, 1993. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IJFACT2[N*N], the matrix. // { double *a; double fact; int i; int ihi; int ilo; int ipj; a = new double[n*n]; fact = 1.0; for ( ipj = 2; ipj <= 2 * n; ipj++ ) { fact = fact * ( double ) ipj; ilo = i4_max ( 1, ipj - n ); ihi = i4_min ( n, ipj - 1 ); for ( i = ilo; i <= ihi; i++ ) { a[i-1+(ipj-i-1)*n] = 1.0 / fact; } } return a; } //****************************************************************************80 double ijfact2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // ijfact2_determinant() returns the determinant of the IJFACT2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double IJFACT2_DETERMINANT, the determinant. // { double determ; int i; int np1pi; determ = 1.0; for ( i = 0; i <= n - 1; i++ ) { np1pi = n + 1 + i; determ = determ * r8_factorial ( i ) / r8_factorial ( np1pi ); } if ( ( ( ( n * ( n - 1 ) ) / 2 ) % 2 ) != 0 ) { determ = - determ; } return determ; } //****************************************************************************80 double *ill3_matrix ( ) //****************************************************************************80 // // Purpose: // // ill3_matrix() returns the ILL3 matrix. // // Discussion: // // This is a 3x3 ill-conditioned matrix. // // Formula: // // -149 -50 -154 // 537 180 546 // -27 -9 -25 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The eigenvalues are ( 1, 2, 3 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ILL3[3*3], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[3*3] = { -149.0, 537.0, -27.0, -50.0, 180.0, -9.0, -154.0, 546.0, -25.0 }; a = r8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 double ill3_condition ( ) //****************************************************************************80 // // Purpose: // // ill3_condition() returns the L1 condition of the ILL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 January 2015 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ILL3_CONDITION, the L1 condition. // { double value; value = 725.0 * 299.0; return value; } //****************************************************************************80 double ill3_determinant ( ) //****************************************************************************80 // // Purpose: // // ill3_determinant() returns the determinant of the ILL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ILL3_DETERMINANT, the determinant. // { double determ; determ = 6.0; return determ; } //****************************************************************************80 double *ill3_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // ill3_eigenvalues() returns the eigenvalues of the ILL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ILL3_EIGENVALUES[3], the eigenvalues. // { double *lambda; static double lambda_save[3] = { 3.0, 2.0, 1.0 }; lambda = r8vec_copy_new ( 3, lambda_save ); return lambda; } //****************************************************************************80 double *ill3_inverse ( ) //****************************************************************************80 // // Purpose: // // ill3_inverse() returns the inverse of the ILL3 matrix. // // Formula: // // 69 68/3 70 // -439/2 -433/6 -224 // 9/2 3/2 5 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double ILL3_INVERSE[3*3], the matrix. // { double *a; int n = 3; a = new double[n*n]; a[0+0*n] = 69.0; a[1+0*n] = -219.5; a[2+0*n] = 4.5; a[0+1*n] = 68.0 / 3.0; a[1+1*n] = -433.0 / 6.0; a[2+1*n] = 1.5; a[0+2*n] = 70.0; a[1+2*n] = -224.0; a[2+2*n] = 5.0; return a; } //****************************************************************************80 double *ill3_eigen_right ( ) //****************************************************************************80 // // Purpose: // // ill3_eigen_right() returns the right eigenvectors of the ILL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2011 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ILL3_EIGEN_RIGHT[3*3], the right eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[3*3] = { -0.139139989879567, 0.973979929161820, -0.178894272703878, -0.404061017818396, 0.909137290098421, 0.101015254452291, 0.316227766017190, -0.948683298050396, -0.000000000000407 }; a = r8mat_copy_new ( 3, 3, a_save ); return a; } //****************************************************************************80 double *indicator_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // indicator_matrix() returns the INDICATOR matrix. // // Discussion: // // The indicator matrix has entries which reveal their row and column. // // That makes it useful for testing printing algorithms, or schemes // which select a submatrix, or extract a particular value from a // matrix, or in general, any situation in which it would be useful // to know the origin of a value that was extracted from a matrix. // // Example: // // M = 3, N = 4 // // A = // // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // Properties: // // For a particular A, no two entries are equal. // // A is generally not symmetric: A' /= A. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix A. // // Output, double INDICATOR[M*N], the matrix. // { double *a; int i; int j; int k; a = new double[m*n]; k = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( ( i + 1 ) * k + j + 1 ); } } return a; } //****************************************************************************80 double *integration_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // integration_matrix() returns the INTEGRATION matrix. // // Formula: // // if ( I = J ) // A(I,J) = 1 // else if ( J = I + 1 ) // A(I,J) = ALPHA / I // else // A(I,J) = 0 // // Example: // // N = 5, // ALPHA = 2, // // 1 2 0 0 0 // 0 1 2/2 0 0 // 0 0 1 2/3 0 // 0 0 0 1 2/4 // 0 0 0 0 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is unit upper triangular. // // A is bidiagonal. // // Because A is bidiagonal, it has property A (bipartite). // // A is nonsingular. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar which defines the first // superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double INTEGRATION[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i ) { a[i+j*n] = 1.0; } else if ( j == i + 1 ) { a[i+j*n] = alpha / ( double ) ( i + 1 ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double integration_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // integration_determinant() returns the determinant of the INTEGRATION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar which defines the first // superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double INTEGRATION_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *integration_eigenvalues ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // integration_eigenvalues() returns the eigenvalues of the INTEGRATION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar which defines the first // superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double INTEGRATION_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = 1.0; } return lambda; } //****************************************************************************80 double *integration_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // integration_inverse() returns the inverse of the INTEGRATION matrix. // // Formula: // // if ( I = J ) // A(I,J) = 1 // else if ( I < J ) // A(I,J) = (-ALPHA)^(J-I) / (I*...*J-1) // else // A(I,J) = 0 // // Example: // // ALPHA = 2, N = 5 // // 1 -2 2 -4/3 2/3 // 0 1 -1 2/3 -1/3 // 0 0 1 -2/3 1/3 // 0 0 0 1 -1/2 // 0 0 0 0 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is unit upper triangular. // // A is nonsingular. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar which defines the first // superdiagonal of the matrix. // // Input, int N, the order of the matrix. // // Output, double INTEGRATION_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i ) { a[i+j*n] = 1.0; } else if ( i < j ) { a[i+j*n] = pow ( - alpha, j - i ) / ( double ) ( i4_rise ( i + 1, j - i ) ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *involutory_matrix ( int n ) //****************************************************************************80 // // Purpose: // // involutory_matrix() returns the involutory matrix. // // Discussion: // // This matrix is an example of an involutory matrix. // // Formula: // // a[i+j*n] = 1 / ( I + J - 1 ) // // Set D = -N // // Multiply column 1 of A by D. // // For I = 1 to N-1 // D = -(N+I)*(N-I)*D/(I*I) // Multiply row I + 1 by D. // End // // Example: // // N = 5 // // -5 0.5 0.33 0.25 0.2 // -300 40.0 30.00 24.00 20.0 // 1050 -157.5 -126.00 -105.00 -90.0 // -1400 224.0 186.66 160.00 140.0 // 630 -105.0 -90.00 -78.75 -70.0 // // Properties: // // A is generally not symmetric: A' /= A. // // A is involutory: A * A = I. // // det ( A ) = +1 or -1. // // A is unimodular. // // The matrices: // B = 1/2 ( I - A ) // and // C = 1/2 ( I + A ) // are idempotent, that is, B * B = B, and C * C = C. // // A is ill-conditioned. // // A is a diagonally scaled version of the Hilbert matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2011 // // Author: // // John Burkardt // // Reference: // // Alston Householder, John Carpenter, // The singular values of involutory and of idempotent matrices, // Numerische Mathematik, // Volume 5, 1963, pages 234-237. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double involutory[N*N], the matrix. // { double *a; double d; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 1.0 / ( double ) ( i + j + 1 ); } } d = - ( double ) ( n ); j = 0; for ( i = 0; i < n; i++ ) { a[i+j*n] = d * a[i+j*n] ; } for ( i = 1; i < n; i++ ) { d = - ( double ) ( ( n + i ) * ( n - i ) ) * d / ( double ) ( i * i ); for ( j = 0; j < n; j++ ) { a[i+j*n] = d * a[i+j*n]; } } return a; } //****************************************************************************80 double involutory_determinant ( int n ) //****************************************************************************80 // // Purpose: // // involutory_determinant() returns the determinant of the involutory matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double involutory_DETERMINANT, the determinant. // { double determ; if ( ( n % 4 ) == 0 || ( n % 4 ) == 3 ) { determ = 1.0; } else { determ = -1.0; } return determ; } //****************************************************************************80 double *involutory_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // involutory_eigenvalues() returns the eigenvalues of the involutory matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double involutory_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n / 2; i++ ) { lambda[i] = +1.0; } for ( i = n / 2; i < n; i++ ) { lambda[i] = -1.0; } return lambda; } //****************************************************************************80 double *involutory_inverse ( int n ) //****************************************************************************80 // // Purpose: // // involutory_inverse() returns the inverse of the involutory matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double involutory_INVERSE[N*N], the matrix. // { double *a; a = involutory_matrix ( n ); return a; } //****************************************************************************80 double *involutory_random_matrix ( int n, int rank, int key ) //****************************************************************************80 // // Purpose: // // involutory_random_matrix() returns the involutory_RANDOM matrix. // // Discussion: // // This matrix is a random involutory matrix. // // Properties: // // A is nonsingular. // // A is involutory: A * A = I // // det ( A ) = +1 or -1. // // A is unimodular. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Reference: // // Alston Householder, John Carpenter, // The singular values of involutory and of idempotent matrices, // Numerische Mathematik, // Volume 5, 1963, pages 234-237. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RANK, the rank of the idempotent matrix // used to generate A. Setting RANK = 0 or N will yield // a multiple of the identity. Intermediate values will give // more interesting results. // // Input, int KEY, a positive value that selects the data. // // Output, double involutory_RANDOM[N*N], the matrix. // { double *a; int i; int j; a = idempotent_random_matrix ( n, rank, key ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0 - 2.0 * a[i+j*n]; } else { a[i+j*n] = - 2.0 * a[i+j*n]; } } } return a; } //****************************************************************************80 void jacobi_iterate ( int n, double a[], double lambda[], double x[] ) //****************************************************************************80 // // Purpose: // // jacobi_iterate() applies the Jacobi eigenvalue iteration to a symmetric matrix. // // Discussion: // // I had to modify the code, in order to avoid cases where the // off-diagonal element was not exactly zero, but very very close. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], a symmetric matrix. // On output, the matrix has been overwritten by an approximately // diagonal matrix, with the eigenvalues on the diagonal. // // Output, double LAMBDA[N], the computed eigenvalues. // // Output, double X[N*N], the computed eigenvector matrix. // { double *b; double c; double eps = 0.00001; double error_frobenius; int i; int it; int it_max = 100; int j; int k; double norm_fro; double s; double sum2; double t; double t1; double t2; double u; error_frobenius = r8mat_is_symmetric ( n, n, a ); if ( eps < error_frobenius ) { cerr << "\n"; cerr << "JACOBI_ITERATE(): Fatal error!\n"; cerr << " The input matrix is not symmetric.\n"; exit ( 1 ); } b = r8mat_copy_new ( n, n, a ); norm_fro = r8mat_norm_fro ( n, n, b ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { x[i+j*n] = 1.0; } else { x[i+j*n] = 0.0; } } } for ( it = 1; it <= it_max; it++ ) { for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { if ( eps * norm_fro < fabs ( b[i+j*n] ) + fabs ( b[j+i*n] ) ) { u = ( b[j+j*n] - b[i+i*n] ) / ( b[i+j*n] + b[j+i*n] ); t = r8_sign ( u ) / ( fabs ( u ) + sqrt ( u * u + 1.0 ) ); c = 1.0 / sqrt ( t * t + 1.0 ); s = t * c; // // A -> A * Q. // for ( k = 0; k < n; k++ ) { t1 = b[i+k*n]; t2 = b[j+k*n]; b[i+k*n] = t1 * c - t2 * s; b[j+k*n] = t1 * s + t2 * c; } // // A -> Q' * A // for ( k = 0; k < n; k++ ) { t1 = b[k+i*n]; t2 = b[k+j*n]; b[k+i*n] = c * t1 - s * t2; b[k+j*n] = s * t1 + c * t2; } // // X -> Q' * X // for ( k = 0; k < n; k++ ) { t1 = x[k+i*n]; t2 = x[k+j*n]; x[k+i*n] = c * t1 - s * t2; x[k+j*n] = s * t1 + c * t2; } } } } // // Test the size of the off-diagonal elements. // sum2 = 0.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { sum2 = sum2 + fabs ( b[i+j*n] ); } } if ( sum2 <= eps * ( norm_fro + 1.0 ) ) { break; } } for ( i = 0; i < n; i++ ) { lambda[i] = b[i+i*n]; } // // Free memory. // delete [] b; return; } //****************************************************************************80 double *jacobi_legendre_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // jacobi_legendre_matrix() returns the JACOBI LEGENDRE matrix. // // Formula: // // if ( J = I - 1 ) // A(I,J) = 0.5 * sqrt ( ( 4 * J^2 ) / ( 4 * J^2 - 1 ) ) // else if ( J = I + 1 ) then // A(I,J) = 0.5 * sqrt ( ( 4 * (J-1)^2 ) / ( 4 * (J-1)^2 - 1 ) ) // else // A(I,J) = 0 // // Example: // // M = 4, N = 4 // // 0 0.577350269 0 0 // 0.577350269 0 0.516397779 0 // 0 0.516397779 0 0.507092553 // 0 0 0.507092553 0 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A has a zero diagonal. // // The eigenvalues of A are the zeros of the Legendre polynomial // of degree N. They lie symmetrically in [-1,1], and are also // the nodes of Gauss-Legendre quadrature. For the case of N = 4, // these eigenvalues are // // [ -0.861136312, -0.339981044, +0.339981044, +0.861136312 ]. // // It follows that A is singular when N is odd. // // The J-th Gauss-Legendre weight is twice the square of the first // component of the J-th eigenvector of A. For the case of N = 4, // the eigenvector matrix is: // // -0.417046 -0.571028 -0.571028 0.417046 // 0.622037 0.336258 -0.336258 0.622038 // -0.571028 0.417046 0.417046 0.571028 // 0.336258 -0.622037 0.622038 0.336258 // // and the corresponding weights are // // [ 0.347854845, 0.652145155, 0.652145155, 0.347854845 ] // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2011 // // Author: // // John Burkardt // // Reference: // // Lloyd Trefethen, David Bau, // Numerical Linear Algebra, // SIAM, 1997, pages 287-292. // // Input: // // int M, N, the order of the matrix. // // Output: // // double jacobi_legendre_matrix[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { if ( j == i - 1 ) { a[i+j*m] = 0.5 * sqrt ( ( double ) ( 4 * ( j + 1 ) * ( j + 1 ) ) / ( double ) ( 4 * ( j + 1 ) * ( j + 1 ) - 1 ) ); } else if ( j == i + 1 ) { a[i+j*m] = 0.5 * sqrt ( ( double ) ( 4 * j * j ) / ( double ) ( 4 * j * j - 1 ) ); } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double jacobi_legendre_determinant ( int n ) //****************************************************************************80 // // Purpose: // // jacobi_legendre_determinant() returns the determinant of the JACOBI LEGENDRE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double jacobi_legendre_determinant, the determinant. // { double determ; double *lambda; if ( ( n % 2 ) == 1 ) { determ = 0.0; } else { lambda = legendre_zeros ( n ); determ = r8vec_product ( n, lambda ); // // Free memory. // delete [] lambda; } return determ; } //****************************************************************************80 double *jacobi_legendre_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // jacobi_legendre_eigenvalues() returns the eigenvalues of the JACOBI LEGENDRE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 August 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double jacobi_legendre_eigenvalues[n], the eigenvalues. // { double *lambda; lambda = legendre_zeros ( n ); return lambda; } //****************************************************************************80 double *jacobi_legendre_inverse ( int n ) //****************************************************************************80 // // Purpose: // // jacobi_legendre_inverse() returns the inverse of the JACOBI LEGENDRE matrix. // // Discussion: // // This inverse is related to that of the CLEMENT1 matrix. // // Example: // // N = 6 // // 0 1.7321 0 -1.7638 0 1.7689 // 1.7321 0 0 0 0 0 // 0 0 0 1.9720 0 -1.9777 // -1.7638 0 1.9720 0 0 0 // 0 0 0 0 0 1.9900 // 1.7689 0 -1.9777 0 1.9900 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 April 2015 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // N must be even. // // Output: // // double jacobi_legendre_inverse[n*n], the matrix. // { double *a; double a1; double a2; int i; int j; double p; if ( ( n % 2 ) == 1 ) { cerr << "\n"; cerr << "JACOBI_INVERSE(): Fatal error!\n"; cerr << " The Jacobi matrix is singular for odd N.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { if ( ( i % 2 ) == 0 ) { p = 1.0; for ( j = i; j < n - 1; j = j + 2 ) { a1 = 0.5 * sqrt ( ( double ) ( 4 * ( j + 1 ) * ( j + 1 ) ) / ( double ) ( 4 * ( j + 1 ) * ( j + 1 ) - 1 ) ); a2 = 0.5 * sqrt ( ( double ) ( 4 * j * j ) / ( double ) ( 4 * j * j - 1 ) ); if ( j == i ) { p = p / a1; } else { p = - p * a2 / a1; } a[i+(j+1)*n] = p; a[j+1+i*n] = p; } } } return a; } //****************************************************************************80 int jacobi_symbol ( int q, int p ) //****************************************************************************80 // // Purpose: // // jacobi_symbol() evaluates the Jacobi symbol (Q/P). // // Discussion: // // If P is prime, then // // Jacobi Symbol (Q/P) = Legendre Symbol (Q/P) // // Else // // let P have the prime factorization // // P = Product ( 1 <= I <= N ) P(I)**E(I) // // Jacobi Symbol (Q/P) = // // Product ( 1 <= I <= N ) Legendre Symbol (Q/P(I))**E(I) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 June 2000 // // Author: // // John Burkardt // // Reference: // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 86-87. // // Parameters: // // Input, int Q, an integer whose Jacobi symbol with // respect to P is desired. // // Input, int P, the number with respect to which the Jacobi // symbol of Q is desired. P should be 2 or greater. // // Output, int JACOBI_SYMBOL, the Jacobi symbol (Q/P). // Ordinarily, L will be -1, 0 or 1. // If JACOBI_SYMBOL is -10, an error occurred. // { # define FACTOR_MAX 20 int factor[FACTOR_MAX]; int i; int l; int nfactor; int nleft; int power[FACTOR_MAX]; int value; // // P must be greater than 1. // if ( p <= 1 ) { cerr << "\n"; cerr << "JACOBI_SYMBOL(): Fatal error!\n"; cerr << " P must be greater than 1.\n"; exit ( 1 ); } // // Decompose P into factors of prime powers. // i4_factor ( p, FACTOR_MAX, nfactor, factor, power, nleft ); if ( nleft != 1 ) { cerr << "\n"; cerr << "JACOBI_SYMBOL(): Fatal error!\n"; cerr << " Not enough factorization space.\n"; exit ( 1 ); } // // Force Q to be nonnegative. // while ( q < 0 ) { q = q + p; } // // For each prime factor, compute the Legendre symbol, and // multiply the Jacobi symbol by the appropriate factor. // value = 1; for ( i = 0; i < nfactor; i++ ) { l = legendre_symbol ( q, factor[i] ); if ( l < -1 ) { cerr << "\n"; cerr << "JACOBI_SYMBOL(): Fatal error!\n"; cerr << " Error during Legendre symbol calculation.\n"; exit ( 1 ); } value = value * ( int ) pow ( ( double ) l, power[i] ); } return value; # undef FACTOR_MAX } //****************************************************************************80 double *jordan_matrix ( int m, int n, double alpha ) //****************************************************************************80 // // Purpose: // // jordan_matrix() returns the JORDAN matrix. // // Formula: // // if ( I = J ) // A(I,J) = ALPHA // else if ( I = J-1 ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // ALPHA = 2, M = 5, N = 5 // // 2 1 0 0 0 // 0 2 1 0 0 // 0 0 2 1 0 // 0 0 0 2 1 // 0 0 0 0 2 // // Properties: // // A is upper triangular. // // A is lower Hessenberg. // // A is bidiagonal. // // Because A is bidiagonal, it has property A (bipartite). // // A is banded, with bandwidth 2. // // A is generally not symmetric: A' /= A. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is nonsingular if and only if ALPHA is nonzero. // // det ( A ) = ALPHA^N. // // LAMBDA(I) = ALPHA. // // A is defective, having only one eigenvector, namely (1,0,0,...,0). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double ALPHA, the eigenvalue of the Jordan matrix. // // Output, double JORDAN[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j ) { a[i+j*m] = alpha; } else if ( j == i + 1 ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double jordan_condition ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // jordan_condition() returns the L1 condition of the JORDAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the eigenvalue of the Jordan matrix. // // Output, double JORDAN_CONDITION, the L1 condition. // { double a_norm; double a2; double b_norm; double value; a2 = fabs ( alpha ); if ( n == 1 ) { a_norm = a2; } else { a_norm = a2 + 1.0; } if ( a2 == 1 ) { b_norm = ( double ) ( n ) * a2; } else { b_norm = ( pow ( a2, n ) - 1.0 ) / ( a2 - 1.0 ) / pow ( a2, n ); } value = a_norm * b_norm; return value; } //****************************************************************************80 double jordan_determinant ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // jordan_determinant() returns the determinant of the JORDAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the eigenvalue of the Jordan matrix. // // Output, double JORDAN_DETERMINANT, the determinant. // { double determ; determ = pow ( alpha, n ); return determ; } //****************************************************************************80 double *jordan_eigenvalues ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // jordan_eigenvalues() returns the eigenvalues of the JORDAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the eigenvalue of the Jordan matrix. // // Output, double JORDAN_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = alpha; } return lambda; } //****************************************************************************80 double *jordan_inverse ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // jordan_inverse() returns the inverse of the JORDAN matrix. // // Formula: // // if ( I <= J ) // A(I,J) = -1 * (-1/ALPHA)^(J+1-I) // else // A(I,J) = 0 // // Example: // // ALPHA = 2, N = 4 // // 1/2 -1/4 1/8 -1/16 // 0 1/2 -1/4 1/8 // 0 0 1/2 -1/4 // 0 0 0 1/2 // // Properties: // // A is upper triangular. // // A is Toeplitz: constant along diagonals. // // A is generally not symmetric: A' /= A. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // The inverse of A is the Jordan block matrix, whose diagonal // entries are ALPHA, whose first superdiagonal entries are 1, // with all other entries zero. // // det ( A ) = (1/ALPHA)^N. // // LAMBDA(1:N) = 1 / ALPHA. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the eigenvalue of the Jordan matrix. // // Output, double JORDAN_INVERSE[N*N], the matrix. // { double *a; int i; int j; if ( alpha == 0.0 ) { cerr << "\n"; cerr << "JORDAN_INVERSE(): Fatal error!\n"; cerr << " The input parameter ALPHA was 0.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i <= j ) { a[i+j*n] = - pow ( - 1.0 / alpha, j + 1 - i ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *kahan_matrix ( double alpha, int m, int n ) //****************************************************************************80 // // Purpose: // // kahan_matrix() returns the KAHAN matrix. // // Formula: // // if ( I = J ) // A(I,I) = sin(ALPHA)^(I) // else if ( I < J ) // A(I,J) = - sin(ALPHA)^(I) * cos(ALPHA) // else // A(I,J) = 0 // // Example: // // ALPHA = 0.25, N = 4 // // S -C*S -C*S -C*S // 0 S^2 -C*S^2 -C*S^2 // 0 0 S^3 -C*S^3 // 0 0 0 S^4 // // where // // S = sin(ALPHA), C=COS(ALPHA) // // Properties: // // A is upper triangular. // // A = B * C, where B is a diagonal matrix and C is unit upper triangular. // For instance, for the case M = 3, N = 4: // // A = | S 0 0 | * | 1 -C -C -C | // | 0 S^2 0 | | 0 1 -C -C | // | 0 0 S^3 | | 0 0 1 -C | // // A is generally not symmetric: A' /= A. // // A has some interesting properties regarding estimation of // condition and rank. // // det ( A ) = sin(ALPHA^(N*(N+1)/2). // // LAMBDA(I) = sin ( ALPHA )^I // // A is nonsingular if and only if sin ( ALPHA ) =/= 0. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Reference: // // Nicholas Higham, // A survey of condition number estimation for triangular matrices, // SIAM Review, // Volume 9, 1987, pages 575-596. // // W Kahan, // Numerical Linear Algebra, // Canadian Mathematical Bulletin, // Volume 9, 1966, pages 757-801. // // Parameters: // // Input, double ALPHA, the scalar that defines A. A typical // value is 1.2. The "interesting" range of ALPHA is 0 < ALPHA < PI. // // Input, int M, N, the order of the matrix. // // Output, double KAHAN[M*N], the matrix. // { double *a; double csi; int i; int j; double si; a = new double[m*n]; for ( i = 0; i < m; i++ ) { si = pow ( sin ( alpha ), i + 1 ); csi = - cos ( alpha ) * si; for ( j = 0; j < n; j++ ) { if ( j < i ) { a[i+j*m] = 0.0; } else if ( j == i ) { a[i+j*m] = si; } else { a[i+j*m] = csi; } } } return a; } //****************************************************************************80 double kahan_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kahan_determinant() returns the determinant of the KAHAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines A. A typical // value is 1.2. The "interesting" range of ALPHA is 0 < ALPHA < PI. // // Input, int N, the order of the matrix. // // Output, double KAHAN_DETERMINANT, the determinant. // { double determ; int power; power = ( n * ( n + 1 ) ) / 2; determ = pow ( sin ( alpha ), power ); return determ; } //****************************************************************************80 double *kahan_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kahan_inverse() returns the inverse of the KAHAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines A. A typical // value is 1.2. The "interesting" range of ALPHA is 0 < ALPHA < PI. // // Input, int N, the order of the matrix. // // Output, double KAHAN_INVERSE[N*N], the matrix. // { double *a; double ci; int i; int j; double si; a = new double[n*n]; ci = cos ( alpha ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0; } else if ( i == j - 1 ) { a[i+j*n] = ci; } else if ( i < j ) { a[i+j*n] = ci * pow ( 1.0 + ci, j - i - 1 ); } else { a[i+j*n] = 0.0; } } } // // Scale the columns. // for ( j = 0; j < n; j++ ) { si = pow ( sin ( alpha ), j + 1 ); for ( i = 0; i < n; i++ ) { a[i+j*n] = a[i+j*n] / si; } } return a; } //****************************************************************************80 double *kershaw_matrix ( ) //****************************************************************************80 // // Purpose: // // kershaw_matrix() returns the KERSHAW matrix. // // Discussion: // // The Kershaw matrix is a simple example of a symmetric // positive definite matrix for which the incomplete Cholesky // factorization fails, because of a negative pivot. // // Example: // // 3 -2 0 2 // -2 3 -2 0 // 0 -2 3 -2 // 2 0 -2 3 // // Properties: // // A is symmetric. // // A is positive definite. // // det ( A ) = 1. // // LAMBDA(A) = [ // 5.828427124746192 // 5.828427124746188 // 0.171572875253810 // 0.171572875253810 ]. // // A does not have an incompete Cholesky factorization. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Reference: // // David Kershaw, // The Incomplete Cholesky-Conjugate Gradient Method for the Iterative // Solution of Systems of Linear Equations, // Journal of Computational Physics, // Volume 26, Number 1, January 1978, pages 43-65. // // Parameters: // // Output, double KERSHAW[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 3.0, -2.0, 0.0, 2.0, -2.0, 3.0, -2.0, 0.0, 0.0, -2.0, 3.0, -2.0, 2.0, 0.0, -2.0, 3.0 }; int i; int j; a = new double[4*4]; for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 4; i++ ) { a[i+j*4] = a_save[i+j*4]; } } return a; } //****************************************************************************80 double kershaw_condition ( ) //****************************************************************************80 // // Purpose: // // kershaw_condition() returns the L1 condition of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_CONDITION, the L1 condition of the matrix. // { double a_norm; double b_norm; double value; a_norm = 7.0; b_norm = 7.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double kershaw_determinant ( ) //****************************************************************************80 // // Purpose: // // kershaw_determinant() returns the determinant of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_DETERMINANT, the determinant of the matrix. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *kershaw_eigen_right ( ) //****************************************************************************80 // // Purpose: // // kershaw_eigen_right() returns right eigenvectors of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_EIGEN_RIGHT[4,4], the eigenvectors. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[4*4] = { 0.500000000000000, -0.707106781186548, 0.500000000000000, -0.000000000000000, 0.500000000000000, -0.000000000000000, -0.500000000000000, 0.707106781186548, -0.548490135760211, -0.703402951241362, -0.446271857698584, 0.072279237578588, 0.446271857698584, -0.072279237578588, -0.548490135760211, -0.703402951241362 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *kershaw_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // kershaw_eigenvalues() returns the eigenvalues of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_EIGENVALUES[4], the eigenvalues of the matrix. // { int i; double *lambda; static double lambda_save[4] = { 5.828427124746192, 5.828427124746188, 0.171572875253810, 0.171572875253810 }; lambda = new double[4]; for ( i = 0; i < 4; i++ ) { lambda[i] = lambda_save[i]; } return lambda; } //****************************************************************************80 double *kershaw_inverse ( ) //****************************************************************************80 // // Purpose: // // kershaw_inverse() returns the inverse of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_INVERSE[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 3.0, 2.0, 0.0, -2.0, 2.0, 3.0, 2.0, 0.0, 0.0, 2.0, 3.0, 2.0, -2.0, 0.0, 2.0, 3.0 }; int i; int j; a = new double[4*4]; for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 4; i++ ) { a[i+j*4] = a_save[i+j*4]; } } return a; } //****************************************************************************80 double *kershaw_llt ( ) //****************************************************************************80 // // Purpose: // // kershaw_llt() returns the Cholesky factor of the KERSHAW matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double KERSHAW_LLT[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 1.732050807568877, -1.154700538379252, 0.0, 1.154700538379252, 0.0, 1.290994448735805, -1.549193338482967, 1.032795558988645, 0.0, 0.0, 0.774596669241483, -0.516397779494321, 0.0, 0.0, 0.0, 0.577350269189626 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *kershawtri_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // kershawtri_matrix() returns the KERSHAWTRI matrix. // // Discussion: // // A(I,I) = X(I) for I <= (N+1)/2 // A(I,I) = X(N+1-I) for (N+1)/2 < I // A(I,J) = 1 for I = J + 1 or I = J - 1. // A(I,J) = 0 otherwise. // // Example: // // N = 5, // X = ( 10, 20, 30 ) // A = // 10 1 0 0 0 // 1 20 1 0 0 // 0 1 30 1 0 // 0 0 1 20 1 // 0 0 0 1 10 // // Properties: // // A is tridiagonal. // // A is symmetric. // // If the entries in X are integers, then det(A) is an integer. // // If det(A) is an integer, then det(A) * inv(A) is an integer matrix. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // P Schlegel, // The Explicit Inverse of a Tridiagonal Matrix, // Mathematics of Computation, // Volume 24, Number 111, July 1970, page 665. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[(N+1)/2], defines the diagonal of the matrix. // // Output, double KERSHAWTRI[N*N], the matrix. // { double *a; int i; int j; int nh; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } nh = ( n / 2 ); for ( i = 0; i < nh; i++ ) { a[i+i*n] = x[i]; a[n-1-i+(n-1-i)*n] = x[i]; } if ( ( n % 2 ) == 1 ) { a[nh+nh*n] = x[nh]; } for ( i = 0; i < n - 1; i++ ) { a[i+(i+1)*n] = 1.0; a[i+1+i*n] = 1.0; } return a; } //****************************************************************************80 double kershawtri_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // kershawtri_determinant() returns the determinant of the KERSHAWTRI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[(N+1)/2], defines the diagonal of the matrix. // // Output, double KERSHAWTRI_DETERMINANT, the determinant. // { double determ; int i; int nh; double *r; double xim1; nh = ( n / 2 ); r = new double[n+1]; for ( i = 0; i < n + 1; i++ ) { r[i] = 0.0; } r[0] = 1.0; r[1] = - x[0]; for ( i = 2; i < n; i++ ) { if ( i <= nh ) { xim1 = x[i-1]; } else { xim1 = x[n-i]; } r[i] = - ( xim1 * r[i-1] + r[i-2] ); } r[n] = x[0] * r[n-1] + r[n-2]; determ = x[0] * r[n-1] + r[n-2]; // // Free memory. // delete [] r; return determ; } //****************************************************************************80 double *kershawtri_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // kershawtri_inverse() returns the inverse of the KERSHAWTRI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[(N+1)/2], defines the diagonal of the matrix. // // Output, double KERSHAWTRI_INVERSE[N*N], the matrix. // { double *a; int i; int j; int nh; double *r; double xim1; nh = ( n / 2 ); r = new double[n+1]; for ( i = 0; i < n + 1; i++ ) { r[i] = 0.0; } r[0] = 1.0; r[1] = - x[0]; for ( i = 2; i < n; i++ ) { if ( i <= nh ) { xim1 = x[i-1]; } else { xim1 = x[n-i]; } r[i] = - ( xim1 * r[i-1] + r[i-2] ); } r[n] = x[0] * r[n-1] + r[n-2]; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { a[i+j*n] = r[j] * r[n-1-i] / r[n]; } a[i+i*n] = r[i] * r[n-1-i] / r[n]; for ( j = i + 1; j < n; j++ ) { a[i+j*n] = r[i] * r[n-1-j] / r[n]; } } // // Free memory. // delete [] r; return a; } //****************************************************************************80 double *kms_matrix ( double alpha, int m, int n ) //****************************************************************************80 // // Purpose: // // kms_matrix() returns the KMS matrix. // // Discussion: // // The KMS matrix is also called the Kac-Murdock-Szego matrix. // // Formula: // // A(I,J) = ALPHA^abs ( I - J ) // // Example: // // ALPHA = 2, N = 5 // // 1 2 4 8 16 // 2 1 2 4 8 // 4 2 1 2 4 // 8 4 2 1 2 // 16 8 4 2 1 // // ALPHA = 1/2, N = 5 // // 1 1/2 1/4 1/8 1/16 // 1/2 1 1/2 1/4 1/8 // 1/4 1/2 1 1/2 1/4 // 1/8 1/4 1/2 1 1/2 // 1/16 1/8 1/4 1/2 1 // // Properties: // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // A has an L*D*L' factorization, with L being the inverse // of the transpose of the matrix with 1's on the diagonal and // -ALPHA on the superdiagonal and zero elsewhere, and // D(I,I) = (1-ALPHA^2) except that D(1,1)=1. // // det ( A ) = ( 1 - ALPHA^2 )^(N-1). // // The inverse of A is tridiagonal. // // A is positive definite if and only if 0 < abs ( ALPHA ) < 1. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // William Trench, // Numerical solution of the eigenvalue problem for Hermitian // Toeplitz matrices, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, Number 2, April 1989, pages 135-146. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // A typical value is 0.5. // // Input, int M, N, the order of the matrix. // // Output, double KMS[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( alpha == 0.0 && i == j ) { a[i+j*m] = 1.0; } else { a[i+j*m] = pow ( alpha, abs ( i - j ) ); } } } return a; } //****************************************************************************80 double kms_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kms_determinant() returns the determinant of the KMS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines A. // // Input, int N, the order of the matrix. // // Output, double KMS_DETERMINANT, the determinant. // { double determ; if ( n == 1 ) { determ = 1.0; } else { determ = pow ( 1.0 - alpha * alpha, n - 1 ); } return determ; } //****************************************************************************80 double *kms_eigenvalues ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kms_eigenvalues() returns the eigenvalues of the KMS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2011 // // Author: // // John Burkardt // // Reference: // // William Trench, // Spectral decomposition of Kac-Murdock-Szego matrices, // Unpublished technical document. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // Eigenvalue computations require 0 <= ALPHA <= 1. // // Input, int N, the order of the matrix. // // Output, double KMS_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; double *theta; lambda = new double[n]; theta = kms_eigenvalues_theta ( alpha, n ); for ( i = 0; i < n; i++ ) { lambda[i] = ( 1.0 + alpha ) * ( 1.0 - alpha ) / ( 1.0 - 2.0 * alpha * cos ( theta[i] ) + alpha * alpha ); } // // Free memory. // delete [] theta; return lambda; } //****************************************************************************80 double *kms_eigenvalues_theta ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kms_eigenvalues_theta() returns data needed to compute KMS eigenvalues. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2011 // // Author: // // John Burkardt // // Reference: // // William Trench, // Spectral decomposition of Kac-Murdock-Szego matrices, // Unpublished technical document. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // Eigenvalue computations require 0 <= ALPHA <= 1. // // Input, int N, the order of the matrix. // // Output, double KMS_EIGENVALUES_THETA[N], the angles associated with // the eigenvalues. // { double fxa; double fxb; double fxc; int i; const double r8_pi = 3.141592653589793; int step; int step_max = 100; double *t; double temp; double xa; double xb; double xc; t = new double[n]; for ( i = 0; i < n; i++ ) { // // Avoid confusion in first subinterval, where f(0) = 0. // if ( i == 0 ) { xa = 0.0001; } else { xa = ( double ) ( i ) * r8_pi / ( double ) ( n + 1 ); } fxa = kms_eigenvalues_theta_f ( alpha, n, xa ); xb = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); fxb = kms_eigenvalues_theta_f ( alpha, n, xb ); if ( 0.0 < fxa ) { temp = xa; xa = xb; xb = temp; temp = fxa; fxa = fxb; fxb = temp; } for ( step = 1; step <= step_max; step++ ) { xc = 0.5 * ( xa + xb ); fxc = kms_eigenvalues_theta_f ( alpha, n, xc ); // // Return if residual is small. // if ( fabs ( fxc ) <= 0.0000001 ) { break; } // // Return if interval is small. // if ( fabs ( xb - xa ) <= 0.0000001 ) { break; } if ( fxc < 0.0 ) { xa = xc; fxa = fxc; } else { xb = xc; fxb = fxc; } } t[i] = xc; } return t; } //****************************************************************************80 double kms_eigenvalues_theta_f ( double alpha, int n, double t ) //****************************************************************************80 // // Purpose: // // kms_eigenvalues_theta_f() evaluates a function for KMS eigenvalues. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 June 2011 // // Author: // // John Burkardt // // Reference: // // William Trench, // Spectral decomposition of Kac-Murdock-Szego matrices, // Unpublished technical document. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // Eigenvalue computations require 0 <= ALPHA <= 1. // // Input, int N, the order of the matrix. // // Input, double T, an angle associated with the eigenvalue. // // Output, double KMS_EIGENVALUES_THETA_F, the function value. // { double n_r8; double value; n_r8 = ( double ) ( n ); value = sin ( ( n_r8 + 1.0 ) * t ) - 2.0 * alpha * sin ( n_r8 * t ) + alpha * alpha * sin ( ( n_r8 - 1.0 ) * t ); return value; } //****************************************************************************80 double *kms_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kms_inverse() returns the inverse of the KMS matrix. // // Formula: // // if ( I = J ) // if ( I = 1 ) // A(I,J) = -1/(ALPHA^2-1) // else if ( I < N ) // A(I,J) = -(ALPHA^2+1)/(ALPHA^2-1) // else if ( I = N ) // A(I,J) = -1/(ALPHA^2-1) // else if ( J = I + 1 or I = J + 1 ) // A(I,J) = ALPHA/(ALPHA^2-1) // else // A(I,J) = 0 otherwise // // Example: // // ALPHA = 2, N = 5 // // -1 2 0 0 0 // 2 -5 2 0 0 // 1/3 * 0 2 -5 2 0 // 0 0 2 -5 2 // 0 0 0 2 -1 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // William Trench, // Numerical solution of the eigenvalue problem for Hermitian // Toeplitz matrices, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, Number 2, April 1989, pages 135-146. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // // Input, int N, the order of the matrix. // // Output, double KMS_INVERSE[N*N], the matrix. // { double *a; double bot; int i; int j; bot = alpha * alpha - 1.0; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { if ( j == 0 ) { a[i+j*n] = - 1.0 / bot; } else if ( j < n - 1 ) { a[i+j*n] = - ( alpha * alpha + 1.0 ) / bot; } else if ( j == n - 1 ) { a[i+j*n] = - 1.0 / bot; } } else if ( i == j + 1 || j == i + 1 ) { a[i+j*n] = alpha / bot; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 void kms_ldl ( double alpha, int n, double **l, double **d ) //****************************************************************************80 // // Purpose: // // kms_ldl() returns the LDL factorization of the KMS matrix. // // Discussion: // // A = L * D * L' // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // William Trench, // Numerical solution of the eigenvalue problem for Hermitian // Toeplitz matrices, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, Number 2, April 1989, pages 135-146. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // A typical value is 0.5. // // Input, int N, the order of the matrix. // // Output, double L[N*N], the lower triangular factor. // // Output, double D[N*N], the diagonal factor. // { int i; int j; *l = new double[n*n]; *l[0+0*n] = 1.0; for ( i = 1; i < n; i++ ) { *l[i+0*n] = alpha * *l[i-1+0*n]; } for ( j = 1; j < n; j++ ) { for ( i = 0; i < j; i++ ) { *l[i+j*n] = 0.0; } for ( i = j; i < n; i++ ) { *l[i+j*n] = *l[i-j+0*n]; } } *d = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { *d[i+j*n] = 0.0; } } *d[0+0*n] = 1.0; for ( i = 1; i < n; i++ ) { *d[i+i*n] = 1.0 - alpha * alpha; } return; } //****************************************************************************80 void kms_plu ( double alpha, int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // kms_plu() returns the PLU factorization of the KMS matrix. // // Example: // // ALPHA = 0.5, N = 5 // // P = Identity matrix // // L = // // 1 0 0 0 0 // 1/2 1 0 0 0 // 1/4 1/2 1 0 0 // 1/8 1/4 1/2 1 0 // 1/16 1/8 1/4 1/2 1 // // U = // // 1 1/2 1/4 1/8 1/16 // 0 3/4 3/8 3/16 3/32 // 0 0 3/4 3/8 3/16 // 0 0 0 3/4 3/8 // 0 0 0 0 3/4 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Reference: // // William Trench, // Numerical solution of the eigenvalue problem for Hermitian // Toeplitz matrices, // SIAM Journal on Matrix Analysis and Applications, // Volume 10, Number 2, April 1989, pages 135-146. // // Parameters: // // Input, double ALPHA, the scalar that defines A. // A typical value is 0.5. // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } l[0+0*n] = 1.0; for ( i = 1; i < n; i++ ) { l[i+0*n] = alpha * l[i-1+0*n]; } for ( j = 1; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } for ( i = j; i < n; i++ ) { l[i+j*n] = l[i-j+0*n]; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { u[i+j*n] = l[j+i*n]; } } for ( j = 0; j < n; j++ ) { for ( i = 1; i < n; i++ ) { u[i+j*n] = u[i+j*n] * ( 1.0 - alpha * alpha ); } } return; } //****************************************************************************80 double *kms_eigen_right ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // kms_eigen_right() returns the right eigenvectors of the KMS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 June 2011 // // Author: // // John Burkardt // // Reference: // // William Trench, // Spectral decomposition of Kac-Murdock-Szego matrices, // Unpublished technical report. // // Parameters: // // Input, double ALPHA, the parameter. // Eigenvalue computations require 0 <= ALPHA <= 1. // // Input, int N, the order of A. // // Output, double KMS_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; int i; int j; double *t; a = new double[n*n]; t = kms_eigenvalues_theta ( alpha, n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { a[i+j*n] = sin ( ( double ) ( i + 1 ) * t[j] ) - alpha * sin ( ( double ) ( i ) * t[j] ); } } // // Free memory. // delete [] t; return a; } //****************************************************************************80 double *krylov_matrix ( int n, double b[], double x[] ) //****************************************************************************80 // // Purpose: // // krylov_matrix() returns the KRYLOV matrix. // // Formula: // // Column 1 of A is X. // Column 2 of A is B*X. // Column 3 of A is B*B*X. // .. // Column N of A is B^(N-1)*X. // // Example: // // N = 5, X = ( 1, -2, 3, -4, 5 ) // // Matrix B: // // 1 2 1 0 1 // 1 0 3 1 4 // 2 1 3 2 1 // 1 1 2 1 0 // 1 -4 3 5 0 // // Matrix A: // // 6 61 71 688 // 26 16 -37 2752 // 6 54 312 1878 // 1 44 229 887 // -2 -76 379 2300 // // Properties: // // A is generally not symmetric: A' /= A. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 August 2008 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, // Johns Hopkins University Press, 1983, page 224. // // Parameters: // // Input, int N, the order of the matrices. // // Input, double B[N*N], the multiplying matrix. // // Input, double X[N], the vector defining A. // // Output, double KRYLOV[N*N], the matrix. // { double *a; int i; int j; int k; a = new double[n*n]; for ( i = 0; i < n; i++ ) { a[i+0*n] = x[i]; } for ( j = 1; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { a[i+j*n] = a[i+j*n] + b[i+k*n] * a[k+(j-1)*n]; } } } return a; } //****************************************************************************80 double *laguerre_matrix ( int n ) //****************************************************************************80 // // Purpose: // // laguerre_matrix() returns the LAGUERRE matrix. // // Example: // // N = 8 (each column must be divided by the factor below it.) // // 1 1 2 6 24 120 720 5040 // . -1 -4 -18 -96 -600 -4320 -35280 // . . 1 9 72 600 5400 52920 // . . . 1 -16 -200 -2400 -29400 // . . . . 1 25 450 7350 // . . . . . -1 -36 -882 // . . . . . . 1 49 // . . . . . . . -1 // // /1 /1 /2 /6 /24 /120 /720 /5040 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower triangular. // // The columns of A alternate in sign. // // A(I,1) = 1 // A(I,I) = (-1)^(I-1) / (I-1)!. // // LAMBDA(I) = (-1)^(I-1) / (I-1)!. // // det ( A ) = product ( 1 <= I <= N ) (-1)^(I-1) / (I-1)! // // The I-th row contains the coefficients of the Laguerre // polynomial of degree I-1. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Input: // // int N, the order of the matrix. // // Output: // // double LAGUERRE[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[0+1*n] = 1.0; A[1+1*n] = - 1.0; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { A[0+j*n] = ( ( double ) ( 2 * j - 1 ) * A[0+(j-1)*n] + ( double ) ( - j + 1 ) * A[0+(j-2)*n] ) / ( double ) ( j ); for ( i = 1; i < n; i++ ) { A[i+j*n] = ( ( double ) ( 2 * j - 1 ) * A[i+(j-1)*n] - ( double ) ( 1 ) * A[i-1+(j-1)*n] + ( double ) ( - j + 1 ) * A[i+(j-2)*n] ) / ( double ) ( j ); } } return A; } //****************************************************************************80 double laguerre_determinant ( int n ) //****************************************************************************80 // // Purpose: // // laguerre_determinant() returns the determinant of the LAGUERRE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LAGUERRE_DETERMINANT, the determinant. // { double determ; int i; determ = 1.0; for ( i = 0; i < n; i++ ) { determ = determ * r8_mop ( i ) / r8_factorial ( i ); } return determ; } //****************************************************************************80 double *laguerre_inverse ( int n ) //****************************************************************************80 // // Purpose: // // laguerre_inverse() returns the inverse of the LAGUERRE matrix. // // Example: // // N = 9 // // 1 1 2 6 24 120 720 5040 40320 // . -1 -4 -18 -96 -600 -4320 -35280 -322560 // . . 2 18 144 1200 10800 105840 1128960 // . . . -6 -96 -1200 -14400 -176400 -2257920 // . . . . 24 600 10800 176400 2822400 // . . . . . -120 -4320 -105840 -2257920 // . . . . . . 720 35280 1128960 // . . . . . . . -5040 -322560 // . . . . . . . . 40320 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower triangular. // // The columns of A alternate in sign. // // A(I,1) = (I-1)! // A(I,I) = (I-1)! * ( -1 )^(N+1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2024 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double LAGUERRE_INVERSE[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { A[i+j*n] = 0.0; } } A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[0+1*n] = 1.0; A[1+1*n] = - 1.0; if ( n == 2 ) { return A; } for ( j = 2; j < n; j++ ) { i = 0; A[i+j*n] = ( double ) ( j ) * A[i+(j-1)*n]; for ( i = 1; i < n; i++ ) { A[i+j*n] = ( double ) ( j ) * ( A[i+(j-1)*n] - A[i-1+(j-1)*n] ); } } return A; } //****************************************************************************80 double *lauchli_matrix ( double alpha, int m, int n ) //****************************************************************************80 // // Purpose: // // lauchli_matrix() returns the LAUCHLI matrix. // // Discussion: // // The Lauchli matrix is of order M by N, with M = N + 1. // // This matrix is a well-known example in least squares that indicates // the danger of forming the matrix of the normal equations, A' * A. // // A common value for ALPHA is sqrt(EPS) where EPS is the machine epsilon. // // Formula: // // if ( I = 1 ) // A(I,J) = 1 // else if ( I-1 = J ) // A(I,J) = ALPHA // else // A(I,J) = 0 // // Example: // // M = 5, N = 4 // ALPHA = 2 // // 1 1 1 1 // 2 0 0 0 // 0 2 0 0 // 0 0 2 0 // 0 0 0 2 // // Properties: // // The matrix is singular in a simple way. The first row is // equal to the sum of the other rows, divided by ALPHA. // // if ( ALPHA /= 0 ) then // rank ( A ) = N - 1 // else if ( ALPHA == 0 ) then // rank ( A ) = 1 // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2008 // // Author: // // John Burkardt // // Reference: // // Peter Lauchli, // Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, // (Jordan elimination and smoothing by least squares), // Numerische Mathematik, // Volume 3, Number 1, December 1961, pages 226-240. // // Parameters: // // Input, double ALPHA, the scalar defining the matrix. // // Input, int M, N, the order of the matrix. // It should be the case that M = N + 1. // // Output, double LAUCHLI[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == 0 ) { a[i+j*m] = 1.0; } else if ( i == j + 1 ) { a[i+j*m] = alpha; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double *lauchli_null_left ( double alpha, int m, int n ) //****************************************************************************80 // // Purpose: // // lauchli_null_left() returns a left null vector of the LAUCHLI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar defining the matrix. // // Input, int M, N, the order of the matrix. // It should be the case that M = N + 1. // // Output, double LAUCHLI_NULL_LEFT[M], the vector. // { int i; double *x; x = new double[m]; x[0] = - alpha; for ( i = 1; i < m; i++ ) { x[i] = 1.0; } return x; } //****************************************************************************80 double *legendre_matrix ( int n ) //****************************************************************************80 // // Purpose: // // legendre_matrix() returns the LEGENDRE matrix. // // Example: // // N = 11 (each column must be divided by factor at bottom) // // 1 . -1 . 3 . -5 . 35 . -63 // . 1 . -3 . 15 . -25 . 315 . // . . 3 . -30 . 105 . -1260 . 3465 // . . . 5 . -70 . 315 . -4620 . // . . . . 35 . -315 . 6930 .-30030 // . . . . . 63 . -693 . 18018 . // . . . . . . 231 . -12012 . 90090 // . . . . . . . 429 .-25740 . // . . . . . . . . 6435 -109395 // . . . . . . . . . 12155 . // . . . . . . . . . . 46189 // // /1 /1 /2 /2 /8 /8 /16 /16 /128 /128 /256 // // Properties: // // A is generally not symmetric: A' /= A. // // A is lower triangular. // // The elements of each row sum to 1. // // Because it has a constant row sum of 1, // A has an eigenvalue of 1, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A is reducible. // // The diagonals form a pattern of zero, positive, zero, negative. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 February 2024 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double legendre_matrix[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = r8mat_zero_new ( n, n ); A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 1.0; if ( n == 2 ) { return A; } for ( j = 3; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { if ( i == 1 ) { A[i-1+(j-1)*n] = - ( j - 2 ) * A[i-1+(j-3)*n] / ( j - 1 ); } else { A[i-1+(j-1)*n] = ( ( 2 * j - 3 ) * A[i-2+(j-2)*n] + ( - j + 2 ) * A[i-1+(j-3)*n] ) / ( j - 1 ); } } } return A; } //****************************************************************************80 double legendre_determinant ( int n ) //****************************************************************************80 // // Purpose: // // legendre_determinant() returns the determinant of the LEGENDRE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 February 2015 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double LEGENDRE_DETERMINANT, the determinant. // { int i; double t; double value; value = 1.0; t = 1.0; for ( i = 3; i <= n; i++ ) { t = t * ( double ) ( 2 * i - 3 ) / ( double ) ( i - 1 ); value = value * t; } return value; } //****************************************************************************80 double *legendre_inverse ( int n ) //****************************************************************************80 // // Purpose: // // legendre_inverse() returns the inverse of the LEGENDRE matrix. // // Discussion: // // If PM(x) is a linear combination of monomials // with coefficients CM, then PL(x) is a linear combination of // Legendre polynomials with coefficients CL = A * CM. // // The coefficients are ordered such that // the constant term is first. // // Example: // // N = 11 (each column must be divided by the underlying factor). // // 1 . 1 . 7 . 33 . 715 . 4199 // . 1 . 3 . 27 . 143 . 3315 . // . . 2 . 20 . 110 . 2600 .16150 // . . . 2 . 28 . 182 . 4760 . // . . . . 8 . 72 . 2160 .15504 // . . . . . 8 . 88 . 2992 . // . . . . . . 16 . 832 . 7904 // . . . . . . . 16 . 960 . // . . . . . . . . 128 . 2176 // . . . . . . . . . 128 . // . . . . . . . . . . 256 // // /1 /1 /3 /5 /35 /63 /231 /429 /6435/12155/46189 // // Properties: // // A is nonnegative. // // The elements of each row sum to 1. // // Because it has a constant row sum of 1, // A has an eigenvalue of 1, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A is lower triangular. // // A is reducible. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 February 2024 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // Output: // // double A[N*N], the matrix. // { double *A; int i; int j; if ( n <= 0 ) { return NULL; } A = r8mat_zero_new ( n, n ); A[0+0*n] = 1.0; if ( n == 1 ) { return A; } A[1+1*n] = 1.0; if ( n == 2 ) { return A; } for ( j = 2; j <= n - 1; j++ ) { for ( i = 0; i <= n - 1; i++ ) { if ( i == 0 ) { A[i+j*n] = ( i + 1 ) * A[i+1+(j-1)*n] / ( 2 * i + 3 ); } else if ( i < n - 1 ) { A[i+j*n] = ( i ) * A[i-1+(j-1)*n] / ( 2 * i - 1 ) + ( i + 1 ) * A[i+1+(j-1)*n] / ( 2 * i + 3 ); } else { A[i+j*n] = ( i ) * A[i-1+(j-1)*n] / ( 2 * i - 1 ); } } } return A; } //****************************************************************************80 int legendre_symbol ( int q, int p ) //****************************************************************************80 // // Purpose: // // legendre_symbol() evaluates the Legendre symbol (Q/P). // // Discussion: // // Let P be an odd prime. Q is a QUADRATIC RESIDUE modulo P // if there is an integer R such that R^2 = Q ( mod P ). // The Legendre symbol ( Q / P ) is defined to be: // // + 1 if Q ( mod P ) /= 0 and Q is a quadratic residue modulo P, // - 1 if Q ( mod P ) /= 0 and Q is not a quadratic residue modulo P, // 0 if Q ( mod P ) == 0. // // We can also define ( Q / P ) for P = 2 by: // // + 1 if Q ( mod P ) /= 0 // 0 if Q ( mod P ) == 0 // // Example: // // (0/7) = 0 // (1/7) = + 1 ( 1^2 = 1 mod 7 ) // (2/7) = + 1 ( 3^2 = 2 mod 7 ) // (3/7) = - 1 // (4/7) = + 1 ( 2^2 = 4 mod 7 ) // (5/7) = - 1 // (6/7) = - 1 // // Discussion: // // For any prime P, exactly half of the integers from 1 to P-1 // are quadratic residues. // // ( 0 / P ) = 0. // // ( Q / P ) = ( mod ( Q, P ) / P ). // // ( Q / P ) = ( Q1 / P ) * ( Q2 / P ) if Q = Q1 * Q2. // // If Q is prime, and P is prime and greater than 2, then: // // if ( Q == 1 ) then // // ( Q / P ) = 1 // // else if ( Q == 2 ) then // // ( Q / P ) = + 1 if mod ( P, 8 ) = 1 or mod ( P, 8 ) = 7, // ( Q / P ) = - 1 if mod ( P, 8 ) = 3 or mod ( P, 8 ) = 5. // // else // // ( Q / P ) = - ( P / Q ) if Q = 3 ( mod 4 ) and P = 3 ( mod 4 ), // = ( P / Q ) otherwise. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2001 // // Author: // // John Burkardt // // Reference: // // Charles Pinter, // A Book of Abstract Algebra, // McGraw Hill, 1982, pages 236-237. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 86-87. // // Parameters: // // Input, int Q, an integer whose Legendre symbol with // respect to P is desired. // // Input, int P, a prime number, greater than 1, with respect // to which the Legendre symbol of Q is desired. // // Output, int LEGENDRE_SYMBOL, the Legendre symbol (Q/P). // Ordinarily, this will be -1, 0 or 1. // L = -2, P is less than or equal to 1. // L = -3, P is not prime. // L = -4, the internal stack of factors overflowed. // L = -5, not enough factorization space. // { # define FACTOR_MAX 20 # define STACK_MAX 50 int factor[FACTOR_MAX]; int i; int l; int nfactor; int nleft; int nmore; int nstack; int power[FACTOR_MAX]; int pstack[STACK_MAX]; int qstack[STACK_MAX]; int r; // // P must be greater than 1. // if ( p <= 1 ) { cerr << "\n"; cerr << "LEGENDRE_SYMBOL(): Fatal error!\n"; cerr << " P must be greater than 1.\n"; exit ( 1 ); } // // P must be prime. // if ( !( i4_is_prime ( p ) ) ) { cerr << "\n"; cerr << "LEGENDRE_SYMBOL(): Fatal error!\n"; cerr << " P is not prime.\n"; exit ( 1 ); } // // ( k*P / P ) = 0. // if ( ( q % p ) == 0 ) { return 0; } // // For the special case P = 2, (Q/P) = 1 for all odd numbers. // if ( p == 2 ) { return 1; } // // Force Q to be nonnegative. // while ( q < 0 ) { q = q + p; } nstack = 0; l = 1; for ( ; ; ) { q = q % p; // // Decompose Q into factors of prime powers. // i4_factor ( q, FACTOR_MAX, nfactor, factor, power, nleft ); if ( nleft != 1 ) { cerr << "\n"; cerr << "LEGENDRE_SYMBOL(): Fatal error!\n"; cerr << " Not enough factorization space.\n"; exit ( 1 ); } // // Each factor which is an odd power is added to the stack. // nmore = 0; for ( i = 0; i < nfactor; i++ ) { if ( ( power[i] % 2 ) == 1 ) { nmore = nmore + 1; if ( STACK_MAX <= nstack ) { cerr << "\n"; cerr << "LEGENDRE_SYMBOL(): Fatal error!\n"; cerr << " Stack overflow!\n"; exit ( 1 ); } pstack[nstack] = p; qstack[nstack] = factor[i]; nstack = nstack + 1; } } if ( nmore != 0 ) { nstack = nstack - 1; q = qstack[nstack]; // // Check for a Q of 1 or 2. // if ( q == 1 ) { l = + 1 * l; } else if ( q == 2 && ( ( p % 8 ) == 1 || ( p % 8 ) == 7 ) ) { l = + 1 * l; } else if ( q == 2 && ( ( p % 8 ) == 3 || ( p % 8 ) == 5 ) ) { l = - 1 * l; } else { if ( ( p % 4 ) == 3 && ( q % 4 ) == 3 ) { l = - 1 * l; } r = p; p = q; q = r; continue; } } // // If the stack is empty, we're done. // if ( nstack == 0 ) { break; } // // Otherwise, get the last P and Q from the stack, and process them. // nstack = nstack - 1; p = pstack[nstack]; q = qstack[nstack]; } return l; # undef FACTOR_MAX # undef STACK_MAX } //****************************************************************************80 double *legendre_van_matrix ( int m, double a, double b, int n, double x[] ) //****************************************************************************80 // // Purpose: // // legendre_van_matrix() returns the LEGENDRE_VAN matrix. // // Discussion: // // The LEGENDRE_VAN matrix is the Legendre Vandermonde-like matrix. // // Normally, the Legendre polynomials are defined on -1 <= XI <= +1. // Here, we assume the Legendre polynomials have been defined on the // interval A <= X <= B, using the mapping // XI = ( - ( B - X ) + ( X - A ) ) / ( B - A ) // so that // Lab(A,B;X) = L(XI). // // if ( I = 1 ) then // V(1,1:N) = 1 // else if ( I = 2 ) then // V(2,1:N) = XI(1:N) // else // V(I,1:N) = ( (2*I-1) * XI(1:N) * V(I-1,1:N) - (I-1)*V(I-2,1:N) ) / I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 April 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, double A, B, the interval. // // Input, int N, the number of columns of the matrix. // // Input, double X[N], the vector that defines the matrix. // // Output, double LEGENDRE_VAN[M*N], the matrix. // { int i; int j; double *v; double xi; v = new double[m*n]; for ( j = 0; j < n; j++ ) { xi = ( - ( b - x[j] ) + ( x[j] - a ) ) / ( b - a ); for ( i = 0; i < m; i++ ) { if ( i == 0 ) { v[i+j*m] = 1.0; } else if ( i == 1 ) { v[i+j*m] = xi; } else { v[i+j*m] = ( ( double ) ( 2 * i - 1 ) * xi * v[i-1+j*m] + ( double ) ( - i + 1 ) * v[i-2+j*m] ) / ( double ) ( i ); } } } return v; } //****************************************************************************80 double *legendre_zeros ( int n ) //****************************************************************************80 // // Purpose: // // legendre_zeros() computes the zeros of the Legendre polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2008 // // Author: // // Original FORTRAN77 version by Philip Davis, Philip Rabinowitz. // This version by John Burkardt. // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int N, the degree of the polynomial. // // Output, double LEGENDRE_ZEROS[N], the zeros of the polynomial. // { double d1; double d2pn; double d3pn; double d4pn; double dp; double dpn; double e1; double h; int i; int iback; int k; int m; int mp1mi; int ncopy; int nmove; double p; const double r8_pi = 3.141592653589793; double pk; double pkm1; double pkp1; double t; double u; double v; double *x; double x0; double xtemp; x = new double[n]; e1 = ( double ) ( n * ( n + 1 ) ); m = ( n + 1 ) / 2; for ( i = 1; i <= m; i++ ) { mp1mi = m + 1 - i; t = ( double ) ( 4 * i - 1 ) * r8_pi / ( double ) ( 4 * n + 2 ); x0 = cos ( t ) * ( 1.0 - ( 1.0 - 1.0 / ( double ) ( n ) ) / ( double ) ( 8 * n * n ) ); pkm1 = 1.0; pk = x0; for ( k = 2; k <= n; k++ ) { pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / ( double ) ( k ); pkm1 = pk; pk = pkp1; } d1 = ( double ) ( n ) * ( pkm1 - x0 * pk ); dpn = d1 / ( 1.0 - x0 * x0 ); d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ); d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ); d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ); u = pk / dpn; v = d2pn / dpn; // // Initial approximation H: // h = -u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ); // // Refine H using one step of Newton's method: // p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 * ( d3pn + 0.25 * h * d4pn ) ) ); dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ); h = h - p / dp; xtemp = x0 + h; x[mp1mi-1] = xtemp; // fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 // * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ); } if ( ( n % 2 ) == 1 ) { x[0] = 0.0; } // // Shift the data up. // nmove = ( n + 1 ) / 2; ncopy = n - nmove; for ( i = 1; i <= nmove; i++ ) { iback = n + 1 - i; x[iback-1] = x[iback-ncopy-1]; } // // Reflect values for the negative abscissas. // for ( i = 1; i <= n - nmove; i++ ) { x[i-1] = - x[n-i]; } return x; } //****************************************************************************80 double *lehmer_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // lehmer_matrix() returns the LEHMER matrix. // // Discussion: // // This matrix is also known as the "Westlake" matrix. // // See page 154 of the Todd reference. // // Formula: // // A(I,J) = min ( I, J ) / max ( I, J ) // // Example: // // N = 5 // // 1/1 1/2 1/3 1/4 1/5 // 1/2 2/2 2/3 2/4 2/5 // 1/3 2/3 3/3 3/4 3/5 // 1/4 2/4 3/4 4/4 4/5 // 1/5 2/5 3/5 4/5 5/5 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is positive definite. // // A is totally nonnegative. // // The inverse of A is tridiagonal. // // The condition number of A lies between N and 4*N*N. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2008 // // Author: // // John Burkardt // // Reference: // // Morris Newman, John Todd, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, 1958, pages 466-476. // // Solutions to problem E710, proposed by DH Lehmer: The inverse of // a matrix. // American Mathematical Monthly, // Volume 53, Number 9, November 1946, pages 534-535. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double LEHMER[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( i4_min ( i + 1, j + 1 ) ) / ( double ) ( i4_max ( i + 1, j + 1 ) ); } } return a; } //****************************************************************************80 double lehmer_determinant ( int n ) //****************************************************************************80 // // Purpose: // // lehmer_determinant() returns the determinant of the LEHMER matrix. // // Formula: // // determinant = (2n)! / 2^n / (n!)^3 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2015 // // Author: // // John Burkardt // // Reference: // // Emrah Kilic, Pantelimon Stanica, // The Lehmer matrix and its recursive analogue, // Journal of Combinatorial Mathematics and Combinatorial Computing, // Volume 74, August 2010, pages 193-205. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LEHMER_DETERMINANT, the determinant. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( n + i ) / ( double ) ( 2 * i * i ); } return value; } //****************************************************************************80 double *lehmer_inverse ( int n ) //****************************************************************************80 // // Purpose: // // lehmer_inverse() returns the inverse of the LEHMER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LEHMER_INVERSE[N*N], the matrix. // { double *a; int i; a = r8mat_zero_new ( n, n ); for ( i = 0; i < n - 1; i++ ) { a[i+i*n] = ( double ) ( 4 * ( i + 1 ) * ( i + 1 ) * ( i + 1 ) ) / ( double ) ( 4 * ( i + 1 ) * ( i + 1 ) - 1 ); } a[n-1+(n-1)*n] = ( double ) ( n * n ) / ( double ) ( 2 * n - 1 ); for ( i = 0; i < n - 1; i++ ) { a[i+(i+1)*n] = - ( double ) ( ( i + 1 ) * ( i + 2 ) ) / ( double ) ( 2 * i + 3 ); a[i+1+i*n] = - ( double ) ( ( i + 1 ) * ( i + 2 ) ) / ( double ) ( 2 * i + 3 ); } return a; } //****************************************************************************80 double *lehmer_llt ( int n ) //****************************************************************************80 // // Purpose: // // lehmer_llt() returns the Cholesky factor of the LEHMER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2015 // // Author: // // John Burkardt // // Reference: // // Emrah Kilic, Pantelimon Stanica, // The Lehmer matrix and its recursive analogue, // Journal of Combinatorial Mathematics and Combinatorial Computing, // Volume 74, August 2010, pages 193-205. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LEHMER_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { a[i+j*n] = 0.0; } for ( i = j; i < n; i++ ) { a[i+j*n] = sqrt ( ( double ) ( 2 * j + 1 ) ) / ( double ) ( i + 1 ); } } return a; } //****************************************************************************80 void lehmer_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // lehmer_plu() returns the PLU factors of the LEHMER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2015 // // Author: // // John Burkardt // // Reference: // // Emrah Kilic, Pantelimon Stanica, // The Lehmer matrix and its recursive analogue, // Journal of Combinatorial Mathematics and Combinatorial Computing, // Volume 74, August 2010, pages 193-205. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } l[j+j*n] = 1.0; for ( i = j + 1; i < n; i++ ) { l[i+j*n] = ( double ) ( j + 1 ) / ( double ) ( i + 1 ); } } for ( j = 0; j < n; j++ ) { for ( i = 0; i <= j; i++ ) { u[i+j*n] = ( double ) ( 2 * i + 1 ) / ( double ) ( ( i + 1 ) * ( j + 1 ) ); } for ( i = j + 1; i < n; i++ ) { u[i+j*n] = 0.0; } } return; } //****************************************************************************80 double *leslie_matrix ( double b, double di, double da ) //****************************************************************************80 // // Purpose: // // leslie_matrix() returns the LESLIE matrix. // // Discussion: // // This matrix is used in population dynamics. // // Formula: // // 5/6 * ( 1.0 - DI ) 0 B 0 // 1/6 * ( 1.0 - DI ) 13/14 0 0 // 0 1/14 39/40 0 // 0 0 1/40 9/10 * ( 1 - DA ) // // Discussion: // // A human population is assumed to be grouped into the categories: // // X(+0*n] = between 0 and 5+ // X(+1*n] = between 6 and 19+ // X(+2*n] = between 20 and 59+ // X(+3*n] = between 60 and 69+ // // Humans older than 69 are ignored. Deaths occur in the 60 to 69 // year bracket at a relative rate of DA per year, and in the 0 to 5 // year bracket at a relative rate of DI per year. Deaths do not occurr // in the other two brackets. // // Births occur at a rate of B relative to the population in the // 20 to 59 year bracket. // // Thus, given the population vector X in a given year, the population // in the next year will be A * X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2008 // // Author: // // John Burkardt // // Reference: // // Ke Chen, Peter Giblin, Alan Irving, // Mathematical Explorations with MATLAB, // Cambridge University Press, 1999, // ISBN: 0-521-63920-4. // // Parameters: // // Input, double B, DI, DA, the birth rate, infant mortality rate, // and aged mortality rate. These should be positive values. // The mortality rates must be between 0.0 and 1.0. Reasonable // values might be B = 0.025, DI = 0.010, and DA = 0.100 // // Output, double LESLIE[4*4], the matrix. // { double *a; int n = 4; a = new double[n*n]; if ( b < 0.0 ) { cerr << "\n"; cerr << "LESLIE(): Fatal error!\n"; cerr << " 0 <= B is required.\n"; exit ( 1 ); } if ( da < 0.0 || 1.0 < da ) { cerr << "\n"; cerr << "LESLIE(): Fatal error!\n"; cerr << " 0 <= DA <= 1.0 is required.\n"; exit ( 1 ); } if ( di < 0.0 || 1.0 < di ) { cerr << "\n"; cerr << "LESLIE(): Fatal error!\n"; cerr << " DI < 0 or 1.0 < DI.\n"; exit ( 1 ); } a[0+0*n] = 5.0 * ( 1.0 - di ) / 6.0; a[0+1*n] = 0.0; a[0+2*n] = b; a[0+3*n] = 0.0; a[1+0*n] = ( 1.0 - di ) / 6.0; a[1+1*n] = 13.0 / 14.0; a[1+2*n] = 0.0; a[1+3*n] = 0.0; a[2+0*n] = 0.0; a[2+1*n] = 1.0 / 14.0; a[2+2*n] = 39.0 / 40.0; a[2+3*n] = 0.0; a[3+0*n] = 0.0; a[3+1*n] = 0.0; a[3+2*n] = 1.0 / 40.0; a[3+3*n] = 9.0 * ( 1.0 - da ) / 10.0; return a; } //****************************************************************************80 double leslie_determinant ( double b, double di, double da ) //****************************************************************************80 // // Purpose: // // leslie_determinant() returns the determinant of the LESLIE matrix. // // Discussion: // // DETERM = a(4,4) * ( // a(1,1) * a(2,2) * a(3,3) // + a(1,3) * a(2,1) * a(3,2) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double B, DI, DA, the birth rate, infant mortality rate, // and aged mortality rate. These should be positive values. // The mortality rates must be between 0.0 and 1.0. Reasonable // values might be B = 0.025, DI = 0.010, and DA = 0.100 // // Output, double LESLIE_DETERMINANT, the determinant. // { double determ; determ = 9.0 * ( 1.0 - da ) / 10.0 * ( 5.0 * ( 1.0 - di ) / 6.0 * 13.0 / 14.0 * 39.0 / 40.0 + b * ( 1.0 - di ) / 6.0 * 1.0 / 14.0 ); return determ; } //****************************************************************************80 double *lesp_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // lesp_matrix() returns the LESP matrix. // // Formula: // // if ( I - J == 1 ) then // A(I,J) = 1 / I // else if ( I - J == 0 ) then // A(I,J) = - ( 2*I+3 ) // else if ( I - J == 1 ) then // A(I,J) = J // else // A(I,J) = 0.0 // // Example: // // M = 5, N = 5 // // -5 2 . . . // 1/2 -7 3 . . // . 1/3 -9 4 . // . . 1/4 -11 5 // . . . 1/5 -13 // // // Properties: // // The matrix is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is generally not symmetric: A' /= A. // // The eigenvalues are real, and smoothly distributed in [-2*N-3.5, -4.5]. // // The eigenvalues are sensitive. // // The matrix is similar to the symmetric tridiagonal matrix with // the same diagonal entries and with off-diagonal entries 1, // via a similarity transformation using the diagonal matrix // D = diagonal ( 1!, 2!, ..., N! ). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2008 // // Author: // // John Burkardt // // Reference: // // Wim Lenferink, MN Spijker, // On the use of stability regions in the numerical analysis of initial // value problems, // Mathematics of Computation, // Volume 57, 1991, pages 221-237. // // Lloyd Trefethen, // Pseudospectra of matrices, // in Numerical Analysis 1991, // Proceedings of the 14th Dundee Conference, // D F Griffiths and G A Watson, editors, // Pitman Research Notes in Mathematics, volume 260, // Longman Scientific and Technical, Essex, UK, 1992, pages 234-266. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double LESP[M*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i - j == 1 ) { a[i+j*m] = 1.0 / ( double ) ( i + 1 ); } else if ( i - j == 0 ) { a[i+j*m] = - ( double ) ( 2 * i + 5 ); } else if ( i - j == -1 ) { a[i+j*m] = ( double ) ( j + 1 ); } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double lesp_determinant ( int n ) //****************************************************************************80 // // Purpose: // // lesp_determinant() computes the determinant of the LESP matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LESP_DETERMINANT, the determinant. // { double determ; double determ_nm1; double determ_nm2; int i; determ_nm1 = - ( double ) ( 2 * n + 3 ); if ( n == 1 ) { determ = determ_nm1; return determ; } determ_nm2 = determ_nm1; determ_nm1 = ( double ) ( 2 * n + 1 ) * ( double ) ( 2 * n + 3 ) - 1.0; if ( n == 2 ) { determ = determ_nm1; return determ; } for ( i = n - 2; 1 <= i; i-- ) { determ = - ( double ) ( 2 * i + 3 ) * determ_nm1 - determ_nm2; determ_nm2 = determ_nm1; determ_nm1 = determ; } return determ; } //****************************************************************************80 double *lesp_inverse ( int n ) //****************************************************************************80 // // Purpose: // // lesp_inverse() returns the inverse of the LESP matrix. // // Discussion: // // This computation is an application of the TRIV_INVERSE function. // // Example: // // N = 5 // -0.2060 -0.0598 -0.0201 -0.0074 -0.0028 // -0.0150 -0.1495 -0.0504 -0.0184 -0.0071 // -0.0006 -0.0056 -0.1141 -0.0418 -0.0161 // -0.0000 -0.0001 -0.0026 -0.0925 -0.0356 // -0.0000 -0.0000 -0.0000 -0.0014 -0.0775 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2015 // // Author: // // John Burkardt // // Reference: // // CM daFonseca, J Petronilho, // Explicit Inverses of Some Tridiagonal Matrices, // Linear Algebra and Its Applications, // Volume 325, 2001, pages 7-21. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LESP_INVERSE[N*N], the inverse of the matrix. // { double *a; int i; double *x; double *y; double *z; x = new double[n-1]; for ( i = 0; i < n - 1; i++ ) { x[i] = 1.0 / ( double ) ( i + 2 ); } y = new double[n]; for ( i = 0; i < n; i++ ) { y[i] = ( double ) ( - 2 * i - 5 ); } z = new double[n-1]; for ( i = 0; i < n - 1; i++ ) { z[i] = ( double ) ( i + 2 ); } a = triv_inverse ( n, x, y, z ); delete [] x; delete [] y; delete [] z; return a; } //****************************************************************************80 double *lietzke_matrix ( int n ) //****************************************************************************80 // // Purpose: // // lietzke_matrix() returns the LIETZKE matrix. // // Formula: // // A(I,J) = N - abs ( I - J ) // // Example: // // N = 5 // // 5 4 3 2 1 // 4 5 4 3 2 // 3 4 5 4 3 // 2 3 4 5 4 // 1 2 3 4 5 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // det ( A ) = ( n + 1 ) * 2^( n - 2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // M Lietzke, R Stoughton, Marjorie Lietzke, // A Comparison of Seeral Method for Inverting Large Symmetric // Positive Definite Matrics, // Mathematics of Computation, // Volume 18, Number 87, pages 449-456. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LIETZKE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = ( double ) ( n - abs ( i - j ) ); } } return a; } //****************************************************************************80 double lietzke_condition ( int n ) //****************************************************************************80 // // Purpose: // // lietzke_condition() returns the L1 condition of the LIETZKE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LIETZKE_CONDITION, the L1 condition. // { double a_norm; double b_norm; int i; int k; int s; double value; s = 0; k = n; for ( i = 1; i <= n; i++ ) { s = s + k; if ( ( i % 2 ) == 1 ) { k = k - 1; } } a_norm = ( double ) ( s ); if ( n == 1 ) { b_norm = 0.25; } else if ( n == 2 ) { b_norm = 5.0 / 6.0; } else { b_norm = 2.0; } value = a_norm * b_norm; return value; } //****************************************************************************80 double lietzke_determinant ( int n ) //****************************************************************************80 // // Purpose: // // lietzke_determinant() returns the determinant of the LIETZKE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LIETZKE_DETERMINANT, the determinant.. // { double determ; determ = ( double ) ( ( n + 1 ) * i4_power ( 2, n - 2 ) ); return determ; } //****************************************************************************80 double *lietzke_inverse ( int n ) //****************************************************************************80 // // Purpose: // // lietzke_inverse() returns the inverse of the LIETZKE matrix. // // Example: // // N = 5 // // 0.5833 -0.5000 0 0 0.0833 // -0.5000 1.0000 -0.5000 0 0 // 0 -0.5000 1.0000 -0.5000 0 // 0 0 -0.5000 1.0000 -0.5000 // 0.0833 0 0 -0.5000 0.5833 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LIETZKE_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } a[0+0*n] = ( double ) ( n + 2 ) / ( double ) ( 2 * n + 2 ); for ( i = 1; i < n - 1; i++ ) { a[i+i*n] = 1.0; } a[n-1+(n-1)*n] = ( double ) ( n + 2 ) / ( double ) ( 2 * n + 2 ); if ( n == 2 ) { for ( i = 0; i < n - 1; i++ ) { a[i+(i+1)*n] = - 1.0 / 3.0; } for ( i = 1; i < n; i++ ) { a[i+(i-1)*n] = - 1.0 / 3.0; } } else { for ( i = 0; i < n - 1; i++ ) { a[i+(i+1)*n] = - 0.5; } for ( i = 1; i < n; i++ ) { a[i+(i-1)*n] = - 0.5; } } a[0 +(n-1)*n] = 1.0 / ( double ) ( 2 * n + 2 ); a[n-1+ 0 *n] = 1.0 / ( double ) ( 2 * n + 2 ); return a; } //****************************************************************************80 double *line_adj_matrix ( int n ) //****************************************************************************80 // // Purpose: // // line_adj_matrix() returns the LINE_ADJ matrix. // // Discussion: // // The matrix describes the adjacency of points on a line. // // Example: // // N = 5 // // 0 1 0 0 0 // 1 0 1 0 0 // 0 1 0 1 0 // 0 0 1 0 1 // 0 0 0 1 0 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is tridiagonal. // // A is a special case of the TRIS or tridiagonal scalar matrix. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is an adjacency matrix for a set of points arranged in a line. // // A has a zero diagonal. // // A is a zero/one matrix. // // The row and column sums are all 2, except for the first and last // rows and columns which have a sum of 1. // // A is singular if N is odd. // // det ( A ) = 0, -1, 0, +1, as mod ( N, 4 ) = 1, 2, 3 or 0. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_ADJ[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i - 1 ) { a[i+j*n] = 1.0; } else if ( j == i + 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double line_adj_determinant ( int n ) //****************************************************************************80 // // Purpose: // // line_adj_determinant() returns the determinant of the LINE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_ADJ_DETERMINANT, the determinant. // { double determ; if ( ( n % 4 ) == 1 ) { determ = 0.0; } else if ( ( n % 4 ) == 2 ) { determ = - 1.0; } else if ( ( n % 4 ) == 3 ) { determ = 0.0; } else if ( ( n % 4 ) == 0 ) { determ = + 1.0; } return determ; } //****************************************************************************80 double *line_adj_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // line_adj_eigen_right() returns the right eigenvectors of the LINE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_ADJ_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = sqrt ( 2.0 / ( double ) ( n + 1 ) ) * sin ( angle ); } } return a; } //****************************************************************************80 double *line_adj_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // line_adj_eigenvalues() returns the eigenvalues of the LINE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_ADJ_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); lambda[i] = 2.0 * cos ( angle ); } return lambda; } //****************************************************************************80 double *line_adj_inverse ( int n ) //****************************************************************************80 // // Purpose: // // line_adj_inverse() returns the inverse of the LINE_ADJ matrix. // // Example: // // N = 6: // // 0 1 0 -1 0 1 // 1 0 0 0 0 0 // 0 0 0 1 0 -1 // -1 0 1 0 0 0 // 0 0 0 0 0 1 // 1 0 -1 0 1 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_ADJ_INVERSE[N*N], the matrix. // { double *a; int i; int j; double p; if ( ( n % 2 ) == 1 ) { cerr << "\n"; cerr << "LINE_ADJ_INVERSE(): Fatal error!\n"; cerr << " The matrix is singular for odd N.\n"; exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 1; i <= n; i++ ) { if ( ( i % 2 ) == 1 ) { for ( j = i; j <= n - 1; j = j + 2 ) { if ( j == i ) { p = 1.0; } else { p = - p; } a[i-1+(j )*n] = p; a[j +(i-1)*n] = p; } } } return a; } //****************************************************************************80 double *line_adj_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // line_adj_null_left() returns a left null vector of the LINE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double LINE_ADJ_NULL_LEFT[M], a null vector // { int i; double *x; if ( ( m % 2 ) == 0 ) { cerr << "\n"; cerr << "LINE_ADJ_NULL_LEFT(): Fatal error!\n"; cerr << " For M even, there is no null vector.\n"; exit ( 1 ); } x = new double[m]; for ( i = 0; i < m; i = i + 4 ) { x[i] = 1.0; } for ( i = 1; i < m; i = i + 4 ) { x[i] = 0.0; } for ( i = 2; i < m; i = i + 4 ) { x[i] = -1.0; } for ( i = 3; i < m; i = i + 4 ) { x[i] = 0.0; } return x; } //****************************************************************************80 double *line_adj_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // line_adj_null_right() returns a right null vector of the LINE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double LINE_ADJ_NULL_RIGHT[N], a null vector // { int i; double *x; if ( ( n % 2 ) == 0 ) { cerr << "\n"; cerr << "LINE_ADJ_NULL_RIGHT(): Fatal error!\n"; cerr << " For N even, there is no null vector.\n"; exit ( 1 ); } x = new double[n]; for ( i = 0; i < n; i = i + 4 ) { x[i] = 1.0; } for ( i = 1; i < n; i = i + 4 ) { x[i] = 0.0; } for ( i = 2; i < n; i = i + 4 ) { x[i] = -1.0; } for ( i = 3; i < n; i = i + 4 ) { x[i] = 0.0; } return x; } //****************************************************************************80 double *line_loop_adj_matrix ( int n ) //****************************************************************************80 // // Purpose: // // line_loop_adj_matrix() returns the LINE_LOOP_ADJ matrix. // // Discussion: // // The matrix describes the adjacency of points on a loop. // // Example: // // N = 5 // // 1 1 0 0 0 // 1 1 1 0 0 // 0 1 1 1 0 // 0 0 1 1 1 // 0 0 0 1 1 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is tridiagonal. // // A is a special case of the TRIS or tridiagonal scalar matrix. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is an adjacency matrix for a set of points arranged in a line. // // A is a zero/one matrix. // // The row and column sums are all 3, except for the first and last // rows and columns which have a sum of 2. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_LOOP_ADJ[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i - 1 ) { a[i+j*n] = 1.0; } else if ( j == i ) { a[i+j*n] = 1.0; } else if ( j == i + 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double line_loop_adj_determinant ( int n ) //****************************************************************************80 // // Purpose: // // line_loop_adj_determinant() returns the determinant of the LINE_LOOP_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_LOOP_ADJ_DETERMINANT, the determinant. // { double angle; double determ; int i; const double r8_pi = 3.141592653589793; if ( ( n % 2 ) == 1 ) { determ = 0.0; } else { determ = 1.0; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); determ = determ * ( 1.0 + 2.0 * cos ( angle ) ); } } return determ; } //****************************************************************************80 double *line_loop_adj_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // line_loop_adj_eigen_right() returns the right eigenvectors of the LINE_LOOP matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LINE_LOOP_ADJ_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = sqrt ( 2.0 / ( double ) ( n + 1 ) ) * sin ( angle ); } } return a; } //****************************************************************************80 double *line_loop_adj_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // line_loop_adj_eigenvalues() returns the eigenvalues of the LINE_LOOP_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double *LINE_LOOP_ADJ_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( n + 1 ); lambda[i] = 1.0 + 2.0 * cos ( angle ); } return lambda; } //****************************************************************************80 double *loewner_matrix ( double w[], double x[], double y[], double z[], int n ) //****************************************************************************80 // // Purpose: // // loewner_matrix() returns the LOEWNER matrix. // // Formula: // // A(I,J) = ( W(I) - X(J) ) / ( Y(I) - Z(J) ) // // Example: // // N = 3 // W = (/ 8, 4, 9 /) // X = (/ 1, 2, 3 /) // Y = (/ 9, 6, 4 /) // Z = (/ 2, 3, 1 /) // // A = // // 8 - 1 8 - 2 8 - 3 // ----- ----- ----- // 9 - 2 9 - 3 9 - 1 // // 4 - 1 4 - 2 4 - 3 // ----- ----- ----- // 6 - 2 6 - 3 6 - 1 // // 9 - 1 9 - 2 9 - 3 // ----- ----- ----- // 4 - 2 4 - 3 4 - 1 // // = // // 7/7 6/6 5/8 // // 3/4 2/3 1/5 // // 8/2 7/1 6/3 // // Properties: // // A is generally not symmetric: A' /= A. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double W[N], X[N], Y[N], Z[N], vectors defining // the matrix. // // Input, int N, the order of the matrix. // // Output, double LOEWNER[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( y[i] - z[j] == 0.0 ) { cerr << "\n"; cerr << "LOEWNER(): Fatal error!\n"; cerr << " Y(I) = Z(J).\n"; exit ( 1 ); } a[i+j*n] = ( w[i] - x[j] ) / ( y[i] - z[j] ); } } return a; } //****************************************************************************80 double *lotkin_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // lotkin_matrix() returns the LOTKIN matrix. // // Formula: // // if ( I = 1 ) // A(I,J) = 1 // else // A(I,J) = 1 / ( I + J - 1 ) // // Example: // // N = 5 // // 1 1 1 1 1 // 1/2 1/3 1/4 1/5 1/6 // 1/3 1/4 1/5 1/6 1/7 // 1/4 1/5 1/6 1/7 1/8 // 1/5 1/6 1/7 1/8 1/9 // // Properties: // // A is the Hilbert matrix with the first row set to all 1's. // // A is generally not symmetric: A' /= A. // // A is ill-conditioned. // // A has many negative eigenvalues of small magnitude. // // The inverse of A has all integer elements, and is known explicitly. // // For N = 6, the eigenvalues are: // 2.132376, // -0.2214068, // -0.3184330 D-1, // -0.8983233 D-3, // -0.1706278 D-4, // -0.1394499 D-6. // // det ( A(N) ) = ( -1 )^(N-1) / DELTA(N) // // where // // DELTA(N) = CHOOSE ( 2*N-2, N-2 ) * CHOOSE ( 2*N-2, N-1 ) // * ( 2*N-1) * DELTA(N-1), // DELTA(1) = 1. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Max Lotkin, // A set of test matrices, // Mathematics Tables and Other Aids to Computation, // Volume 9, 1955, pages 153-161. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double LOTKIN[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == 0 ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 1.0 / ( double ) ( i + j + 1 ); } } } return a; } //****************************************************************************80 double lotkin_determinant ( int n ) //****************************************************************************80 // // Purpose: // // lotkin_determinant() returns the determinant of the LOTKIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LOTKIN_DETERMINANT, the determinant. // { double delta; double determ; int i; delta = 1.0; for ( i = 2; i <= n; i++ ) { delta = - r8_choose ( 2 * i - 2, i - 2 ) * r8_choose ( 2 * i - 2, i - 1 ) * ( 2 * i - 1 ) * delta; } determ = 1.0 / delta; return determ; } //****************************************************************************80 double *lotkin_inverse ( int n ) //****************************************************************************80 // // Purpose: // // lotkin_inverse() returns the inverse of the LOTKIN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double LOTKIN[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == 0 ) { a[i+j*n] = r8_mop ( n - i - 1 ) * r8_choose ( n + i, i ) * r8_choose ( n, i + 1 ); } else { a[i+j*n] = r8_mop ( i - j + 1 ) * ( double ) ( i + 1 ) * r8_choose ( i + j + 1, j ) * r8_choose ( i + j, j - 1 ) * r8_choose ( n + i, i + j + 1 ) * r8_choose ( n + j, i + j + 1 ); } } } return a; } //****************************************************************************80 double *markov_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // markov_random_matrix() returns the MARKOV_RANDOM matrix. // // Discussion: // // A Markov matrix, also called a "stochastic" matrix, is distinguished // by two properties: // // * All matrix entries are nonnegative; // * The sum of the entries in each row is 1. // // A "transition matrix" is the transpose of a Markov matrix, and // has column sums equal to 1. // // Example: // // N = 4 // // 1/10 2/10 3/10 4/10 // 1 0 0 0 // 5/10 2/10 3/10 0 // 2/10 2/10 2/10 4/10 // // Properties: // // A is generally not symmetric: A' /= A. // // 0 <= A(I,J) <= 1.0 for every I and J. // // The sum of the entries in each row of A is 1. // // Because it has a constant row sum of 1, // A has an eigenvalue of 1, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // All the eigenvalues of A have modulus no greater than 1. // // The eigenvalue 1 lies on the boundary of all the Gerschgorin rowsum disks. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double MARKOV_RANDOM[N*N], the matrix. // { double *a; int i; int j; double row_sum; int seed; seed = key; a = r8mat_uniform_01_new ( n, n, seed ); for ( i = 0; i < n; i++ ) { row_sum = 0.0; for ( j = 0; j < n; j++ ) { row_sum = row_sum + a[i+j*n]; } for ( j = 0; j < n; j++ ) { a[i+j*n] = a[i+j*n] / row_sum; } } return a; } //****************************************************************************80 double *maxij_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // maxij_matrix() returns the MAXIJ matrix. // // Discussion: // // This matrix is occasionally known as the "Boothroyd MAX" matrix. // // Formula: // // A(I,J) = max(I,J) // // Example: // // N = 5 // // 1 2 3 4 5 // 2 2 3 4 5 // 3 3 3 4 5 // 4 4 4 4 5 // 5 5 5 5 5 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The inverse of A is tridiagonal. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double MAXIJ[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( i4_max ( i + 1, j + 1 ) ); } } return a; } //****************************************************************************80 double maxij_condition ( int n ) //****************************************************************************80 // // Purpose: // // maxij_condition() returns the L1 condition of the MAXIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MAXIJ_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = ( double ) ( n * n ); if ( n == 1 ) { b_norm = 1.0; } else if ( n == 2 ) { b_norm = 2.0; } else { b_norm = 4.0; } value = a_norm * b_norm; return value; } //****************************************************************************80 double maxij_determinant ( int n ) //****************************************************************************80 // // Purpose: // // maxij_determinant() returns the determinant of the MAXIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MAXIJ_DETERMINANT, the determinant. // { double determ; determ = ( double ) ( n ); return determ; } //****************************************************************************80 double *maxij_inverse ( int n ) //****************************************************************************80 // // Purpose: // // maxij_inverse() returns the inverse of the MAXIJ matrix. // // Formula: // // if ( I = 1 and J = 1 ) // A(I,J) = -1 // else if ( I = N and J = N ) // A(I,J) = -(N-1)/N // else if ( I = J ) // A(I,J) = -2 // else if ( J = I-1 or J = I + 1 ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5 // // -1 1 0 0 0 // 1 -2 1 0 0 // 0 1 -2 1 0 // 0 0 1 -2 1 // 0 0 0 1 -4/5 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is "almost" equal to the second difference matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MAXIJ_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i ) { if ( i == 0 ) { a[i+j*n] = - 1.0; } else if ( i < n - 1 ) { a[i+j*n] = - 2.0; } else { a[i+j*n] = - ( double ) ( n - 1 ) / ( double ) ( n ); } } else if ( j == i - 1 || j == i + 1 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 void maxij_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // maxij_plu() returns the PLU factors of the MAXIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i4_wrap ( j - i, 1, n ) == 1 ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } i = 0; j = 0; l[i+j*n] = 1.0; j = 0; for ( i = 1; i < n; i++ ) { l[i+j*n] = ( double ) ( i ) / ( double ) ( n ); } for ( j = 1; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } l[j+j*n] = 1.0; for ( i = j + 1; i < n; i++ ) { l[i+j*n] = 0.0; } } i = 0; for ( j = 0; j < n; j++ ) { u[i+j*n] = ( double ) ( n ); } for ( i = 1; i < n; i++ ) { for ( j = 0; j < i; j++ ) { u[i+j*n] = 0.0; } for ( j = i; j < n; j++ ) { u[i+j*n] = ( double ) ( j + 1 - i ); } } return; } //****************************************************************************80 int mertens ( int n ) //****************************************************************************80 // // Purpose: // // mertens() evaluates the Mertens function. // // Discussion: // // The Mertens function M(N) is the sum from 1 to N of the Moebius // function MU. That is, // // M(N) = sum ( 1 <= I <= N ) MU(I) // // N M(N) // -- ---- // 1 1 // 2 0 // 3 -1 // 4 -1 // 5 -2 // 6 -1 // 7 -2 // 8 -2 // 9 -2 // 10 -1 // 11 -2 // 12 -2 // 100 1 // 1000 2 // 10000 -23 // 100000 -48 // // The determinant of the Redheffer matrix of order N is equal // to the Mertens function M(N). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2007 // // Author: // // John Burkardt // // Reference: // // M Deleglise, J Rivat, // Computing the Summation of the Moebius Function, // Experimental Mathematics, // Volume 5, 1996, pages 291-295. // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45 // // Parameters: // // Input, int N, the argument. // // Output, int MERTENS, the value. // { int i; int value; value = 0; for ( i = 1; i <= n; i++ ) { value = value + moebius ( i ); } return value; } //****************************************************************************80 void mertens_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // mertens_values() returns some values of the Mertens function. // // Discussion: // // The Mertens function M(N) is the sum from 1 to N of the Moebius // function MU. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 October 2007 // // Author: // // John Burkardt // // Reference: // // M Deleglise, J Rivat, // Computing the Summation of the Moebius Function, // Experimental Mathematics, // Volume 5, 1996, pages 291-295. // // Eric Weisstein, // CRC Concise Encyclopedia of Mathematics, // CRC Press, 2002, // Second edition, // ISBN: 1584883472, // LC: QA5.W45. // // Input: // // int &N_DATA, on first call, N_DATA should be set to 0. // // Output: // // int &N_DATA, the input value of N_DATA is // incremented and that test data item is returned, if available. When // there is no more test data, N_DATA is set to 0. // // Output, int &N, the argument of the Mertens function. // // Output, int &C, the value of the Mertens function. // { # define N_MAX 15 static int c_vec[N_MAX] = { 1, 0, -1, -1, -2, -1, -2, -2, -2, -1, -2, -2, 1, 2, -23 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 100, 1000, 10000 }; if ( n_data < 0 ) { n_data = 0; } if ( N_MAX <= n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data]; c = c_vec[n_data]; n_data = n_data + 1; } return; # undef N_MAX } //****************************************************************************80 double *milnes_matrix ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // milnes_matrix() returns the MILNES matrix. // // Formula: // // If ( I <= J ) // A(I,J) = 1 // else // A(I,J) = X(J) // // Example: // // M = 5, N = 5, X = ( 4, 7, 3, 8 ) // // 1 1 1 1 1 // 4 1 1 1 1 // 4 7 1 1 1 // 4 7 3 1 1 // 4 7 3 8 1 // // M = 3, N = 6, X = ( 5, 7 ) // // 1 1 1 1 1 // 5 1 1 1 1 // 5 7 1 1 1 // // M = 5, N = 3, X = ( 5, 7, 8 ) // // 1 1 1 // 5 1 1 // 5 7 1 // 5 7 8 // 5 7 8 // // Properties: // // A is generally not symmetric: A' /= A. // // det ( A ) = ( 1 - X(1) ) * ( 1 - X(2) ) * ... * ( 1 - X(N-1) ). // // A is singular if and only if X(I) = 1 for any I. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double X[*], the lower column values. // If M <= N, then X should be dimensioned M-1. // If N < M, X should be dimensioned N. // // Output, double MILNES[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i <= j ) { a[i+j*m] = 1.0; } else { a[i+j*m] = x[j]; } } } return a; } //****************************************************************************80 double milnes_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // milnes_determinant() returns the determinant of the MILNES matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N-1], the lower column values. // // Output, double MILNES_DETERMINANT, the determinant. // { double determ; int i; determ = 1.0; for ( i = 0; i < n - 1; i++ ) { determ = determ * ( 1.0 - x[i] ); } return determ; } //****************************************************************************80 double *milnes_inverse ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // milnes_inverse() returns the inverse of the MILNES matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N-1], the lower column values. // // Output, double MILNES_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j && i != n - 1 ) { a[i+j*n] = 1.0 / ( 1.0 - x[i] ); } else if ( j == i + 1 && i != n - 1 ) { a[i+j*n] = - 1.0 / ( 1.0 - x[i] ); } else if ( i == n - 1 && j != 0 && j != n - 1 ) { a[i+j*n] = ( x[j-1] - x[j] ) / ( ( 1.0 - x[j] ) * ( 1.0 - x[j-1] ) ); } else if ( i == n - 1 && j == 0 ) { a[i+j*n] = - x[0] / ( 1.0 - x[0] ); } else if ( i == n - 1 && j == n - 1 ) { a[i+j*n] = 1.0 / ( 1.0 - x[n-2] ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *minij_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // minij_matrix() returns the MINIJ matrix. // // Discussion: // // See page 158 of the Todd reference. // // Formula: // // A(I,J) = min ( I, J ) // // Example: // // N = 5 // // 1 1 1 1 1 // 1 2 2 2 2 // 1 2 3 3 3 // 1 2 3 4 4 // 1 2 3 4 5 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is positive definite. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The inverse of A is tridiagonal. // // The eigenvalues of A are // // LAMBDA(I) = 0.5 / ( 1 - cos ( ( 2 * I - 1 ) * pi / ( 2 * N + 1 ) ) ), // // For N = 12, the characteristic polynomial is // P(X) = X^12 - 78 X^11 + 1001 X^10 - 5005 X^9 + 12870 X^8 // - 19448 X^7 + 18564 X^6 - 11628 X^5 + 4845 X^4 - 1330 X^3 // + 231 X^2 - 23 X + 1. // // (N+1)*ONES(N) - A also has a tridiagonal inverse. // // Gregory and Karney consider the matrix defined by // // B(I,J) = N + 1 - MAX(I,J) // // which is equal to the MINIJ matrix, but with the rows and // columns reversed. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Daniel Rutherford, // Some continuant determinants arising in physics and chemistry II, // Proceedings of the Royal Society Edinburgh, // Volume 63, A, 1952, pages 232-241. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double MINIJ[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( i4_min ( i + 1, j + 1 ) ); } } return a; } //****************************************************************************80 double minij_condition ( int n ) //****************************************************************************80 // // Purpose: // // minij_condition() returns the L1 condition of the MINIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MINIJ_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = ( double ) ( n * ( n + 1 ) ) / 2.0; if ( n == 1 ) { b_norm = 1.0; } else if ( n == 2 ) { b_norm = 3.0; } else { b_norm = 4.0; } value = a_norm * b_norm; return value; } //****************************************************************************80 double minij_determinant ( int n ) //****************************************************************************80 // // Purpose: // // minij_determinant() returns the determinant of the MINIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MINIJ_DETERMINANT, the determinant. // { double angle; double determ; int i; const double r8_pi = 3.141592653589793; determ = 1.0; for ( i = 0; i < n; i++ ) { angle = ( double ) ( 2 * i + 1 ) * r8_pi / ( double ) ( 2 * n + 1 ); determ = determ * 0.5 / ( 1.0 - cos ( angle ) ); } return determ; } //****************************************************************************80 double *minij_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // minij_eigenvalues() returns the eigenvalues of the MINIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MINIJ_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( 2 * i + 1 ) * r8_pi / ( double ) ( 2 * n + 1 ); lambda[i] = 0.5 / ( 1.0 - cos ( angle ) ); } return lambda; } //****************************************************************************80 double *minij_inverse ( int n ) //****************************************************************************80 // // Purpose: // // minij_inverse() returns the inverse of the MINIJ matrix. // // Formula: // // A(I,J) = -1 if J=I-1 or J=I+1 // A(I,J) = 2 if J=I and J is not N. // A(I,J) = 1 if J=I and J=N. // A(I,J) = 0 otherwise // // Example: // // N = 5 // // 2 -1 0 0 0 // -1 2 -1 0 0 // 0 -1 2 -1 0 // 0 0 -1 2 -1 // 0 0 0 -1 1 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is "almost" equal to the second difference matrix, // as computed by DIF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MINIJ_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { if ( i < n - 1 ) { a[i+j*n] = 2.0; } else { a[i+j*n] = 1.0; } } else if ( i == j + 1 || i == j - 1 ) { a[i+j*n] = - 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double *minij_llt ( int n ) //****************************************************************************80 // // Purpose: // // minij_llt() returns the Cholesky factor of the MINIJ matrix. // // Discussion: // // This is an instance of the SUMMATION matrix. // // Example: // // N = 5 // // 1 0 0 0 0 // 1 1 0 0 0 // 1 1 1 0 0 // 1 1 1 1 0 // 1 1 1 1 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MINIJ_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j <= i; j++ ) { a[i+j*n] = 1.0; } for ( j = i + 1; j < n; j++ ) { a[i+j*n] = 0.0; } } return a; } //****************************************************************************80 void minij_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // minij_plu() returns the PLU factors of the MINIJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { l[i+j*n] = 0.0; } for ( i = j; i < n; i++ ) { l[i+j*n] = 1.0; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i <= j; i++ ) { u[i+j*n] = 1.0; } for ( i = j + 1; i < n; i++ ) { u[i+j*n] = 0.0; } } return; } //****************************************************************************80 int moebius ( int n ) //****************************************************************************80 // // Purpose: // // moebius() returns the value of MU(N), the Moebius function of N. // // Discussion: // // MU(N) is defined as follows: // // MU(N) = 1 if N = 1; // 0 if N is divisible by the square of a prime; // (-1)^K, if N is the product of K distinct primes. // // First values: // // N MU(N) // // 1 1 // 2 -1 // 3 -1 // 4 0 // 5 -1 // 6 1 // 7 -1 // 8 0 // 9 0 // 10 1 // 11 -1 // 12 0 // 13 -1 // 14 1 // 15 1 // 16 0 // 17 -1 // 18 0 // 19 -1 // 20 0 // // Note: // // As special cases, MU(N) is -1 if N is a prime, and MU(N) is 0 // if N is a square, cube, etc. // // Formula: // // The Moebius function is related to Euler's totient function: // // PHI(N) = Sum ( D divides N ) MU(D) * ( N / D ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the value to be analyzed. // // Output, int MOEBIUS, the value of MU(N). // If N is less than or equal to 0, or there was not enough internal // space for factoring, MOEBIUS is returned as -1. // { # define FACTOR_MAX 20 int factor[FACTOR_MAX]; int i; int nfactor; int nleft; int power[FACTOR_MAX]; int value; if ( n <= 0 ) { return (-1); } if ( n == 1 ) { return 1; } // // Factor N. // i4_factor ( n, FACTOR_MAX, nfactor, factor, power, nleft ); if ( nleft != 1 ) { cerr << "\n"; cerr << "MOEBIUS(): Fatal error!\n"; cerr << " Not enough factorization space.\n"; return (-1); } value = 1; for ( i = 0; i < nfactor; i++ ) { value = -value; if ( 1 < power[i] ) { return 0; } } return value; # undef FACTOR_MAX } //****************************************************************************80 void moebius_values ( int &n_data, int &n, int &c ) //****************************************************************************80 // // Purpose: // // moebius_values() returns some values of the Moebius function. // // Discussion: // // MU(N) is defined as follows: // // MU(N) = 1 if N = 1; // 0 if N is divisible by the square of a prime; // (-1)^K, if N is the product of K distinct primes. // // In Mathematica, the function can be evaluated by: // // MoebiusMu[n] // // First values: // // N MU(N) // // 1 1 // 2 -1 // 3 -1 // 4 0 // 5 -1 // 6 1 // 7 -1 // 8 0 // 9 0 // 10 1 // 11 -1 // 12 0 // 13 -1 // 14 1 // 15 1 // 16 0 // 17 -1 // 18 0 // 19 -1 // 20 0 // // Note: // // As special cases, MU(N) is -1 if N is a prime, and MU(N) is 0 // if N is a square, cube, etc. // // Formula: // // The Moebius function is related to Euler's totient function: // // PHI(N) = Sum ( D divides N ) MU(D) * ( N / D ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 February 2003 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Input: // // int &N_DATA, on first call, N_DATA should be set to 0. // // Output: // // int &N_DATA, the input value of N_DATA is // incremented and that test data item is returned, if available. When // there is no more test data, N_DATA is set to 0. // // Output, int &N, the argument of the Moebius function. // // Output, int &C, the value of the Moebius function. // { # define N_MAX 20 static int c_vec[N_MAX] = { 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; c = 0; } else { n = n_vec[n_data-1]; c = c_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double *moler1_matrix ( double alpha, int m, int n ) //****************************************************************************80 // // Purpose: // // moler1_matrix() returns the MOLER1 matrix. // // Formula: // // If ( I = J ) // A(I,J) = min ( I-1, J-1 ) * ALPHA^2 + 1 // else // A(I,J) = min ( I-1, J-1 ) * ALPHA^2 + ALPHA // // Example: // // ALPHA = 2, N = 5 // // 1 2 2 2 2 // 2 5 6 6 6 // 2 6 9 10 10 // 2 6 10 13 14 // 2 6 10 14 17 // // Properties: // // Successive elements of each diagonal increase by an increment of ALPHA^2. // // A is the product of B' * B, where B is the matrix returned by // // CALL TRIW ( ALPHA, N-1, N, B ). // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is positive definite. // // If ALPHA = -1, A(I,J) = min ( I, J ) - 2, A(I,I)=I. // // A has one small eigenvalue. // // If ALPHA is integral, then A is integral. // If A is integral, then det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 July 2008 // // Author: // // John Burkardt // // Reference: // // John Nash, // Compact Numerical Methods for Computers: Linear Algebra and // Function Minimisation, // Second Edition, // Taylor & Francis, 1990, // ISBN: 085274319X, // LC: QA184.N37. // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int M, N, the order of the matrix. // // Output, double MOLER1[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j ) { a[i+j*m] = ( double ) ( i4_min ( i, j ) ) * alpha * alpha + 1.0; } else { a[i+j*m] = ( double ) ( i4_min ( i, j ) ) * alpha * alpha + alpha; } } } return a; } //****************************************************************************80 double moler1_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // moler1_determinant() returns the determinant of the MOLER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double MOLER1_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *moler1_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // moler1_inverse() returns the inverse of the MOLER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double MOLER1_INVERSE[N*N], the matrix. // { double *a; double dot; int i; int j; int k; double *v; v = new double[n]; v[0] = 1.0; v[1] = - alpha; for ( i = 2; i < n; i++ ) { v[i] = - ( alpha - 1.0 ) * v[i-1]; } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i <= j ) { dot = 0.0; for ( k = 0; k < n - j; k++ ) { dot = dot + v[k+j-i] * v[k]; } a[i+j*n] = dot; } else { dot = 0.0; for ( k = 0; k < n - i; k++ ) { dot = dot + v[k] * v[k+i-j]; } a[i+j*n] = dot; } } } // // Free memory. // delete [] v; return a; } //*****************************************************************************/ double *moler1_llt ( double alpha, int n ) //*****************************************************************************/ // // Purpose: // // moler1_llt() returns the lower triangular Cholesky factor of the MOLER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double MOLER_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { a[i+j*n] = 0.0; } a[j+j*n] = 1.0; for ( i = j + 1; i < n; i++ ) { a[i+j*n] = alpha; } } return a; } //****************************************************************************80 void moler1_plu ( double alpha, int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // moler1_plu() returns the PLU factors of the MOLER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Reference: // // John Nash, // Compact Numerical Methods for Computers: Linear Algebra and // Function Minimisation, // Second Edition, // Taylor & Francis, 1990, // ISBN: 085274319X, // LC: QA184.N37. // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { l[i+j*n] = 1.0; } else if ( j < i ) { l[i+j*n] = alpha; } else { l[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { u[i+j*n] = 1.0; } else if ( i < j ) { u[i+j*n] = alpha; } else { u[i+j*n] = 0.0; } } } return; } //****************************************************************************80 double *moler2_matrix ( ) //****************************************************************************80 // // Purpose: // // moler2_matrix() returns the MOLER2 matrix. // // Discussion: // // This is a 5 by 5 matrix for which the challenge is to find the EXACT // eigenvalues and eigenvectors. // // Formula: // // -9 11 -21 63 -252 // 70 -69 141 -421 1684 // -575 575 -1149 3451 -13801 // 3891 -3891 7782 -23345 93365 // 1024 -1024 2048 -6144 24572 // // Properties: // // A is defective. // // The Jordan normal form of A has just one block, with eigenvalue // zero, because A**k is nonzero for K = 0, 1, 2, 3, 4, but A**5=0. // // det ( A ) = 0. // // TRACE(A) = 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double MOLER2[5*5], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[5*5] = { -9.0, 70.0, -575.0, 3891.0, 1024.0, 11.0, -69.0, 575.0, -3891.0, -1024.0, -21.0, 141.0, -1149.0, 7782.0, 2048.0, 63.0, -421.0, 3451.0, -23345.0, -6144.0, -252.0, 1684.0, -13801.0, 93365.0, 24572.0 }; int n = 5; a = r8mat_copy_new ( n, n, a_save ); return a; } //****************************************************************************80 double moler2_determinant ( ) //****************************************************************************80 // // Purpose: // // moler2_determinant() returns the determinant of the MOLER2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double MOLER2_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *moler2_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // moler2_eigenvalues() returns the eigenvalues of the MOLER2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double MOLER2_EIGENVALUES[5], the eigenvalues. // { double *lambda; int n = 5; lambda = r8vec_zero_new ( n ); return lambda; } //****************************************************************************80 double *moler2_null_left ( ) //****************************************************************************80 // // Purpose: // // moler2_null_left() returns a left null vector for the MOLER2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double MOLER2_NULL_LEFT[5], the vector. // { int n = 5; double *x; static double x_save[5] = { 4.0, -8.0, 20.0, -64.0, 255.0 }; x = r8vec_copy_new ( n, x_save ); return x; } //****************************************************************************80 double *moler2_null_right ( ) //****************************************************************************80 // // Purpose: // // moler2_null_right() returns a right null vector for the MOLER2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double MOLER2_NULL_RIGHT[5], the vector. // { int n = 5; double *x; static double x_save[5] = { 0.0, -21.0, 142.0, -973.0, -256.0 }; x = r8vec_copy_new ( n, x_save ); return x; } //****************************************************************************80 double *moler3_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // moler3_matrix() returns the MOLER3 matrix. // // Formula: // // if ( I == J ) then // A(I,J) = I // else // A(I,J) = min(I,J) - 2 // // Example: // // N = 5 // // 1 -1 -1 -1 -1 // -1 2 0 0 0 // -1 0 3 1 1 // -1 0 1 4 2 // -1 0 1 2 5 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is positive definite. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A has a simple Cholesky factorization. // // A has one small eigenvalue. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double MOLER3[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j ) { a[i+j*m] = ( double ) ( i + 1 ); } else { a[i+j*m] = ( double ) ( i4_min ( i, j ) - 1 ); } } } return a; } //****************************************************************************80 double moler3_determinant ( int n ) //****************************************************************************80 // // Purpose: // // moler3_determinant() returns the determinant of the MOLER3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MOLER3_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *moler3_inverse ( int n ) //****************************************************************************80 // // Purpose: // // moler3_inverse() returns the inverse of the MOLER3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MOLER3[N*N], the matrix. // { double *a; int i; int j; int k; double *l; double value; l = r8mat_zero_new ( n, n ); for ( j = 0; j < n; j++ ) { l[j+j*n] = 1.0; value = 1.0; for ( i = j + 1; i < n; i++ ) { l[i+j*n] = value; value = value * 2.0; } } a = r8mat_zero_new ( n, n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { for ( k = 0; k < n; k++ ) { a[i+j*n] = a[i+j*n] + l[k+i*n] * l[k+j*n]; } } } // // Free memory. // delete [] l; return a; } //****************************************************************************80 double *moler3_llt ( int n ) //****************************************************************************80 // // Purpose: // // moler3_llt() returns the Cholesky factor of the MOLER3 matrix. // // Discussion: // // This is an instance of the ANTISUMMATION matrix. // // Example: // // N = 5 // // 1 0 0 0 0 // -1 1 0 0 0 // -1 -1 1 0 0 // -1 -1 -1 1 0 // -1 -1 -1 -1 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double MOLER3_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { a[i+j*n] = -1.0; } j = i; a[i+j*n] = 1.0; for ( j = i + 1; j < n; j++ ) { a[i+j*n] = 0.0; } } return a; } //****************************************************************************80 void moler3_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // moler3_plu() returns the PLU factors of the MOLER3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { l[i+j*n] = -1.0; } l[i+i*n] = 1.0; for ( j = i + 1; j < n; j++ ) { l[i+j*n] = 0.0; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { u[i+j*n] = -1.0; } u[j+j*n] = 1.0; for ( i = j + 1; i < n; i++ ) { u[i+j*n] = 0.0; } } return; } //****************************************************************************80 double *moler4_matrix ( ) //****************************************************************************80 // // Purpose: // // moler4_matrix() returns the MOLER4 matrix. // // Example: // // 0 2 0 -1 // 1 0 0 0 // 0 1 0 0 // 0 0 1 0 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is the companion matrix of the polynomial X^4-2X^2+1=0. // // A has eigenvalues -1, -1, +1, +1. // // A can cause problems to a standard QR algorithm, which // can fail to converge. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double A(4,4), the matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[4*4] = { 0.0, 1.0, 0.0, 0.0, 2.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 0.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double moler4_condition ( ) //****************************************************************************80 // // Purpose: // // moler4_condition() returns the L1 condition of the MOLER4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double VALUE, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 3.0; b_norm = 3.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double moler4_determinant ( ) //****************************************************************************80 // // Purpose: // // moler4_determinant() returns the determinant of the MOLER4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double VALUE, the determinant. // { double value; value = 1.0; return value; } //****************************************************************************80 double *moler4_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // moler4_eigenvalues() returns the eigenvalues of the MOLER4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double LAMBDA(4), the eigenvalues. // { double *lambda; lambda = new double[4]; lambda[0] = -1.0; lambda[1] = -1.0; lambda[2] = +1.0; lambda[3] = +1.0; return lambda; } //****************************************************************************80 double *moler4_inverse ( ) //****************************************************************************80 // // Purpose: // // moler4_inverse() returns the inverse of the MOLER4 matrix. // // Example: // // 0 1 0 0 // 0 0 1 0 // 0 0 0 1 // -1 0 2 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 February 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double A(4,4), the matrix. // { double *a; // // Note that the matrix entries are listed by column. // double a_save[4*4] = { 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 2.0, 0.0, 0.0, 1.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *neumann_matrix ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // neumann_matrix() returns the NEUMANN matrix. // // Formula: // // I1 = 1 + ( I - 1 ) / NROW // I2 = I - ( I1 - 1 ) * NROW // J1 = 1 + ( J - 1 ) / NROW // // if ( I = J ) // A(I,J) = 4 // else If ( I = J-1 ) // If ( I2 = 1 ) // A(I,J) = -2 // else // A(I,J) = -1 // else if ( I = J+1 ) // If ( I2 = NROW ) // A(I,J) = -2 // else // A(I,J) = -1 // else if ( I = J - NROW ) // if ( J1 = 2 ) // A(I,J) = -2 // else // A(I,J) = -1 // else if ( I = J + NROW ) // if ( J1 = NCOL-1 ) // A(I,J) = -2 // else // A(I,J) = -1 // else // A(I,J) = 0.0 // // Example: // // NROW = NCOL = 3 // // 4 -2 0 | -2 0 0 | 0 0 0 // -1 4 -1 | 0 -2 0 | 0 0 0 // 0 -2 4 | 0 0 -2 | 0 0 0 // ---------------------------- // -1 0 0 | 4 -1 0 | -1 0 0 // 0 -1 0 | -1 4 -1 | 0 -1 0 // 0 0 -1 | 0 -1 4 | 0 0 -1 // ---------------------------- // 0 0 0 | -2 0 0 | 4 -2 0 // 0 0 0 | 0 -2 0 | -1 4 -1 // 0 0 0 | 0 0 -2 | 0 -2 4 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is block tridiagonal. // // A results from discretizing Neumann's equation with the // 5 point operator on a mesh of NROW by NCOL points. // // A is singular. // // A has the null vector ( 1, 1, ..., 1 ). // // det ( A ) = 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989 // (Section 4.5.4). // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double NEUMANN[(NROW*NCOL)*(NROW*NCOL)], the matrix. // { double *a; int i; int i1; int j; int j1; int n; n = nrow * ncol; a = r8mat_zero_new ( n, n ); i = 0; for ( i1 = 0; i1 < nrow; i1++ ) { for ( j1 = 0; j1 < ncol; j1++ ) { if ( 0 < i1 ) { j = i - nrow; } else { j = i + nrow; } a[i+j*n] = a[i+j*n] - 1.0; if ( 0 < j1 ) { j = i - 1; } else { j = i + 1; } a[i+j*n] = a[i+j*n] - 1.0; j = i; a[i+j*n] = 4.0; if ( j1 < ncol - 1 ) { j = i + 1; } else { j = i - 1; } a[i+j*n] = a[i+j*n] - 1.0; if ( i1 < nrow - 1 ) { j = i + nrow; } else { j = i - nrow; } a[i+j*n] = a[i+j*n] - 1.0; i = i + 1; } } return a; } //****************************************************************************80 double neumann_determinant ( int n ) //****************************************************************************80 // // Purpose: // // neumann_determinant() returns the determinant of the NEUMANN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double NEUMANN_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *neumann_null_right ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // neumann_null_right() returns a right null vector of the NEUMANN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double NEUMANN_NULL_RIGHT[NROW*NCOL], the null vector. // { int i; double *x; x = new double[nrow*ncol]; for ( i = 0; i < nrow*ncol; i++ ) { x[i] = 1.0; } return x; } //****************************************************************************80 double *one_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // one_matrix() returns the ONE matrix. // // Discussion: // // The matrix is sometimes symbolized by "J". // // Example: // // N = 5 // // 1 1 1 1 1 // 1 1 1 1 1 // 1 1 1 1 1 // 1 1 1 1 1 // 1 1 1 1 1 // // Properties: // // Every entry of A is 1. // // A is symmetric. // // A is Toeplitz: constant along diagonals. // // A is Hankel: constant along antidiagonals. // // A is a circulant matrix: each row is shifted once to get the next row. // // A has constant row sums. // // A has constant column sums. // // If 1 < N, A is singular. // // If 1 < N, det ( A ) = 0. // // LAMBDA(1:N-1) = 0 // LAMBDA(N) = N // // The eigenvectors associated with LAMBDA = 0 can be written as // ( 1, -1, 0, ..., 0 ) // ( 1, 0, -1, ..., 0 ) // ... // ( 1, 0, 0, ..., -1 ). // The eigenvector associated with LAMBDA = N is ( 1, 1, ..., 1 ). // // A * A = N * A // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double ONE[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 1.0; } } return a; } //****************************************************************************80 double one_determinant ( int n ) //****************************************************************************80 // // Purpose: // // one_determinant() returns the determinant of the ONE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double ONE_DETERMINANT, the determinant. // { double determ; if ( n == 1 ) { determ = 1.0; } else { determ = 0.0; } return determ; } //****************************************************************************80 double *one_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // one_eigenvalues() returns the eigenvalues of the ONE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double ONE_EIGENVALUES[N], the eigenvalues. // { double *lambda; lambda = r8vec_zero_new ( n ); lambda[n-1] = ( double ) ( n ); return lambda; } //****************************************************************************80 double *one_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // one_null_left() returns a left null vector of the ONE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double ONE_NULL_LEFT[M], the null vector. // { double *x; if ( m == 1 ) { cerr << "\n"; cerr << "ONE_NULL_LEFT(): Fatal error!\n"; cerr << " Matrix is nonsingular for M = 1.\n"; exit ( 1 ); } x = r8vec_zero_new ( m ); x[0] = 1.0; x[m-1] = - 1.0; return x; } //****************************************************************************80 double *one_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // one_null_right() returns a right null vector of the ONE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double ONE_NULL_RIGHT[N], the null vector. // { double *x; if ( n == 1 ) { cerr << "\n"; cerr << "ONE_NULL_RIGHT(): Fatal error!\n"; cerr << " Matrix is nonsingular for N = 1.\n"; exit ( 1 ); } x = r8vec_zero_new ( n ); x[0] = 1.0; x[n-1] = - 1.0; return x; } //****************************************************************************80 double *one_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // one_eigen_right() returns the right eigenvectors of the ONE matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double ONE_EIGEN_RIGHT[N*N], the right eigenvectors. // { int i; int j; double *x; x = r8mat_zero_new ( n, n ); for ( j = 0; j < n - 1; j++ ) { x[ 0+j*n] = +1.0; x[j+1+j*n] = -1.0; } j = n - 1; for ( i = 0; i < n; i++ ) { x[i+j*n] = 1.0; } return x; } //****************************************************************************80 double *ortega_matrix ( int n, double u[], double v[], double d[] ) //****************************************************************************80 // // Purpose: // // ortega_matrix() returns the ORTEGA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2008 // // Author: // // John Burkardt // // Reference: // // James Ortega, // Generation of Test Matrices by Similarity Transformations, // Communications of the ACM, // Volume 7, 1964, pages 377-378. // // Parameters: // // Input, int N, the order of the matrix. // 2 <= N. // // Input, double U[N], V[N], vectors which define the matrix. // U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are // integers, then the matrix, inverse, eigenvalues, and eigenvectors // will be integers. // // Input, double D[N], the desired eigenvalues. // // Output, double ORTEGA[N*N], the matrix. // { double *a; double beta; double bik; double ckj; int i; int j; int k; double vtu; a = new double[n*n]; vtu = r8vec_dot_product ( n, v, u ); beta = 1.0 / ( 1.0 + vtu ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { if ( i == k ) { bik = 1.0 + u[i] * v[k]; } else { bik = u[i] * v[k]; } if ( k == j ) { ckj = 1.0 - beta * u[k] * v[j]; } else { ckj = - beta * u[k] * v[j]; } a[i+j*n] = a[i+j*n] + bik * d[k] * ckj; } } } return a; } //****************************************************************************80 double ortega_determinant ( int n, double u[], double v[], double d[] ) //****************************************************************************80 // // Purpose: // // ortega_determinant() returns the determinant of the ORTEGA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2008 // // Author: // // John Burkardt // // Reference: // // James Ortega, // Generation of Test Matrices by Similarity Transformations, // Communications of the ACM, // Volume 7, 1964, pages 377-378. // // Parameters: // // Input, int N, the order of the matrix. // 2 <= N. // // Input, double U[N], V[N], vectors which define the matrix. // U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are // integers, then the matrix, inverse, eigenvalues, and eigenvectors // will be integers. // // Input, double D[N], the desired eigenvalues. // // Output, double ORTEGA_DETERMINANT, the determinant. // { double determ; determ = r8vec_product ( n, d ); return determ; } //****************************************************************************80 double *ortega_eigenvalues ( int n, double u[], double v[], double d[] ) //****************************************************************************80 // // Purpose: // // ortega_eigenvalues() returns the eigenvalues of the ORTEGA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2008 // // Author: // // John Burkardt // // Reference: // // James Ortega, // Generation of Test Matrices by Similarity Transformations, // Communications of the ACM, // Volume 7, 1964, pages 377-378. // // Parameters: // // Input, int N, the order of the matrix. // 2 <= N. // // Input, double U[N], V[N], vectors which define the matrix. // U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are // integers, then the matrix, inverse, eigenvalues, and eigenvectors // will be integers. // // Input, double D[N], the desired eigenvalues. // // Output, double ORTEGA_EIGENVALUES[N], the determinant. // { double *lambda; lambda = r8vec_copy_new ( n, d ); return lambda; } //****************************************************************************80 double *ortega_inverse ( int n, double u[], double v[], double d[] ) //****************************************************************************80 // // Purpose: // // ortega_inverse() returns the inverse of the ORTEGA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2008 // // Author: // // John Burkardt // // Reference: // // James Ortega, // Generation of Test Matrices by Similarity Transformations, // Communications of the ACM, // Volume 7, 1964, pages 377-378. // // Parameters: // // Input, int N, the order of the matrix. // 2 <= N. // // Input, double U[N], V[N], vectors which define the matrix. // U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are // integers, then the matrix, inverse, eigenvalues, and eigenvectors // will be integers. // // Input, double D[N], the desired eigenvalues. // // Output, double ORTEGA_INVERSE[N*N], the matrix. // { double *a; double beta; double bik; double ckj; int i; int j; int k; double vtu; a = new double[n*n]; vtu = r8vec_dot_product ( n, v, u ); for ( i = 0; i < n; i++ ) { if ( d[i] == 0.0 ) { cerr << "\n"; cerr << "ORTEGA_INVERSE(): Fatal error!\n"; cerr << " D[" << i << "] = 0.\n"; exit ( 1 ); } } beta = 1.0 / ( 1.0 + vtu ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { if ( i == k ) { bik = 1.0 + u[i] * v[k]; } else { bik = + u[i] * v[k]; } if ( k == j ) { ckj = 1.0 - beta * u[k] * v[j]; } else { ckj = - beta * u[k] * v[j]; } a[i+j*n] = a[i+j*n] + ( bik / d[k] ) * ckj; } } } return a; } //****************************************************************************80 double *ortega_eigen_right ( int n, double u[], double v[], double d[] ) //****************************************************************************80 // // Purpose: // // ortega_eigen_right() returns the (right) eigenvectors of the ORTEGA matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2008 // // Author: // // John Burkardt // // Reference: // // James Ortega, // Generation of Test Matrices by Similarity Transformations, // Communications of the ACM, // Volume 7, 1964, pages 377-378. // // Parameters: // // Input, int N, the order of the matrix. // 2 <= N. // // Input, double U[N], V[N], vectors which define the matrix. // U'V must not equal -1.0. If, in fact, U'V = 0, and U, V and D are // integers, then the matrix, inverse, eigenvalues, and eigenvectors // will be integers. // // Input, double D[N], the desired eigenvalues. // // Output, double ORTEGRA_EIGEN_RIGHT[N*N], the determinant. // { int i; int j; double *x; x = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { x[i+j*n] = 1.0 + u[i] * v[j]; } else { x[i+j*n] = u[i] * v[j]; } } } return x; } //****************************************************************************80 double *orthogonal_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // orthogonal_random_matrix() returns the orthogonal_random matrix. // // Discussion: // // The matrix is a random orthogonal matrix. // // Properties: // // The inverse of A is equal to A'. // // A is orthogonal: A * A' = A' * A = I. // // Because A is orthogonal, it is normal: A' * A = A * A'. // // Columns and rows of A have unit Euclidean norm. // // Distinct pairs of columns of A are orthogonal. // // Distinct pairs of rows of A are orthogonal. // // The L2 vector norm of A*x = the L2 vector norm of x for any vector x. // // The L2 matrix norm of A*B = the L2 matrix norm of B for any matrix B. // // det ( A ) = +1 or -1. // // A is unimodular. // // All the eigenvalues of A have modulus 1. // // All singular values of A are 1. // // All entries of A are between -1 and 1. // // Discussion: // // Thanks to Eugene Petrov, B I Stepanov Institute of Physics, // National Academy of Sciences of Belarus, for convincingly // pointing out the severe deficiencies of an earlier version of // this routine. // // Essentially, the computation involves saving the Q factor of the // QR factorization of a matrix whose entries are normally distributed. // However, it is only necessary to generate this matrix a column at // a time, since it can be shown that when it comes time to annihilate // the subdiagonal elements of column K, these (transformed) elements of // column K are still normally distributed random values. Hence, there // is no need to generate them at the beginning of the process and // transform them K-1 times. // // For computational efficiency, the individual Householder transformations // could be saved, as recommended in the reference, instead of being // accumulated into an explicit matrix format. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Reference: // // Pete Stewart, // Efficient Generation of Random Orthogonal Matrices With an Application // to Condition Estimators, // SIAM Journal on Numerical Analysis, // Volume 17, Number 3, June 1980, pages 403-409. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double orthogonal_random[N*N] the matrix. // { double *a; int i; int j; int seed; double *v; double *x; // // Start with A = the identity matrix. // a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { a[i+i*n] = 1.0; } // // Now behave as though we were computing the QR factorization of // some other random matrix. Generate the N elements of the first column, // compute the Householder matrix H1 that annihilates the subdiagonal elements, // and set A := A * H1' = A * H. // // On the second step, generate the lower N-1 elements of the second column, // compute the Householder matrix H2 that annihilates them, // and set A := A * H2' = A * H2 = H1 * H2. // // On the N-1 step, generate the lower 2 elements of column N-1, // compute the Householder matrix HN-1 that annihilates them, and // and set A := A * H(N-1)' = A * H(N-1) = H1 * H2 * ... * H(N-1). // This is our random orthogonal matrix. // x = new double[n]; seed = key; for ( j = 0; j < n - 1; j++ ) { // // Set the vector that represents the J-th column to be annihilated. // for ( i = 0; i < j; i++ ) { x[i] = 0.0; } for ( i = j; i < n; i++ ) { x[i] = r8_normal_01 ( seed ); } // // Compute the vector V that defines a Householder transformation matrix // H(V) that annihilates the subdiagonal elements of X. // // The COLUMN argument here is 1-based. // v = r8vec_house_column ( n, x, j+1 ); // // Postmultiply the matrix A by H'(V) = H(V). // r8mat_house_axh ( n, a, v ); delete [] v; } // // Free memory. // delete [] x; return a; } //****************************************************************************80 double orthogonal_random_determinant ( int n, int key ) //****************************************************************************80 // // Purpose: // // orthogonal_random_determinant() returns the determinant of the orthogonal_random matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double orthogonal_random_DETERMINANT, the determinant. // { double determinant; determinant = 1.0; return determinant; } //****************************************************************************80 double *orthogonal_random_inverse ( int n, int key ) //****************************************************************************80 // // Purpose: // // orthogonal_random_inverse() returns the inverse of the orthogonal_random matrix. // // Discussion: // // This routine will only work properly if the input value of SEED // is exactly the same as the value used to generate the original matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double orthogonal_random_INVERSE[N*N], the matrix. // { double *a; a = orthogonal_random_matrix ( n, key ); return a; } //****************************************************************************80 double *orthogonal_symmetric_matrix ( int n ) //****************************************************************************80 // // Purpose: // // orthogonal_symmetric_matrix() returns the orthogonal_symmetric matrix. // // Formula: // // A(I,J) = sqrt ( 2 ) * sin ( I * J * pi / ( N + 1 ) ) / sqrt ( N + 1 ) // // Example: // // N = 5 // // 0.326019 0.548529 0.596885 0.455734 0.169891 // 0.548529 0.455734 -0.169891 -0.596885 -0.326019 // 0.596885 -0.169891 -0.548529 0.326019 0.455734 // 0.455734 -0.596885 0.326019 0.169891 -0.548528 // 0.169891 -0.326019 0.455734 -0.548528 0.596885 // // Properties: // // A is orthogonal: A' * A = A * A' = I. // // A is symmetric: A' = A. // // A is not positive definite (unless N = 1 ). // // Because A is symmetric, it is normal. // // Because A is symmetric, its eigenvalues are real. // // Because A is orthogonal, its eigenvalues have unit norm. // // Only +1 and -1 can be eigenvalues of A. // // Because A is normal, it is diagonalizable. // // A is involutory: A * A = I. // // If N is even, trace ( A ) = 0; if N is odd, trace ( A ) = 1. // // LAMBDA(1:(N+1)/2) = 1; LAMBDA((N+1)/2+1:N) = -1. // // A is the left and right eigenvector matrix for the // second difference matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Reference: // // Morris Newman, John Todd, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double orthogonal_symmetric[N*N], the matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = 2.0 * ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( 2 * n + 1 ); a[i+j*n] = 2.0 * sin ( angle ) / sqrt ( ( double ) ( 2 * n + 1 ) ); } } return a; } //****************************************************************************80 double orthogonal_symmetric_condition ( int n ) //****************************************************************************80 // // Purpose: // // orthogonal_symmetric_condition() returns the L1 condition of the orthogonal_symmetric matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double orthogonal_symmetric_CONDITION, the L1 condition. // { double a_norm; double angle; double b_norm; int i; int j; const double r8_pi = 3.141592653589793; double value; a_norm = 0.0; j = 1; for ( i = 1; i <= n; i++ ) { angle = 2.0 * ( double ) ( i * j ) * r8_pi / ( double ) ( 2 * n + 1 ); a_norm = a_norm + 2.0 * fabs ( sin ( angle ) ) / sqrt ( ( double ) ( 2 * n + 1 ) ); } b_norm = a_norm; value = a_norm * b_norm; return value; } //****************************************************************************80 double orthogonal_symmetric_determinant ( int n ) //****************************************************************************80 // // Purpose: // // orthogonal_symmetric_determinant(): determinant of orthogonal_symmetric matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double orthogonal_symmetric_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *orthogonal_symmetric_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // orthogonal_symmetric_eigenvalues(): eigenvalues of orthogonal_symmetric matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double orthogonal_symmetric_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < ( n + 1 ) / 2; i++ ) { lambda[i] = +1.0; } for ( i = ( n + 1 ) / 2; i < n; i++ ) { lambda[i] = -1.0; } return lambda; } //****************************************************************************80 double *orthogonal_symmetric_inverse ( int n ) //****************************************************************************80 // // Purpose: // // orthogonal_symmetric_inverse(): inverse of the orthogonal_symmetric matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double orthogonal_symmetric_INVERSE[N*N], the matrix. // { double *a; a = orthogonal_symmetric_matrix ( n ); return a; } //****************************************************************************80 double *oto_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // oto_matrix() returns the OTO matrix. // // Discussion: // // The name is meant to suggest "One, Two, One". // // Example: // // N = 5 // // 2 1 . . . // 1 2 1 . . // . 1 2 1 . // . . 1 2 1 // . . . 1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is integral: int ( A ) = A. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double OTO[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( j == i - 1 ) { a[i+j*m] = 1.0; } else if ( j == i ) { a[i+j*m] = 2.0; } else if ( j == i + 1 ) { a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double oto_condition ( int n ) //****************************************************************************80 // // Purpose: // // oto_condition() returns the L1 condition of the OTO matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double OTO_CONDITION, the L1 condition. // { double a_norm; double b_norm; int i1; int i2; int n1; int n2; int s; double value; if ( n == 1 ) { a_norm = 2.0; } else if ( n == 2 ) { a_norm = 3.0; } else { a_norm = 4.0; } n1 = ( n + 1 ) / 2; n2 = ( n + 2 ) / 2; s = 0; i1 = n1; i2 = 0; while ( i2 < n2 ) { i2 = i2 + 1; s = s + i1 * i2; } while ( 1 < i1 ) { i1 = i1 - 1; s = s + i1 * i2; } b_norm = ( double ) ( s ) / ( double ) ( n + 1 ); value = a_norm * b_norm; return value; } //****************************************************************************80 double oto_determinant ( int n ) //****************************************************************************80 // // Purpose: // // oto_determinant() returns the determinant of the OTO matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double OTO_DETERMINANT, the determinant of the matrix. // { double determ; determ = ( double ) ( n + 1 ); return determ; } //****************************************************************************80 double *oto_eigen_right ( int n ) //****************************************************************************80 // // Purpose: // // oto_eigen_right() returns the right eigenvectors of the OTO matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double OTO_EIGEN_RIGHT[N*N], the right eigenvector matrix. // { double *a; double angle; int i; int j; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { angle = ( double ) ( ( i + 1 ) * ( j + 1 ) ) * r8_pi / ( double ) ( n + 1 ); a[i+j*n] = r8_mop ( i + j ) * sqrt ( 2.0 / ( double ) ( n + 1 ) ) * sin ( angle ); } } return a; } //****************************************************************************80 double *oto_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // oto_eigenvalues() returns the eigenvalues of the OTO matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, OTO_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( 2 * ( n + 1 ) ); lambda[i] = 4.0 * pow ( sin ( angle ), 2 ); } return lambda; } //****************************************************************************80 double *oto_inverse ( int n ) //****************************************************************************80 // // Purpose: // // oto_inverse() returns the inverse of the OTO matrix. // // Formula: // // if ( I <= J ) // A(I,J) = (-1)^(I+J) * I * (N-J+1) / (N+1) // else // A(I,J) = (-1)^(I+J) * J * (N-I+1) / (N+1) // // Example: // // N = 4 // // 4 -3 2 -1 // (1/5) * -3 6 -4 2 // 2 -4 6 -3 // -1 2 -3 4 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double OTO_INVERSE[N*N] the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i <= j ) { a[i+j*n] = r8_mop ( i + j ) * ( double ) ( ( i + 1 ) * ( n - j ) ) / ( double ) ( n + 1 ); } else { a[i+j*n] = r8_mop ( i + j ) * ( double ) ( ( j + 1 ) * ( n - i ) ) / ( double ) ( n + 1 ); } } } return a; } //****************************************************************************80 double *oto_llt ( int n ) //****************************************************************************80 // // Purpose: // // oto_llt() returns the Cholesky factor of the OTO matrix. // // Example: // // N = 5 // // 1.4142 0 0 0 0 // 0.7071 1.2247 0 0 0 // 0 0.8165 1.1547 0 0 // 0 0 0.8660 1.1180 0 // 0 0 0 0.8944 1.0954 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double OTO_LLT[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { a[i+i*n] = sqrt ( ( double ) ( i + 2 ) / ( double ) ( i + 1 ) ); } for ( i = 1; i < n; i++ ) { a[i+(i-1)*n] = sqrt ( ( double ) ( i ) / ( double ) ( i + 1 ) ); } return a; } //****************************************************************************80 void oto_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // oto_plu() returns the PLU factors of the OTO matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { l[i+j*n] = 1.0; } else if ( i == j + 1 ) { l[i+j*n] = ( double ) ( j + 1 ) / ( double ) ( j + 2 ); } else { l[i+j*n] = 0.0; } } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { u[i+j*n] = ( double ) ( i + 2 ) / ( double ) ( i + 1 ); } else if ( i == j - 1 ) { u[i+j*n] = 1.0; } else { u[i+j*n] = 0.0; } } } return; } //****************************************************************************80 double *parlett_matrix ( ) //****************************************************************************80 // // Purpose: // // parlett_matrix() returns the PARLETT matrix. // // Formula: // // N = 100 // // if ( I < J ) // if ( I = 1 and J = 2 ) // A(I,J) = 40 / 102 // else if ( I = 1 and J = 100 ) // A(I,J) = 40 // else // A(I,J) = 0 // else if ( I = J ) // A(I,J) = 101 - I // else if ( J < I ) // A(I,J) = (-1)^(I+J+1) * 40 / ( I + J - 2 ) // // Example: // // 100.00 0.39 0 0 0 ... 40.00 // 40.00 99.00 0 0 0 ... 0 // -20.00 13.33 98.00 0 0 ... 0 // 13.33 -10.00 8.00 97.00 0 ... 0 // -10.00 8.00 -6.67 5.71 96.00 ... 0 // ... ... ... ... ... ... ... // 0.40 -0.40 0.39 -0.39 0.38 ... 1.00 // // Properties: // // A is not symmetric: A' /= A. // // The eigenvalues of A are // // LAMBDA(I) = I. // // det ( A ) = 100! // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double PARLETT[100*100], the matrix. // { double *a; int i; int j; int n = 100; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i < j ) { if ( i == 0 && j == 1 ) { a[i+j*n] = 40.0 / 102.0; } else if ( i == 0 && j == n - 1 ) { a[i+j*n] = 40.0; } else { a[i+j*n] = 0.0; } } else if ( i == j ) { a[i+j*n] = ( double ) ( n - i ); } else if ( j < i ) { a[i+j*n] = r8_mop ( i + j + 1 ) * 40.0 / ( double ) ( i + j ); } } } return a; } //****************************************************************************80 double *parlett_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // parlett_eigenvalues() returns the eigenvalues of the PARLETT matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double PARLETT_EIGENVALUES[100], the eigenvalues. // { int i; double *lambda; int n = 100; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = ( double ) ( i + 1 ); } return lambda; } //****************************************************************************80 double *parter_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // parter_matrix() returns the PARTER matrix. // // Formula: // // A(I,J) = 1 / ( i - j + 0.5 ) // // Example: // // N = 5 // // 2 -2 -2/3 -2/5 -2/7 // 2/3 2 -2 -2/3 -2/5 // 2/5 2/3 2 -2 -2/3 // 2/7 2/5 2/3 2 -2 // 2/9 2/7 2/5 2/3 2 // // Properties: // // The diagonal entries are all 2, the first superdiagonals all -2. // // A is Toeplitz: constant along diagonals. // // A is generally not symmetric: A' /= A. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a special case of the Cauchy matrix. // // Most of the singular values are very close to Pi. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Reference: // // Seymour Parter, // On the distribution of the singular values of Toeplitz matrices, // Linear Algebra and Applications, // Volume 80, August 1986, pages 115-130. // // Evgeny Tyrtyshnikov, // Cauchy-Toeplitz matrices and some applications, // Linear Algebra and Applications, // Volume 149, 15 April 1991, pages 1-18. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double PARTER[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 1.0 / ( ( double ) ( i - j ) + 0.5 ); } } return a; } //****************************************************************************80 double parter_determinant ( int n ) //****************************************************************************80 // // Purpose: // // parter_determinant() returns the determinant of the PARTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PARTER_DETERMINANT, the determinant. // { double bottom; double determ; int i; int j; double top; top = 1.0; for ( i = 0; i < n; i++ ) { for ( j = i + 1; j < n; j++ ) { top = top * ( double ) ( j - i ) * ( double ) ( i - j ); } } bottom = 1.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { bottom = bottom * ( ( double ) ( i - j ) + 0.5 ); } } determ = top / bottom; return determ; } //****************************************************************************80 double *parter_inverse ( int n ) //****************************************************************************80 // // Purpose: // // parter_inverse() returns the inverse of the PARTER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PARTER_INVERSE[N*N], the matrix. // { double *a; double bot1; double bot2; int i; int j; int k; double top; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { top = 1.0; bot1 = 1.0; bot2 = 1.0; for ( k = 0; k < n; k++ ) { top = top * ( 0.5 + ( double ) ( j - k ) ) * ( 0.5 + ( double ) ( k - i ) ); if ( k != j ) { bot1 = bot1 * ( double ) ( j - k ); } if ( k != i ) { bot2 = bot2 * ( double ) ( k - i ); } } a[i+j*n] = top / ( ( 0.5 + ( double ) ( j - i ) ) * bot1 * bot2 ); } } return a; } //****************************************************************************80 double *pascal1_matrix ( int n ) //****************************************************************************80 // // Purpose: // // pascal1_matrix() returns the PASCAL1 matrix. // // Formula: // // if ( J = 1 ) // a[i+j*n] = 1 // else if ( I = 0 ) // A(1,J) = 0 // else // a[i+j*n] = A(I-1,J) + A(I-1,J-1) // // Example: // // N = 5 // // 1 0 0 0 0 // 1 1 0 0 0 // 1 2 1 0 0 // 1 3 3 1 0 // 1 4 6 4 1 // // Properties: // // A is a "chunk" of the Pascal binomial combinatorial triangle. // // A is generally not symmetric: A' /= A. // // A is nonsingular. // // A is lower triangular. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // (0, 0, ..., 0, 1) is an eigenvector. // // The inverse of A is the same as A, except that entries in "odd" // positions have changed sign: // // B(I,J) = (-1)^(I+J) * a[i+j*n] // // The product A*A' is a Pascal matrix // of the sort created by PASCAL2. // // Let the matrix C have the same entries as A, except that // the even columns are negated. Then Inverse(C) = C, and // C' * C = the Pascal matrix created by PASCAL2. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL1[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( i = 0; i < n; i ++ ) { for ( j = 0; j < n; j++ ) { if ( j == 0 ) { a[i+j*n] = 1.0; } else if ( i == 0 ) { a[i+j*n] = 0.0; } else { a[i+j*n] = a[i-1+(j-1)*n] + a[i-1+j*n]; } } } return a; } //****************************************************************************80 double pascal1_condition ( int n ) //****************************************************************************80 // // Purpose: // // pascal1_condition() returns the L1 condition of the PASCAL1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL1_CONDITION, the L1 condition. // { double a_norm; double b_norm; int nhalf; double value; nhalf = ( n + 1 ) / 2; a_norm = r8_choose ( n, nhalf ); b_norm = r8_choose ( n, nhalf ); value = a_norm * b_norm; return value; } //****************************************************************************80 double pascal1_determinant ( int n ) //****************************************************************************80 // // Purpose: // // pascal1_determinant() returns the determinant of the PASCAL1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL1_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *pascal1_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // pascal1_eigenvalues() returns eigenvalues of the PASCAL1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL1_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n; i++ ) { lambda[i] = 1.0; } return lambda; } //****************************************************************************80 double *pascal1_inverse ( int n ) //****************************************************************************80 // // Purpose: // // pascal1_inverse() returns the inverse of the PASCAL1 matrix. // // Formula: // // if ( J = 1 ) // a[i+j*n] = (-1)^(I+J) // else if ( I = 1 ) // a[i+j*n] = 0 // else // a[i+j*n] = A(I-1,J) - A(I,J-1) // // Example: // // N = 5 // // 1 0 0 0 0 // -1 1 0 0 0 // 1 -2 1 0 0 // -1 3 -3 1 0 // 1 -4 6 -4 1 // // Properties: // // A is nonsingular. // // A is lower triangular. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // (0, 0, ..., 0, 1) is an eigenvector. // // The inverse of A is the same as A, except that entries in "odd" // positions have changed sign: // // B(I,J) = (-1)^(I+J) * a[i+j*n] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL1_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j ++ ) { for ( i = 0; i < n; i++ ) { if ( j == 0 ) { a[i+j*n] = r8_mop ( i + j ); } else if ( i == 0 ) { a[i+j*n] = 0.0; } else { a[i+j*n] = a[i-1+(j-1)*n] - a[i-1+j*n]; } } } return a; } //****************************************************************************80 double *pascal2_matrix ( int n ) //****************************************************************************80 // // Purpose: // // pascal2_matrix() returns the PASCAL2 matrix. // // Discussion: // // See page 172 of the Todd reference. // // Formula: // // If ( I = 1 or J = 1 ) // a[i+j*n] = 1 // else // a[i+j*n] = A(I-1,J) + A(I,J-1) // // Example: // // N = 5 // // 1 1 1 1 1 // 1 2 3 4 5 // 1 3 6 10 15 // 1 4 10 20 35 // 1 5 15 35 70 // // Properties: // // A is a "chunk" of the Pascal binomial combinatorial triangle. // // A is positive definite. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is nonsingular. // // det ( A ) = 1. // // A is unimodular. // // Eigenvalues of A occur in reciprocal pairs. // // The condition number of A is approximately 16^N / ( N*PI ). // // The elements of the inverse of A are integers. // // a[i+j*n] = (I+J-2)! / ( (I-1)! * (J-1)! ) // // The Cholesky factor of A is a lower triangular matrix R, // such that A = R * R'. The matrix R is a Pascal // matrix of the type generated by subroutine PASCAL. In other // words, PASCAL2 = PASCAL * PASCAL'. // // If the (N,N) entry of A is decreased by 1, the matrix is singular. // // Gregory and Karney consider a generalization of this matrix as // their test matrix 3.7, in which every element is multiplied by a // nonzero constant K. They point out that if K is the reciprocal of // an integer, then the inverse matrix has all integer entries. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Robert Brawer, Magnus Pirovino, // The linear algebra of the Pascal matrix, // Linear Algebra and Applications, // Volume 174, 1992, pages 13-23. // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Nicholas Higham, // Accuracy and Stability of Numerical Algorithms, // Society for Industrial and Applied Mathematics, // Philadelphia, PA, USA, 1996; section 26.4. // // Sam Karlin, // Total Positivity, Volume 1, // Stanford University Press, 1968. // // Morris Newman, John Todd, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // Heinz Rutishauser, // On test matrices, // Programmation en Mathematiques Numeriques, // Centre National de la Recherche Scientifique, // 1966, pages 349-365. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // HW Turnbull, // The Theory of Determinants, Matrices, and Invariants, // Blackie, 1929. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL2[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j ++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { a[i+j*n] = 1.0; } else if ( j == 0 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = a[i+(j-1)*n] + a[i-1+j*n]; } } } return a; } //****************************************************************************80 double pascal2_determinant ( int n ) //****************************************************************************80 // // Purpose: // // pascal2_determinant() returns the determinant of the PASCAL2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL2_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *pascal2_inverse ( int n ) //****************************************************************************80 // // Purpose: // // pascal2_inverse() returns the inverse of the PASCAL2 matrix. // // Formula: // // a[i+j*n] = sum ( max(I,J) <= K <= N ) // (-1)^(J+I) * COMB(K-1,I-1) * COMB(K-1,J-1) // // Example: // // N = 5 // // 5 -10 10 -5 1 // -10 30 -35 19 -4 // 10 -35 46 -27 6 // -5 19 -27 17 -4 // 1 -4 6 -4 1 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The first row sums to 1, the others to 0. // // The first column sums to 1, the others to 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL2_INVERSE[N*N], the matrix. // { double *a; int i; int j; int k; int klo; a = new double[n*n]; for ( j = 0; j < n; j ++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; klo = i4_max ( i + 1, j + 1 ); for ( k = klo; k <= n; k++ ) { a[i+j*n] = a[i+j*n] + r8_mop ( i + j ) * r8_choose ( k - 1, i ) * r8_choose ( k - 1, j ); } } } return a; } //****************************************************************************80 double *pascal2_llt ( int n ) //****************************************************************************80 // // Purpose: // // pascal2_llt() returns the Cholesky factor of the PASCAL2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double PASCAL2_LLT[N*N], the matrix. // { double *a; a = pascal1_matrix ( n ); return a; } //****************************************************************************80 void pascal2_plu ( int n, double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // pascal2_plu() returns the PLU factors of the PASCAL2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double P[N*N], L[N*N], U[N*N], the PLU factors. // { int i; int j; double *l_local; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } l_local = pascal1_matrix ( n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { l[i+j*n] = l_local[i+j*n]; } } for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { u[i+j*n] = l[j+i*n]; } } // // Free memory. // delete [] l_local; return; } //****************************************************************************80 double *pascal3_matrix ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // pascal3_matrix() returns the PASCAL3 matrix. // // Formula: // // if ( J = 1 ) // a[i+j*n] = 1 // else if ( I = 0 ) // A(1,J) = 0 // else // a[i+j*n] = ALPHA * A(I-1,J) + A(I-1,J-1) ) // // Example: // // N = 5, ALPHA = 2 // // 1 0 0 0 0 // 2 1 0 0 0 // 4 4 1 0 0 // 8 12 6 1 0 // 16 32 24 8 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A[0] is the identity matrix. // // A[1] is the usual (lower triangular) Pascal matrix. // // A is nonsingular. // // A is lower triangular. // // If ALPHA is integral, then A is integral. // If A is integral, then det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // det ( A ) = 1. // // A is unimodular. // // LAMBDA(1:N) = 1. // // (0, 0, ..., 0, 1) is an eigenvector. // // The inverse of A[X] is A[-X]. // // A[ALPHA] * A[BETA] = A[ALPHA*BETA]. // // A[1/2] is the "square root" of A[1], and so on. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Reference: // // Gregory Call, Daniel Velleman, // Pascal's Matrices, // American Mathematical Monthly, // Volume 100, Number 4, April 1993, pages 372-376. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double PASCAL3[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j ++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { if ( j == 0 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } else if ( j == 0 ) { a[i+j*n] = alpha * a[i-1+j*n]; } else { a[i+j*n] = a[i-1+(j-1)*n] + alpha * a[i-1+j*n]; } } } return a; } //****************************************************************************80 double pascal3_condition ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // pascal3_condition() returns the L1 condition of the PASCAL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double PASCAL3_CONDITION, the L1 condition. // { double *a; double a_norm; double b_norm; double value; a = pascal3_matrix ( n, alpha ); a_norm = r8mat_norm_l1 ( n, n, a ); b_norm = a_norm; value = a_norm * b_norm; delete [] a; return value; } //****************************************************************************80 double pascal3_determinant ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // pascal3_determinant() returns the determinant of the PASCAL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double PASCAL3_DETERMINANT, the determinant. // { double determ; determ = 1.0; return determ; } //****************************************************************************80 double *pascal3_inverse ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // pascal3_inverse() returns the inverse of the PASCAL3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 May 2002 // // Author: // // 04 July 2008 // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double PASCAL3_INVERSE[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j ++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { if ( j == 0 ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } else if ( j == 0 ) { a[i+j*n] = - alpha * a[i-1+j*n]; } else { a[i+j*n] = a[i-1+(j-1)*n] - alpha * a[i-1+j*n]; } } } return a; } //****************************************************************************80 double *spd_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // spd_random_matrix() returns the SPD_RANDOM matrix. // // Discussion: // // The matrix is a "random" positive definite symmetric matrix. // // The matrix returned will have eigenvalues in the range [0,1]. // // Properties: // // A is symmetric: A' = A. // // A is positive definite: 0 < x'*A*x for nonzero x. // // The eigenvalues of A will be real. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double SPD_RANDOM[N*N], the matrix. // { double *a; int i; int j; int k; double *lambda; double *q; int seed; a = new double[n*n]; // // Get a random set of eigenvalues. // seed = key; lambda = r8vec_uniform_01_new ( n, seed ); // // Get a random orthogonal matrix Q. // q = orthogonal_random_matrix ( n, key ); // // Set A = Q * Lambda * Q'. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { a[i+j*n] = a[i+j*n] + q[i+k*n] * lambda[k] * q[j+k*n]; } } } // // Free memory. // delete [] lambda; delete [] q; return a; } //****************************************************************************80 double spd_random_determinant ( int n, int key ) //****************************************************************************80 // // Purpose: // // spd_random_determinant() returns the determinant of the SPD_RANDOM matrix. // // Discussion: // // This routine will only work properly if the SAME value of SEED // is input that was input to SPD_RANDOM. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double SPD_RANDOM_DETERMINANT, the determinant. // { double determ; int i; double *lambda; int seed; seed = key; lambda = r8vec_uniform_01_new ( n, seed ); determ = 1.0; for ( i = 0; i < n; i++ ) { determ = determ * lambda[i]; } // // Free memory. // delete [] lambda; return determ; } //****************************************************************************80 double *spd_random_eigenvalues ( int n, int key ) //****************************************************************************80 // // Purpose: // // spd_random_eigenvalues() returns the eigenvalues of the SPD_RANDOM matrix. // // Discussion: // // This routine will only work properly if the SAME value of SEED // is input that was input to SPD_RANDOM. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double SPD_RANDOM_EIGENVALUES[N], the eigenvalues. // { double *lambda; int seed; seed = key; lambda = r8vec_uniform_01_new ( n, seed ); return lambda; } //****************************************************************************80 double *spd_random_inverse ( int n, int key ) //****************************************************************************80 // // Purpose: // // spd_random_inverse() returns the inverse of the SPD_RANDOM matrix. // // Discussion: // // The matrix is a "random" positive definite symmetric matrix. // // The matrix returned will have eigenvalues in the range [0,1]. // // Properties: // // A is symmetric: A' = A. // // A is positive definite: 0 < x'*A*x for nonzero x. // // The eigenvalues of A will be real. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double SPD_RANDOM_INVERSE[N*N], the matrix. // { double *a; int i; int j; int k; double *lambda; double *q; int seed; // // Get a random set of eigenvalues. // seed = key; lambda = r8vec_uniform_01_new ( n, seed ); // // Get a random orthogonal matrix Q. // q = orthogonal_random_matrix ( n, key ); // // Set A = Q * Lambda * Q'. // a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { a[i+j*n] = a[i+j*n] + q[i+k*n] * ( 1.0 / lambda[k] ) * q[j+k*n]; } } } // // Free memory. // delete [] lambda; delete [] q; return a; } //****************************************************************************80 double *spd_random_eigen_right ( int n, int key ) //****************************************************************************80 // // Purpose: // // spd_random_eigen_right() returns the right eigenvectors of the SPD_RANDOM matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double SPD_RANDOM_EIGEN_RIGHT[N*N], the matrix. // { double *lambda; double *q; int seed; // // Get a random set of eigenvalues. // seed = key; lambda = r8vec_uniform_01_new ( n, seed ); // // Get a random orthogonal matrix Q. // q = orthogonal_random_matrix ( n, key ); // // Free memory. // delete [] lambda; return q; } //****************************************************************************80 double *pei_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_matrix() returns the PEI matrix. // // Formula: // // if ( I = J ) then // A(I,J) = 1.0 + ALPHA // else // A(I,J) = 1.0 // // Example: // // ALPHA = 2, N = 5 // // 3 1 1 1 1 // 1 3 1 1 1 // 1 1 3 1 1 // 1 1 1 3 1 // 1 1 1 1 3 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite for 0 < ALPHA. // // A is Toeplitz: constant along diagonals. // // A is a circulant matrix: each row is shifted once to get the next row. // // A is singular if and only if ALPHA = 0 or ALPHA = -N. // // A becomes more ill-conditioned as ALPHA approaches 0. // // The condition number under the spectral norm is // abs ( ( ALPHA + N ) / ALPHA ) // // The eigenvalues of A are // // LAMBDA(1:N-1) = ALPHA // LAMBDA(N) = ALPHA + N // // A has constant row sum of ALPHA + N. // // Because it has a constant row sum of ALPHA + N, // A has an eigenvalue of ALPHA + N, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum of ALPHA + N. // // Because it has a constant column sum of ALPHA + N, // A has an eigenvalue of ALPHA + N, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // The eigenvectors are: // // V1 = 1 / sqrt ( N ) * ( 1, 1, 1, ... , 1 ) // VR = 1 / sqrt ( R * (R-1) ) * ( 1, 1, 1, ... 1, -R+1, 0, 0, 0, ... 0 ) // // where the "-R+1" occurs at index R. // // det ( A ) = ALPHA^(N-1) * ( N + ALPHA ). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Reference: // // Morris Newman, John Todd, // Example A3, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // ML Pei, // A test matrix for inversion procedures, // Communications of the ACM, // Volume 5, 1962, page 508. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, double ALPHA, the scalar that defines the Pei matrix. A // typical value of ALPHA is 1.0. // // Input, int N, the order of the matrix. // // Output, double PEI[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 1.0 + alpha; } else { a[i+j*n] = 1.0; } } } return a; } //****************************************************************************80 double pei_condition ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_condition() returns the L1 condition of the PEI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines the Pei matrix. A // typical value of ALPHA is 1.0. // // Input, int N, the order of the matrix. // // Output, double PEI_CONDITION, the L1 condition. // { double a_norm; double b_norm; double n_r8; double value; n_r8 = ( double ) ( n ); a_norm = fabs ( alpha + 1.0 ) + n_r8 - 1.0; b_norm = ( fabs ( alpha + n_r8 - 1.0 ) + n_r8 - 1.0 ) / fabs ( alpha * ( alpha + n_r8 ) ); value = a_norm * b_norm; return value; } //****************************************************************************80 double pei_determinant ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_determinant() returns the determinant of the PEI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines the Pei matrix. A // typical value of ALPHA is 1.0. // // Input, int N, the order of the matrix. // // Output, double PEI_DETERMINANT, the determinant. // { double determ; determ = pow ( alpha, n - 1 ) * ( alpha + ( double ) ( n ) ); return determ; } //****************************************************************************80 double *pei_eigenvalues ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_eigenvalues() returns the eigenvalues of the PEI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines the Pei matrix. A // typical value of ALPHA is 1.0. // // Input, int N, the order of the matrix. // // Output, double PEI_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n - 1; i++ ) { lambda[i] = alpha; } lambda[n-1] = alpha + ( double ) ( n ); return lambda; } //****************************************************************************80 double *pei_inverse ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_inverse() returns the inverse of the PEI matrix. // // Formula: // // if ( I = J ) // A(I,J) = (ALPHA+N-1) / ( (ALPHA+1)*(ALPHA+N-1)-(N-1) ) // else // A(I,J) = -1 / ( (ALPHA+1)*(ALPHA+N-1)-(N-1) ) // // Example: // // ALPHA = 2, N = 5 // // 6 -1 -1 -1 -1 // -1 6 -1 -1 -1 // 1/14 * -1 -1 6 -1 -1 // -1 -1 -1 6 -1 // -1 -1 -1 -1 6 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is a "combinatorial" matrix. See routine COMBIN. // // A is Toeplitz: constant along diagonals. // // A is a circulant matrix: each row is shifted once to get the next row. // // A has constant row sum. // // Because it has a constant row sum of 1 / ( ALPHA + N ), // A has an eigenvalue of 1 / ( ALPHA + N ), and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum. // // Because it has constant column sum of 1 / ( ALPHA + N ), // A has an eigenvalue of 1 / ( ALPHA + N ), and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // The eigenvalues of A are // LAMBDA(1:N-1) = 1 / ALPHA // LAMBDA(N) = 1 / ( ALPHA + N ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Reference: // // ML Pei, // A test matrix for inversion procedures, // Communications of the ACM, // Volume 5, 1962, page 508. // // Parameters: // // Input, double ALPHA, the scalar that defines the inverse // of the Pei matrix. // // Input, int N, the order of the matrix. // // Output, double PEI_INVERSE[N*N], the matrix. // { double *a; double alpha1; double beta1; double bottom; int i; int j; bottom = ( alpha + 1.0 ) * ( alpha + ( double ) ( n ) - 1.0 ) - ( double ) ( n ) + 1.0; if ( bottom == 0.0 ) { cerr << "\n"; cerr << "PEI_INVERSE(): Fatal error!\n"; cerr << " The matrix is not invertible.\n"; cerr << " (ALPHA+1)*(ALPHA+N-1)-N+1 is zero.\n"; exit ( 1 ); } alpha1 = ( alpha + ( double ) ( n ) - 1.0 ) / bottom; beta1 = - 1.0 / bottom; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = alpha1; } else { a[i+j*n] = beta1; } } } return a; } //****************************************************************************80 double *pei_eigen_right ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // pei_eigen_right() returns the right eigenvectors of the PEI matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, double ALPHA, the scalar that defines A. // // Input, int N, the order of the matrix. // // Output, double PEI_EIGEN_RIGHT[N*N], the right eigenvectors. // { int i; int j; double *x; x = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 ) { x[i+j*n] = + 1.0; } else if ( i == j + 1 ) { x[i+j*n] = - 1.0; } else if ( j == n - 1 ) { x[i+j*n] = 1.0; } else { x[i+j*n] = 0.0; } } } return x; } //****************************************************************************80 bool perm_check ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // perm_check() checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from 1 // to N occurs among the N entries of the permutation. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // // Output, bool PERM_CHECK, is TRUE if the permutation is OK. // { bool found; int i; int seek; for ( seek = 1; seek <= n; seek++ ) { found = false; for ( i = 0; i < n; i++ ) { if ( p[i] == seek ) { found = true; break; } } if ( !found ) { cout << "\n"; cout << "PERM_CHECK did not find " << seek << "\n"; return false; } } return true; } //****************************************************************************80 void perm_inverse ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // perm_inverse() inverts a permutation "in place". // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 January 2004 // // Author: // // John Burkardt // // Input: // // int N, the number of objects being permuted. // // int P[N], the permutation, in standard index form. // // Output: // // int P[N]: describes the inverse permutation. // { int i; int i0; int i1; int i2; int is; if ( n <= 0 ) { cerr << "\n"; cerr << "PERM_INVERSE(): Fatal error!\n"; cerr << " Input value of N = " << n << "\n"; exit ( 1 ); } if ( !perm_check ( n, p ) ) { cerr << "\n"; cerr << "PERM_INVERSE(): Fatal error!\n"; cerr << " The input array does not represent\n"; cerr << " a proper permutation.\n"; exit ( 1 ); } is = 1; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } is = - i4_sign ( p[i-1] ); p[i-1] = i4_sign ( is ) * abs ( p[i-1] ); } for ( i = 1; i <= n; i++ ) { i1 = -p[i-1]; if ( 0 <= i1 ) { i0 = i; for ( ; ; ) { i2 = p[i1-1]; p[i1-1] = i0; if ( i2 < 0 ) { break; } i0 = i1; i1 = i2; } } } return; } //****************************************************************************80 int *perm_mat_to_vec ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // perm_mat_to_vec() returns a permutation from a permutation matrix. // // Example: // // N = 5 // // A = 0 1 0 0 0 // 0 0 0 1 0 // 1 0 0 0 0 // 0 0 1 0 0 // 0 0 0 0 1 // // p = ( 2, 4, 1, 3, 5 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the permutation matrix. // // Output, int PERM_MAT_TO_VEC[N], a permutation of the indices 1 through // N, which corresponds to the matrix. // { int i; int ival; int j; int *p; ival = r8mat_is_permutation ( n, n, a ); if ( ival != 1 ) { cerr << "\n"; cerr << "PERM_MAT_TO_VEC(): Fatal error!\n"; cerr << " The input matrix does not define a permutation.\n"; cerr << " R8MAT_IS_PERMUTATION returned IVAL = " << ival << "\n"; exit ( 1 ); } p = new int[n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( a[i+j*n] == 1.0 ) { p[i] = j + 1; } } } return p; } //****************************************************************************80 int perm_sign ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // perm_sign() returns the sign of a permutation. // // Discussion: // // A permutation can always be replaced by a sequence of pairwise // transpositions. A given permutation can be represented by // many different such transposition sequences, but the number of // such transpositions will always be odd or always be even. // If the number of transpositions is even or odd, the permutation is // said to be even or odd. // // Example: // // Input: // // N = 9 // P = 2, 3, 9, 6, 7, 8, 5, 4, 1 // // Output: // // PERM_SIGN = +1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 July 2011 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // This version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the number of objects permuted. // // Input, int P[N], a permutation, in standard index form. // // Output, int PERM_SIGN, the "sign" of the permutation. // +1, the permutation is even, // -1, the permutation is odd. // { int i; int j; int p_sign; int *q; int temp; if ( !perm_check ( n, p ) ) { cerr << "\n"; cerr << "PERM_SIGN(): Fatal error!\n"; cerr << " The input array does not represent\n"; cerr << " a proper permutation.\n"; exit ( 1 ); } // // Make a temporary copy of the permutation. // q = new int[n]; for ( i = 0; i < n; i++ ) { q[i] = p[i]; } // // Start with P_SIGN indicating an even permutation. // Restore each element of the permutation to its correct position, // updating P_SIGN as you go. // p_sign = 1; for ( i = 1; i <= n - 1; i++ ) { j = i4vec_index ( n, q, i ); if ( j != i - 1 ) { temp = q[i-1]; q[i-1] = q[j-1]; q[j-1] = temp; p_sign = - p_sign; } } // // Free memory. // delete [] q; return p_sign; } //****************************************************************************80 double *perm_vec_to_mat ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // perm_vec_to_mat() returns a permutation matrix. // // Formula: // // if ( J = P(I) ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5, P = ( 2, 4, 1, 3, 5 ) // // 0 1 0 0 0 // 0 0 0 1 0 // 1 0 0 0 0 // 0 0 1 0 0 // 0 0 0 0 1 // // Properties: // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is a zero/one matrix. // // P is a proper definition of a permutation if and only if // every value from 1 to N occurs exactly once. The matrix A // will be a permutation matrix if and only if P is a proper // definition of a permutation. // // A is nonsingular. // // The inverse of A is the transpose of A, inverse ( A ) = A'. // // The inverse of A is the permutation matrix corresponding to the // inverse permutation of the one that formed A. // // det ( A ) = +1 or -1. // // A is unimodular. // // The determinant of A is +1 or -1, depending on the sign of // the permutation; Any permutation can be written as the product // of pairwise transpositions. An odd permutation can be written // as an odd number of such transpositions, and the corresponding // matrix has a determinant of -1. // // The product of two permutation matrices is a permutation matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int P[N], contains the permutation. The // entries of P should be a permutation of the indices 1 through N. // // Output, double PERM_VEC_TO_MAT[N*N], the matrix. // { double *a; int i; int j; if ( !perm_check ( n, p ) ) { cerr << "\n"; cerr << "PERM_VEC_TO_MAT(): Fatal error!\n"; cerr << " The input does not define a permutation.\n"; i4vec_print ( n, p, " The permutation:" ); exit ( 1 ); } a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j + 1 == p[i] ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double permutation_determinant ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // permutation_determinant() returns the determinant of a PERMUTATION matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix. // // Output, double PERMUTATION_DETERMINANT, the determinant. // { double determ; int *p; int p_sign; p = perm_mat_to_vec ( n, a ); p_sign = perm_sign ( n, p ); determ = ( double ) ( p_sign ); return determ; } //****************************************************************************80 double *permutation_random_matrix ( int n, int key ) //****************************************************************************80 // // Purpose: // // permutation_random_matrix() returns the PERMUTATION_RANDOM matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double PERMUTATION_RANDOM[N*N], the matrix. // { double *a; int i; int j; int k; int *p; int seed; p = i4vec_indicator_new ( n ); seed = key; for ( i = 0; i < n; i++ ) { j = i4_uniform_ab ( i, n - 1, seed ); k = p[j]; p[j] = p[i]; p[i] = k; } a = perm_vec_to_mat ( n, p ); // // Free memory. // delete [] p; return a; } //****************************************************************************80 double permutation_random_determinant ( int n, int key ) //****************************************************************************80 // // Purpose: // // permutation_random_determinant(): determinant of PERMUTATION_RANDOM matrix. // // Discussion: // // This routine will only work properly if it is given as input the // same value of SEED that was given to PERMUTATION_RANDOM. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double PERMUTATION_RANDOM_DETERMINANT, the determinant. // { double determ; int i; int j; int k; int *p; int p_sign; int seed; p = i4vec_indicator_new ( n ); seed = key; for ( i = 0; i < n; i++ ) { j = i4_uniform_ab ( i, n - 1, seed ); k = p[j]; p[j] = p[i]; p[i] = k; } p_sign = perm_sign ( n, p ); determ = ( double ) ( p_sign ); // // Free memory. // delete [] p; return determ; } //****************************************************************************80 double *permutation_random_inverse ( int n, int key ) //****************************************************************************80 // // Purpose: // // permutation_random_inverse(): inverse of PERMUTATION_RANDOM matrix. // // Discussion: // // This routine will only work properly if it is given as input the // same value of SEED that was given to PERMUTATION_RANDOM. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int KEY, a positive value that selects the data. // // Output, double PERMUTATION_RANDOM_INVERSE[N*N], the inverse matrix. // { double *a; int i; int j; int k; int *p; int seed; p = i4vec_indicator_new ( n ); seed = key; for ( i = 0; i < n; i++ ) { j = i4_uniform_ab ( i, n - 1, seed ); k = p[j]; p[j] = p[i]; p[i] = k; } perm_inverse ( n, p ); a = perm_vec_to_mat ( n, p ); // // Free memory. // delete [] p; return a; } //****************************************************************************80 complex *pick_matrix ( int n, complex w[], complex z[] ) //****************************************************************************80 // // Purpose: // // pick_matrix() returns the PICK matrix. // // Formula: // // A(I,J) = ( 1 - conjg ( W(I) ) * W(J) ) // / ( 1 - conjg ( Z(I) ) * Z(J) ) // // Properties: // // A is Hermitian: A* = A. // // Discussion: // // Pick's matrix is related to an interpolation problem in the // complex unit disk |z| < 1. // // If z(1:n) are distinct points in the complex unit disk, and // w(1:n) are complex values, then Pick's matrix is positive // semidefinite if and only if there is a holomorphic function // phi from the unit disk to itself such that phi(z(i)) = w(i). // // phi is unique if and only if Pick's matrix is singular. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 August 2008 // // Author: // // John Burkardt // // Reference: // // John McCarthy, // Pick's Theorem: What's the Big Deal? // American Mathematical Monthly, // Volume 110, Number 1, January 2003, pages 36-45. // // Parameters: // // Input, int N, the order of the matrix. // // Input, complex W[N], the parameters associated with the // numerator. // // Input, complex Z[N], the parameters associated with the // denominator. Normally, the z's are distinct, and each of norm less // than 1. // // Output, complex PICK[N*N], the matrix. // { complex *a; int i; int j; a = new complex [n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = ( 1.0 - conj ( w[i] ) * w[j] ) / ( 1.0 - conj ( z[i] ) * z[j] ); } } return a; } //****************************************************************************80 double *plu_matrix ( int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // plu_matrix() returns a PLU matrix. // // Example: // // Input: // // N = 5 // PIVOT = ( 1, 3, 3, 5, 5 ) // // Output: // // A: // // 11 12 13 14 15 // 1.375 9.75 43.25 44.75 46.25 // 2.75 25 26.25 27.5 28.75 // 0.34375 2.4375 7.71875 17.625 73.125 // 0.6875 4.875 15.4375 60 61.5625 // // P: // // 1 0 0 0 0 // 0 0 1 0 0 // 0 1 0 0 0 // 0 0 0 0 1 // 0 0 0 1 0 // // L: // // 1 0 0 0 0 // 0.25 1 0 0 0 // 0.125 0.375 1 0 0 // 0.0625 0.1875 0.3125 1 0 // 0.03125 0.09375 0.15625 0.21875 1 // // U: // // 11 12 13 14 15 // 0 22 23 24 25 // 0 0 33 34 35 // 0 0 0 44 45 // 0 0 0 0 55 // // Note: // // The LINPACK routine DGEFA will factor the above A as: // // 11 12 13 14 15 // -0.125 22 23 24 25 // -0.25 -0.375 33 34 35 // -0.03125 -0.09375 -0.15625 44 45 // -0.0625 -0.1875 -0.3125 -0.21875 55 // // and the pivot information in the vector IPVT as: // // ( 1, 3, 3, 5, 5 ). // // The LAPACK routine DGETRF will factor the above A as: // // 11 12 13 14 15 // 0.25 22 23 24 25 // 0.125 0.375 33 34 35 // 0.0625 0.1875 0.3125 44 45 // 0.03125 0.09375 0.15625 0.21875 55 // // and the pivot information in the vector PIVOT as: // // ( 1, 3, 3, 5, 5 ). // // Method: // // The L factor will have unit diagonal, and subdiagonal entries // L(I,J) = ( 2 * J - 1 ) / 2^I, which should result in a unique // value for every entry. // // The U factor of A will have entries // U(I,J) = 10 * I + J, which should result in "nice" entries as long // as N < 10. // // The P factor can be deduced by applying the pivoting operations // specified by PIVOT in reverse order to the rows of the identity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int PIVOT[N], the list of pivot rows. PIVOT[I] // must be a value between I and N, reflecting the choice of // pivot row on the I-th step. For no pivoting, set PIVOT[I] = I. // // Output, double PLU[N*N], the matrix. // { double *a; double *l; double *p; double *pl; double *u; p = new double[n*n]; l = new double[n*n]; u = new double[n*n]; plu_plu ( n, pivot, p, l, u ); pl = r8mat_mm_new ( n, n, n, p, l ); a = r8mat_mm_new ( n, n, n, pl, u ); delete [] l; delete [] p; delete [] pl; delete [] u; return a; } //****************************************************************************80 double plu_determinant ( int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // plu_determinant() returns the determinant of the PLU matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int PIVOT[N], the list of pivot rows. PIVOT[I] // must be a value between I and N, reflecting the choice of // pivot row on the I-th step. For no pivoting, set PIVOT[I] = I. // // Output, double PLU_DETERMINANT, the determinant. // { int found; int i; int i2; int j; double *l; double *p; double t; double *u; double value; p = new double[n*n]; l = new double[n*n]; u = new double[n*n]; plu_plu ( n, pivot, p, l, u ); value = 1.0; for ( i = 0; i < n; i++ ) { value = value * u[i+i*n]; } for ( i = 0; i < n; i++ ) { found = 0; for ( i2 = i; i2 < n; i2++ ) { if ( p[i2+i*n] == 1.0 ) { found = 1; if ( i2 != i ) { for ( j = 0; j < n; j++ ) { t = p[i2+j*n]; p[i2+j*n] = p[i+j*n]; p[i+j*n] = t; } value = - value; } } } if ( ! found ) { cerr << "\n"; cerr << "PLU_DETERMINANT(): Fatal error!\n"; cerr << " Permutation matrix is illegal.\n"; exit ( 1 ); } } return value; } //****************************************************************************80 double *plu_inverse ( int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // plu_inverse() returns the inverse of a PLU matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int PIVOT[N], the list of pivot rows. PIVOT[I] // must be a value between I and N, reflecting the choice of // pivot row on the I-th step. For no pivoting, set PIVOT[I] = I. // // Output, double PLU_INVERSE[N*N], the inverse matrix. // { double *a; double *l; double *l_inverse; double *lp_inverse; double *p; double *p_inverse; double *u; double *u_inverse; p = new double[n*n]; l = new double[n*n]; u = new double[n*n]; plu_plu ( n, pivot, p, l, u ); p_inverse = r8mat_transpose_new ( n, n, p ); l_inverse = tri_l1_inverse ( n, l ); lp_inverse = r8mat_mm_new ( n, n, n, l_inverse, p_inverse ); u_inverse = tri_u_inverse ( n, u ); a = r8mat_mm_new ( n, n, n, u_inverse, lp_inverse ); // // Free memory. // delete [] l; delete [] l_inverse; delete [] lp_inverse; delete [] p; delete [] p_inverse; delete [] u; delete [] u_inverse; return a; } //****************************************************************************80 void plu_plu ( int n, int pivot[], double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // plu_plu() returns the PLU factors of the PLU matrix. // // Example: // // Input: // // N = 5 // PIVOT = ( 1, 3, 3, 5, 5 ) // // Output: // // A: // // 11 12 13 14 15 // 1.375 9.75 43.25 44.75 46.25 // 2.75 25 26.25 27.5 28.75 // 0.34375 2.4375 7.71875 17.625 73.125 // 0.6875 4.875 15.4375 60 61.5625 // // P: // // 1 0 0 0 0 // 0 0 1 0 0 // 0 1 0 0 0 // 0 0 0 0 1 // 0 0 0 1 0 // // L: // // 1 0 0 0 0 // 0.25 1 0 0 0 // 0.125 0.375 1 0 0 // 0.0625 0.1875 0.3125 1 0 // 0.03125 0.09375 0.15625 0.21875 1 // // U: // // 11 12 13 14 15 // 0 22 23 24 25 // 0 0 33 34 35 // 0 0 0 44 45 // 0 0 0 0 55 // // Note: // // The LINPACK routine DGEFA will factor the above A as: // // 11 12 13 14 15 // -0.125 22 23 24 25 // -0.25 -0.375 33 34 35 // -0.03125 -0.09375 -0.15625 44 45 // -0.0625 -0.1875 -0.3125 -0.21875 55 // // and the pivot information in the vector IPVT as: // // ( 1, 3, 3, 5, 5 ). // // The LAPACK routine DGETRF will factor the above A as: // // 11 12 13 14 15 // 0.25 22 23 24 25 // 0.125 0.375 33 34 35 // 0.0625 0.1875 0.3125 44 45 // 0.03125 0.09375 0.15625 0.21875 55 // // and the pivot information in the vector PIVOT as: // // ( 1, 3, 3, 5, 5 ). // // Method: // // The L factor will have unit diagonal, and subdiagonal entries // L(I,J) = ( 2 * J - 1 ) / 2^I, which should result in a unique // value for every entry. // // The U factor of A will have entries // U(I,J) = 10 * I + J, which should result in "nice" entries as long // as N < 10. // // The P factor can be deduced by applying the pivoting operations // specified by PIVOT in reverse order to the rows of the identity. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int PIVOT[N], the list of pivot rows. PIVOT[I] // must be a value between I and N, reflecting the choice of // pivot row on the I-th step. For no pivoting, set PIVOT[I] = I. // // Output, double P[N*N], L[N*N], U[N*N], the P, L and U factors // of A, as defined by Gaussian elimination with partial pivoting. // P is a permutation matrix, L is unit lower triangular, and U // is upper triangular. // { int i; int j; int k; double t; // // Check that the pivot vector is legal. // for ( i = 0; i < n; i++ ) { if ( pivot[i] < i ) { cerr << "\n"; cerr << "PLU_PLU(): Fatal error!\n"; cerr << " PIVOT[" << i << "] = " << pivot[i] << "\n"; cerr << " but PIVOT[I] must be no less than I + 1.\n"; exit ( 1 ); } else if ( n - 1 < pivot[i] ) { cerr << "\n"; cerr << "PLU_PLU(): Fatal error!\n"; cerr << " PIVOT[" << i << "] = " << pivot[i] << "\n"; cerr << " but PIVOT[I] must be no greater than N = " << n << "\n"; exit ( 1 ); } } // // Compute U. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i <= j ) { u[i+j*n] = ( double ) ( 10 * ( i + 1 ) + j + 1 ); } else { u[i+j*n] = 0.0; } } } // // Compute L. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i < j ) { l[i+j*n] = 0.0; } else if ( j == i ) { l[i+j*n] = 1.0; } else { l[i+j*n] = ( double ) ( 2 * j - 1 ) / ( double ) i4_power ( 2, i ); } } } // // Compute P. // for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j ) { p[i+j*n] = 1.0; } else { p[i+j*n] = 0.0; } } } // // Apply the pivot permutations, in reverse order. // for ( i = n - 1; 0 <= i; i-- ) { if ( pivot[i] != i + 1 ) { for ( j = 0; j < n; j++ ) { k = pivot[i] - 1; t = p[i+j*n]; p[i+j*n] = p[k+j*n]; p[k+j*n] = t; } } } return; } //****************************************************************************80 double *poisson_matrix ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // poisson_matrix() returns the POISSON matrix. // // Formula: // // if ( I = J ) // A(I,J) = 4.0 // else if ( I = J+1 or I = J-1 or I = J+NROW or I = J-NROW ) // A(I,J) = -1.0 // else // A(I,J) = 0.0 // // Example: // // NROW = NCOL = 3 // // 4 -1 0 | -1 0 0 | 0 0 0 // -1 4 -1 | 0 -1 0 | 0 0 0 // 0 -1 4 | 0 0 -1 | 0 0 0 // ---------------------------- // -1 0 0 | 4 -1 0 | -1 0 0 // 0 -1 0 | -1 4 -1 | 0 -1 0 // 0 0 -1 | 0 -1 4 | 0 0 -1 // ---------------------------- // 0 0 0 | -1 0 0 | 4 -1 0 // 0 0 0 | 0 -1 0 | -1 4 -1 // 0 0 0 | 0 0 -1 | 0 -1 4 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A results from discretizing Poisson's equation with the // 5 point operator on a square mesh of N points. // // A has eigenvalues // // LAMBDA(I,J) = 4 - 2 * COS(I*PI/(N+1)) // - 2 * COS(J*PI/(M+1)), I = 1 to N, J = 1 to M. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2015 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989 // (Section 4.5.4). // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double POISSON[(NROW*NCOL)*(NROW*NCOL)], the matrix. // { double *a; int i; int i1; int j; int j1; int n; n = nrow * ncol; a = r8mat_zero_new ( n, n ); i = 0; for ( i1 = 1; i1 <= nrow; i1++ ) { for ( j1 = 1; j1 <= ncol; j1++ ) { if ( 1 < i1 ) { j = i - ncol; a[i+j*n] = -1.0; } if ( 1 < j1 ) { j = i - 1; a[i+j*n] = -1.0; } j = i; a[i+j*n] = 4.0; if ( j1 < ncol ) { j = i + 1; a[i+j*n] = -1.0; } if ( i1 < nrow ) { j = i + ncol; a[i+j*n] = -1.0; } i = i + 1; } } return a; } //****************************************************************************80 double poisson_determinant ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // poisson_determinant() returns the determinant of the POISSON matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double POISSON_DETERMINANT, the determinant. // { double angle; double *cc; double *cr; double determ; int i; int j; const double r8_pi = 3.141592653589793; cr = new double[nrow]; for ( i = 0; i < nrow; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( nrow + 1 ); cr[i] = cos ( angle ); } cc = new double[ncol]; for ( j = 0; j < ncol; j++ ) { angle = ( double ) ( j + 1 ) * r8_pi / ( double ) ( ncol + 1 ); cc[j] = cos ( angle ); } determ = 1.0; for ( i = 0; i < nrow; i++ ) { for ( j = 0; j < ncol; j++ ) { determ = determ * ( 4.0 - 2.0 * cr[i] - 2.0 * cc[j] ); } } // // Free memory. // delete [] cc; delete [] cr; return determ; } //****************************************************************************80 double *poisson_eigenvalues ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // poisson_eigenvalues() returns the eigenvalues of the POISSON matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double POISSON_EIGENVALUES[NROW*NCOL], the eigenvalues. // { double angle; double *cc; double *cr; double *lambda; int i; int j; int k; const double r8_pi = 3.141592653589793; cr = new double[nrow]; for ( i = 0; i < nrow; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( nrow + 1 ); cr[i] = cos ( angle ); } cc = new double[ncol]; for ( j = 0; j < ncol; j++ ) { angle = ( double ) ( j + 1 ) * r8_pi / ( double ) ( ncol + 1 ); cc[j] = cos ( angle ); } lambda = new double[nrow*ncol]; k = 0; for ( i = 0; i < nrow; i++ ) { for ( j = 0; j < ncol; j++ ) { lambda[k] = 4.0 - 2.0 * cr[i] - 2.0 * cc[j]; k = k + 1; } } // // Free memory. // delete [] cc; delete [] cr; return lambda; } //****************************************************************************80 double *poisson_rhs ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // poisson_rhs() returns the right hand side of a Poisson linear system. // // Discussion: // // The Poisson matrix is associated with an NROW by NCOL rectangular // grid of points. // // Assume that the points are numbered from left to right, bottom to top. // // If the K-th point is in row I and column J, set X = I + J. // // This will be the solution to the linear system. // // The right hand side is easily determined from X. It is 0 for every // interior point. // // Example: // // NROW = 3, NCOL = 3 // // ^ // | 7 8 9 // J 4 5 6 // | 1 2 3 // | // +-----I----> // // Solution vector X = ( 2, 3, 4, 3, 4, 5, 4, 5, 6 ) // // Right hand side B = ( 2, 2, 8, 2, 0, 6, 8, 6, 14 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2015 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989 // (Section 4.5.4). // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double B[NROW*NCOL], the right hand side. // { double *b; int i; int j; int k; b = new double[nrow*ncol]; k = 0; for ( j = 1; j <= nrow; j++ ) { for ( i = 1; i <= ncol; i++ ) { b[k] = 0.0; if ( i == 1 ) { b[k] = b[k] + ( double ) ( i + j - 1 ); } if ( j == 1 ) { b[k] = b[k] + ( double ) ( i + j - 1 ); } if ( i == ncol ) { b[k] = b[k] + ( double ) ( i + j + 1 ); } if ( j == nrow ) { b[k] = b[k] + ( double ) ( i + j + 1 ); } k = k + 1; } } return b; } //****************************************************************************80 double *poisson_solution ( int nrow, int ncol ) //****************************************************************************80 // // Purpose: // // poisson_solution() returns the solution of a Poisson linear system. // // Discussion: // // The Poisson matrix is associated with an NROW by NCOL rectangular // grid of points. // // Assume that the points are numbered from left to right, bottom to top. // // If the K-th point is in row I and column J, set X = I + J. // // This will be the solution to the linear system. // // Example: // // NROW = 3, NCOL = 3 // // ^ // | 7 8 9 // J 4 5 6 // | 1 2 3 // | // +-----I----> // // Solution vector X = ( 2, 3, 4, 3, 4, 5, 4, 5, 6 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2015 // // Author: // // John Burkardt // // Reference: // // Gene Golub, Charles Van Loan, // Matrix Computations, second edition, // Johns Hopkins University Press, Baltimore, Maryland, 1989 // (Section 4.5.4). // // Parameters: // // Input, int NROW, NCOL, the number of rows and columns // in the grid. // // Output, double X[NROW*NCOL], the solution. // { int i; int j; int k; double *x; x = new double[nrow*ncol]; k = 0; for ( j = 1; j <= nrow; j++ ) { for ( i = 1; i <= ncol; i++ ) { x[k] = ( double ) ( i + j ); k = k + 1; } } return x; } //****************************************************************************80 int prime ( int n ) //****************************************************************************80 // // Purpose: // // prime() returns any of the first PRIME_MAX prime numbers. // // Discussion: // // PRIME_MAX is 1600, and the largest prime stored is 13499. // // Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 95-98. // // Parameters: // // Input, int N, the index of the desired prime number. // In general, is should be true that 0 <= N <= PRIME_MAX. // N = -1 returns PRIME_MAX, the index of the largest prime available. // N = 0 is legal, returning PRIME = 1. // // Output, int PRIME, the N-th prime. If N is out of range, PRIME // is returned as -1. // { # define PRIME_MAX 1600 int npvec[PRIME_MAX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 }; if ( n == -1 ) { return PRIME_MAX; } else if ( n == 0 ) { return 1; } else if ( n <= PRIME_MAX ) { return npvec[n-1]; } else { cerr << "\n"; cerr << "PRIME(): Fatal error!\n"; cerr << " Unexpected input value of n = " << n << "\n"; exit ( 1 ); } return 0; # undef PRIME_MAX } //****************************************************************************80 double *prolate_matrix ( double alpha, int n ) //****************************************************************************80 // // Purpose: // // prolate_matrix() returns the PROLATE matrix. // // Formula: // // If ( I == J ) then // A(I,J) = 2 * ALPHA // else // K = abs ( I - J ) + 1 // A(I,J) = sin ( 2 * pi * ALPHA * K ) / ( pi * K ) // // Example: // // N = 5, ALPHA = 0.25 // // 0.5 0.0 -0.106103 0.0 0.0636620 // 0.0 0.5 0.0 -0.106103 0.0 // -0.106103 0.0 0.5 0.0 -0.106103 // 0.0 -0.106103 0.0 0.5 0.0 // 0.0636620 0.0 -0.106103 0.0 0.5 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // A is Toeplitz: constant along diagonals. // // If 0 < ALPHA < 0.5, then // A is positive definite, // the eigenvalues of A are distinct, // the eigenvalues lie in (0,1) and cluster around 0 and 1. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Reference: // // James Varah, // The Prolate Matrix, // Linear Algebra and Applications, // Volume 187, pages 269-278, 1993. // // Parameters: // // Input, double ALPHA, the parameter. // // Input, int N, the order of the matrix. // // Output, double PROLATE[N*N], the matrix. // { double *a; double angle; int i; int j; int k; const double r8_pi = 3.141592653589793; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = 2.0 * alpha; } else { k = abs ( i - j ) + 1; angle = 2.0 * r8_pi * alpha * ( double ) ( k ); a[i+j*n] = sin ( angle ) / ( r8_pi * ( double ) ( k ) ); } } } return a; } //****************************************************************************80 double *quaternion_i_matrix ( ) //****************************************************************************80 // // Purpose: // // quaternion_i_matrix() returns a 4 by 4 matrix that behaves like the quaternion unit I. // // Formula: // // 0 1 0 0 // -1 0 0 0 // 0 0 0 -1 // 0 0 1 0 // // Properties: // // I * 1 = I // I * I = - 1 // I * J = K // I * K = - J // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double QUATERNION_I[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *quaternion_j_matrix ( ) //****************************************************************************80 // // Purpose: // // quaternion_j_matrix() returns a 4 by 4 matrix that behaves like the quaternion unit J. // // Formula: // // 0 0 1 0 // 0 0 0 1 // -1 0 0 0 // 0 -1 0 0 // // Properties: // // J * 1 = J // J * I = - K // J * J = - 1 // J * K = I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 March 2001 // // Author: // // John Burkardt // // Parameters: // // Output, double QUATERNION_J[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *quaternion_k_matrix ( ) //****************************************************************************80 // // Purpose: // // quaternion_k_matrix() returns a 4 by 4 matrix that behaves like the quaternion unit K. // // Formula: // // 0 0 0 1 // 0 0 -1 0 // 0 1 0 0 // -1 0 0 0 // // Properties: // // K * 1 = K // K * I = J // K * J = - I // K * K = - 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 March 2001 // // Author: // // John Burkardt // // Parameters: // // Output, double QUATERNION_K[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double r8_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // r8_choose() computes the binomial coefficient C(N,K) as an R8. // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in R8 arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 March 2008 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, double R8_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = i4_min ( k, n - k ); if ( mn < 0 ) { value = 0.0; } else if ( mn == 0 ) { value = 1.0; } else { mx = i4_max ( k, n - k ); value = ( double ) ( mx + 1 ); for ( i = 2; i <= mn; i++ ) { value = ( value * ( double ) ( mx + i ) ) / ( double ) i; } } return value; } //****************************************************************************80 double r8_cube_root ( double x ) //****************************************************************************80 // // Purpose: // // r8_cube_root() returns the cube root of an R8. // // Discussion: // // This routine is designed to avoid the possible problems that can occur // when formulas like 0.0^(1/3) or (-1.0)^(1/3) are to be evaluated. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Input: // // double X, the number whose cube root is desired. // // Output: // // double R8_CUBE_ROOT, the cube root of X. // { double value; if ( 0.0 < x ) { value = pow ( ( double ) x, ( 1.0 / 3.0 ) ); } else if ( x == 0.0 ) { value = 0.0; } else { value = - pow ( ( double ) ( fabs ( x ) ), ( 1.0 / 3.0 ) ); } return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // r8_factorial() computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial of N. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8_mop ( int i ) //****************************************************************************80 // // Purpose: // // r8_mop() returns the I-th power of -1 as an R8 value. // // Discussion: // // An R8 is an double value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the power of -1. // // Output, double R8_MOP, the I-th power of -1. // { double value; if ( ( i % 2 ) == 0 ) { value = 1.0; } else { value = -1.0; } return value; } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // r8_nint() returns the nearest integer to an R8. // // Example: // // X Value // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( fabs ( x ) + 0.5 ); } else { value = ( int ) ( fabs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_normal_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // r8_normal_01() samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // The Box-Muller method is used, which is efficient, but // generates two values at a time. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 September 2004 // // Author: // // John Burkardt // // Input: // // int &SEED, a seed for the random number generator. // // Output: // // double R8_NORMAL_01, a normally distributed random value. // // int &SEED, an updated seed. // { const double r8_pi = 3.141592653589793; double r1; double r2; static int used = -1; double x; static double y = 0.0; if ( used == -1 ) { used = 0; } // // If we've used an even number of values so far, generate two more, return one, // and save one. // if ( ( used % 2 )== 0 ) { for ( ; ; ) { r1 = r8_uniform_01 ( seed ); if ( r1 != 0.0 ) { break; } } r2 = r8_uniform_01 ( seed ); x = sqrt ( -2.0 * log ( r1 ) ) * cos ( 2.0 * r8_pi * r2 ); y = sqrt ( -2.0 * log ( r1 ) ) * sin ( 2.0 * r8_pi * r2 ); } else { x = y; } used = used + 1; return x; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // r8_sign() returns the sign of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 double r8_uniform_ab ( double b, double c, int &seed ) //****************************************************************************80 // // Purpose: // // r8_uniform_ab() returns a scaled pseudorandom R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Input: // // double B, C, the minimum and maximum values. // // int &SEED, a seed for the random number generator. // // Output: // // double R8_UNIFORM_AB, the randomly chosen value. // // int &SEED, an updated seed. // { double t; t = r8_uniform_01 ( seed ); t = ( 1.0 - t ) * b + t * c; return t; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // r8_uniform_01() returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Input: // // int &SEED, the "seed" value. // // Output: // // double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // // int &SEED, an updated seed. { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01(): Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8col_swap ( int m, int n, double a[], int j1, int j2 ) //****************************************************************************80 // // Purpose: // // r8col_swap() swaps columns J1 and J2 of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded // as an array of N columns of length M. // // Example: // // Input: // // M = 3, N = 4, J1 = 2, J2 = 4 // // A = ( // 1. 2. 3. 4. // 5. 6. 7. 8. // 9. 10. 11. 12. ) // // Output: // // A = ( // 1. 4. 3. 2. // 5. 8. 7. 6. // 9. 12. 11. 10. ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 October 2008 // // Author: // // John Burkardt // // Input: // // int M, N, the number of rows and columns. // // double A[M*N], the M by N array. // // int J1, J2, the columns to be swapped. // These columns are 1-based. // // Output: // // double A[M*N}: the array after column swapping. // { int i; double temp; if ( j1 < 1 || n < j1 || j2 < 1 || n < j2 ) { cerr << "\n"; cerr << "R8COL_SWAP(): Fatal error!\n"; cerr << " J1 or J2 is out of bounds.\n"; cerr << " J1 = " << j1 << "\n"; cerr << " J2 = " << j2 << "\n"; cerr << " NCOL = " << n << "\n"; exit ( 1 ); } if ( j1 == j2 ) { return; } for ( i = 0; i < m; i++ ) { temp = a[i+(j1-1)*m]; a[i+(j1-1)*m] = a[i+(j2-1)*m]; a[i+(j2-1)*m] = temp; } return; } //****************************************************************************80 double *r8col_to_r8vec ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8col_to_r8vec() converts an R8COL to an R8VEC. // // Discussion: // // An R8COL is an M by N array of double precision values, regarded // as an array of N columns of length M. // // This routine is not really useful in our C++ implementation, since // we actually store an M by N matrix exactly as a vector already. // // Example: // // M = 3, N = 4 // // A = // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // R8COL_TO_R8VEC = ( 11, 21, 31, 12, 22, 32, 13, 23, 33, 14, 24, 34 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the M by N array. // // Output, double X[M*N], a vector containing the N columns of A. // { int i; int j; int k; double *x; x = new double[m*n]; k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { x[k] = a[i+j*m]; k = k + 1; } } return x; } //****************************************************************************80 void r8mat_copy ( int m, int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // r8mat_copy() copies one R8MAT to another. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A1[M*N], the matrix to be copied. // // Output, double A2[M*N], the copy of A1. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return; } //****************************************************************************80 double *r8mat_copy_new ( int m, int n, double a1[] ) //****************************************************************************80 // // Purpose: // // r8mat_copy_new() copies one R8MAT to another. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A1[M*N], the matrix to be copied. // // Output, double R8MAT_COPY_NEW[M*N], the copy of A1. // { double *a2; int i; int j; a2 = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return a2; } //****************************************************************************80 double r8mat_determinant ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_determinant() computes the determinant of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix whose determinant is desired. // // Output, double R8MAT_DETERMINANT, the determinant of the matrix. // { double *b; double determ; int *pivot; b = r8mat_copy_new ( n, n, a ); pivot = new int[n]; r8mat_gefa ( b, n, pivot ); determ = r8mat_gedet ( b, n, pivot ); // // Free memory. // delete [] b; delete [] pivot; return determ; } //****************************************************************************80 double *r8mat_diag_get_vector ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_diag_get_vector() gets the value of the diagonal of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of rows and columns of the matrix. // // Input, double A[N*N], the N by N matrix. // // Output, double R8MAT_DIAG_GET_VECTOR[N], the diagonal entries // of the matrix. // { int i; double *v; v = new double[n]; for ( i = 0; i < n; i++ ) { v[i] = a[i+i*n]; } return v; } //****************************************************************************80 double r8mat_gedet ( double a[], int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // r8mat_gedet() computes the determinant of an R8MAT factored by R8MAT_GEFA. // // Discussion: // // An R8MAT is a matrix of R8 values. // // This is a modified version of the LINPACK routine DGEDI. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2008 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979 // // Parameters: // // Input, double A[N*N], the LU factors from R8MAT_GEFA. // // Input, int N, the order of the matrix. // N must be positive. // // Input, int PIVOT[N], as computed by R8MAT_GEFA. // // Output, double R8MAT_GEDET, the determinant of the matrix. // { double determ; int i; determ = 1.0; for ( i = 0; i < n; i++ ) { determ = determ * a[i+i*n]; if ( pivot[i] != i + 1 ) { determ = - determ; } } return determ; } //****************************************************************************80 int r8mat_gefa ( double a[], int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // r8mat_gefa() factors an R8MAT. // // Discussion: // // An R8MAT is a matrix of double values. // // This is a simplified version of the LINPACK routine DGEFA. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Input: // // double A[N*N], the matrix to be factored. // // int N, the order of the matrix. // N must be positive. // // Output: // // double A[N*N]: an upper triangular matrix and the multipliers // which were used to obtain it. The factorization can be written // A = L * U, where L is a product of permutation and unit lower // triangular matrices and U is upper triangular. // // int PIVOT[N], a vector of pivot indices. // // int R8MAT_GEFA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { bool debug = false; int i; int info; int j; int k; int l; double temp; info = 0; for ( i = 0; i < n; i++ ) { pivot[i] = i + 1; } for ( k = 1; k <= n - 1; k++ ) { // // Find L, the index of the pivot row. // l = k; for ( i = k + 1; i <= n; i++ ) { if ( fabs ( a[l-1+(k-1)*n] ) < fabs ( a[i-1+(k-1)*n] ) ) { l = i; } } pivot[k-1] = l; // // If the pivot index is zero, the algorithm has failed. // if ( a[l-1+(k-1)*n] == 0.0 ) { info = k; if ( debug ) { cout << "\n"; cout << "R8MAT_GEFA - Warning!\n"; cout << " Zero pivot on step " << info << "\n"; } return info; } // // Interchange rows L and K if necessary. // if ( l != k ) { temp = a[l-1+(k-1)*n]; a[l-1+(k-1)*n] = a[k-1+(k-1)*n]; a[k-1+(k-1)*n] = temp; } // // Normalize the values that lie below the pivot entry A(K,K). // for ( i = k + 1; i <= n; i++ ) { a[i-1+(k-1)*n] = - a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } // // Row elimination with column indexing. // for ( j = k + 1; j <= n; j++ ) { if ( l != k ) { temp = a[l-1+(j-1)*n]; a[l-1+(j-1)*n] = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = temp; } for ( i = k + 1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } pivot[n-1] = n; if ( a[n-1+(n-1)*n] == 0.0 ) { info = n; if ( debug ) { cout << "\n"; cout << "R8MAT_GEFA - Warning!\n"; cout << " Zero pivot on step " << info << "\n"; } } return info; } //****************************************************************************80 void r8mat_geinverse ( double a[], int n, int pivot[] ) //****************************************************************************80 // // Purpose: // // r8mat_geinverse() computes the inverse of an R8MAT factored by R8MAT_GEFA. // // Discussion: // // An R8MAT is a matrix of doubles. // // R8MAT_GEINVERSE is a modified version of the LINPACK routine DGEDI. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Input: // // double A[N*N], factor information computed by R8MAT_GEFA. // // int N, the order of the matrix A. // // int PIVOT[N], the pivot vector from R8MAT_GEFA. // // Output: // // double A[N*N]: the inverse matrix. // { int i; int j; int k; double temp; double *work; // // Compute Inverse(U). // work = new double[n]; for ( k = 1; k <= n; k++ ) { a[k-1+(k-1)*n] = 1.0 / a[k-1+(k-1)*n]; for ( i = 1; i <= k - 1; i++ ) { a[i-1+(k-1)*n] = - a[i-1+(k-1)*n] * a[k-1+(k-1)*n]; } for ( j = k + 1; j <= n; j++ ) { temp = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = 0.0; for ( i = 1; i <= k; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + temp * a[i-1+(k-1)*n]; } } } // // Form Inverse(U) * Inverse(L). // for ( k = n - 1; 1 <= k; k-- ) { for ( i = k + 1; i <= n; i++ ) { work[i-1] = a[i-1+(k-1)*n]; a[i-1+(k-1)*n] = 0.0; } for ( j = k + 1; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { a[i-1+(k-1)*n] = a[i-1+(k-1)*n] + work[j-1] * a[i-1+(j-1)*n]; } } if ( pivot[k-1] != k ) { for ( i = 1; i <= n; i++ ) { temp = a[i-1+(k-1)*n]; a[i-1+(k-1)*n] = a[i-1+(pivot[k-1]-1)*n]; a[i-1+(pivot[k-1]-1)*n] = temp; } } } // // Free memory. // delete [] work; return; } //****************************************************************************80 void r8mat_house_axh ( int n, double a[], double v[] ) //****************************************************************************80 // // Purpose: // // r8mat_house_axh() computes A*H where H is a compact Householder matrix. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The Householder matrix H(V) is defined by // // H(V) = I - 2 * v * v' / ( v' * v ) // // This routine is not particularly efficient. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of A. // // double A[N*N]: the matrix to be postmultiplied. // // double V[N], a vector defining a Householder matrix. // // Output: // // double A[N*N]: A has been replaced by A*H. // { double *ah; int i; int j; int k; double v_normsq; v_normsq = 0.0; for ( i = 0; i < n; i++ ) { v_normsq = v_normsq + v[i] * v[i]; } // // Compute A*H' = A*H // ah = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { ah[i+j*n] = a[i+j*n]; for ( k = 0; k < n; k++ ) { ah[i+j*n] = ah[i+j*n] - 2.0 * a[i+k*n] * v[k] * v[j] / v_normsq; } } } // // Copy A = AH; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = ah[i+j*n]; } } // // Free memory. // delete [] ah; return; } //****************************************************************************80 double *r8mat_house_axh_new ( int n, double a[], double v[] ) //****************************************************************************80 // // Purpose: // // r8mat_house_axh_new() computes A*H where H is a compact Householder matrix. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The Householder matrix H(V) is defined by // // H(V) = I - 2 * v * v' / ( v' * v ) // // This routine is not particularly efficient. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of A. // // Input, double A[N*N], the matrix to be postmultiplied. // // Input, double V[N], a vector defining a Householder matrix. // // Output, double R8MAT_HOUSE_AXH[N*N], the product A*H. // { double *ah; int i; int j; int k; double v_normsq; v_normsq = 0.0; for ( i = 0; i < n; i++ ) { v_normsq = v_normsq + v[i] * v[i]; } // // Compute A*H' = A*H // ah = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { ah[i+j*n] = a[i+j*n]; for ( k = 0; k < n; k++ ) { ah[i+j*n] = ah[i+j*n] - 2.0 * a[i+k*n] * v[k] * v[j] / v_normsq; } } } return ah; } //****************************************************************************80 double *r8mat_house_form ( int n, double v[] ) //****************************************************************************80 // // Purpose: // // r8mat_house_form() constructs a Householder matrix from its compact form. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // H(v) = I - 2 * v * v' / ( v' * v ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double V[N], the vector defining the Householder matrix. // // Output, double R8MAT_HOUSE_FORM[N*N], the Householder matrix. // { double beta; double *h; int i; int j; // // Compute the L2 norm of V. // beta = 0.0; for ( i = 0; i < n; i++ ) { beta = beta + v[i] * v[i]; } // // Form the matrix H. // h = r8mat_identity ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { h[i+j*n] = h[i+j*n] - 2.0 * v[i] * v[j] / beta; } } return h; } //****************************************************************************80 double *r8mat_identity ( int n ) //****************************************************************************80 // // Purpose: // // r8mat_identity() sets the square matrix A to the identity. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of A. // // Output, double A[N*N], the N by N identity matrix. // { double *a; int i; int j; int k; a = new double[n*n]; k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[k] = 1.0; } else { a[k] = 0.0; } k = k + 1; } } return a; } //****************************************************************************80 double *r8mat_inverse ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_inverse() computes the inverse of an R8MAT. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix A. // // Input, double A[N*N], the matrix. // // Output, double R8MAT_INVERSE[N*N], the inverse matrix. // { double *b; int info; int *pivot; b = r8mat_copy_new ( n, n, a ); pivot = new int[n]; info = r8mat_gefa ( b, n, pivot ); if ( info == 0 ) { r8mat_geinverse ( b, n, pivot ); } // // Free memory. // delete [] pivot; return b; } //****************************************************************************80 int r8mat_is_adjacency ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_adjacency() checks whether an R8MAT is an adjacency matrix. // // Discussion: // // An R8MAT is a matrix of double precision real values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_ADJACENCY: // -1, the matrix is not an adjacency matrix. // 1, the matrix is an adjacency matrix. // { double error_frobenius; int ival; int jval; double tol = 0.00001; ival = 1; if ( ! r8mat_is_square ( m, n, a ) ) { ival = -1; return ival; } error_frobenius = r8mat_is_symmetric ( m, n, a ); if ( tol < error_frobenius ) { ival = -1; return ival; } jval = r8mat_is_zero_one ( m, n, a ); if ( jval != 1 ) { ival = -1; return ival; } return ival; } //****************************************************************************80 int r8mat_is_anticirculant ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_anticirculant() checks whether an R8MAT is an anticirculant matrix. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_ANTICIRCULANT: // -1, the matrix is not anticirculant. // 1, the matrix is anticirculant. // { int i; int ival; int j; int k; ival = 1; for ( i = 1; i < m; i++ ) { for ( j = 0; j < n; j++ ) { k = ( j + i ) % n; if ( a[i+j*m] != a[0+k*m] ) { ival = -1; return ival; } } } return ival; } //****************************************************************************80 double r8mat_is_antipersymmetric ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_antipersymmetric() checks an R8MAT for antipersymmetry. // // Discussion: // // An R8MAT is a matrix of double values. // // A is antipersymmetric if A(I,J) = -A(N+1-J,N+1-I). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_ANTIPERSYMMETRIC, is 0.0 if the matrix // is exactly antipersymmetric. // { int i; int j; double error_frobenius; if ( ! r8mat_is_square ( m, n, a ) ) { error_frobenius = HUGE_VAL; return error_frobenius; } error_frobenius = 0.0; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { error_frobenius = error_frobenius + pow ( a[i+j*m] + a[n-1-j+(m-1-i)*m], 2 ); } } error_frobenius = sqrt ( error_frobenius ); return error_frobenius; } //****************************************************************************80 double r8mat_is_antisymmetric ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_antisymmetric() checks an R8MAT for antisymmetry. // // Discussion: // // An R8MAT is a matrix of double precision real values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Output, double RMAT_IS_ANTISYMMETRIC, measures the // Frobenius norm of ( A + A' ), which would be zero if the matrix // were exactly symmetric. // { int i; int j; double value; if ( ! r8mat_is_square ( m, n, a ) ) { value = HUGE_VAL; return value; } value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + pow ( a[i+j*m] + a[j+i*m], 2 ); } } value = sqrt ( value ); return value; } //****************************************************************************80 int r8mat_is_diagonally_dominant ( int n, double a[] ) //*****************************************************************************/ // // Purpose: // // r8mat_is_diagonally_dominant() checks whether an R8MAT is diagonally dominant. // // Discussion: // // The matrix is required to be square. // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the row and column dimensions of // the matrix. N must be positive. // // Input, double A[N*N], the matrix. // // Output, int R8MAT_IS_DIAGONALLY_DOMINANT: // -1, the matrix is not diagonally dominant. // 1, the matrix is diagonally dominant. // 2, the matrix is strictly diagonally dominant. // { int i; int j; int k; double s; double sumi; double sumj; int value; value = 2; for ( k = 0; k < n; k++ ) { s = fabs ( a[k+k*n] ); sumj = 0.0; for ( j = 0; j < n; j++ ) { if ( j != k ) { sumj = sumj + fabs ( a[k+j*n] ); } } sumi = 0.0; for ( i = 0; i < n; i++ ) { if ( i != k ) { sumi = sumi + fabs ( a[i+k*n] ); } } if ( s < sumi || s < sumj ) { value = -1; return value; } else if ( s == sumi || s == sumj ) { value = 1; } } return value; } //****************************************************************************80 int r8mat_is_diagonally_dominant_column ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_diagonally_dominant_column(): is an R8MAT column diagonally dominant. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_DIAGONALLY_DOMINANT_COLUMN: // -1, the matrix is not column diagonally dominant. // 1, the matrix is column diagonally dominant. // 2, the matrix is strictly column diagonally dominant. // { int i; int j; double s; double sumi; int value; value = 2; for ( j = 0; j < i4_min ( m, n ); j++ ) { s = fabs ( a[j+j*m] ); sumi = 0.0; for ( i = 0; i < m; i++ ) { if ( i != j ) { sumi = sumi + fabs ( a[i+j*m] ); } } if ( s < sumi ) { value = -1; return value; } else if ( s == sumi ) { value = 1; } } return value; } //****************************************************************************80 int r8mat_is_diagonally_dominant_row ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_diagonally_dominant_row(): is an R8MAT row diagonally dominant. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_DIAGONALLY_DOMINANT_ROW: // -1, the matrix is not row diagonally dominant. // 1, the matrix is row diagonally dominant. // 2, the matrix is strictly row diagonally dominant. // { int i; int j; double s; double sumj; int value; value = 2; for ( i = 0; i < i4_min ( m, n ); i++ ) { s = fabs ( a[j+i*m] ); sumj = 0.0; for ( j = 0; j < m; j++ ) { if ( i != j ) { sumj = sumj + fabs ( a[i+j*m] ); } } if ( s < sumj ) { value = -1; return value; } else if ( s == sumj ) { value = 1; } } return value; } //****************************************************************************80 double r8mat_is_eigen_left ( int n, int k, double a[], double x[], double lambda[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_eigen_left() determines the error in a left eigensystem. // // Discussion: // // An R8MAT is a matrix of doubles. // // This routine computes the Frobenius norm of // // X * A - LAMBDA * X // // where // // A is an N by N matrix, // X is an K by N matrix (each of K columns is an eigenvector) // LAMBDA is a K by K diagonal matrix of eigenvalues. // // This routine assumes that A, X and LAMBDA are all real. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int K, the number of eigenvectors. // K is usually 1 or N. // // Input, double A[N*N], the matrix. // // Input, double X[K*N], the K eigenvectors. // // Input, double LAMBDA[K], the K eigenvalues. // // Output, double R8MAT_IS_EIGEN_LEFT, the Frobenius norm // of X * A - LAMBDA * X. // { double *c; double error_frobenius; int i; int j; // // C = X * A // c = r8mat_mm_new ( k, n, n, x, a ); // // C = C - LAMBDA * X // for ( i = 0; i < k; i++ ) { for ( j = 0; j < n; j++ ) { c[i+j*n] = c[i+j*n] - lambda[i] * x[i+j*n]; } } error_frobenius = r8mat_norm_fro ( k, n, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 double r8mat_is_eigen_right ( int n, int k, double a[], double x[], double lambda[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_eigen_right() determines the error in a right eigensystem. // // Discussion: // // An R8MAT is a matrix of doubles. // // This routine computes the Frobenius norm of // // A * X - X * LAMBDA // // where // // A is an N by N matrix, // X is an N by K matrix (each of K columns is an eigenvector) // LAMBDA is a K by K diagonal matrix of eigenvalues. // // This routine assumes that A, X and LAMBDA are all real. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Input: // // int N, the order of the matrix. // // int K, the number of eigenvectors. // K is usually 1 or N. // // double A[N*N], the matrix. // // double X[N*K], the K eigenvectors. // // double LAMBDA[K], the K eigenvalues. // // Output: // // double R8MAT_IS_EIGEN_RIGHT, the Frobenius norm // of the difference matrix A * X - X * LAMBDA, which would be exactly zero // if X and LAMBDA were exact eigenvectors and eigenvalues of A. // { double *c; double error_frobenius; int i; int j; // // C = A * X // c = r8mat_mm_new ( n, n, k, a, x ); // // C = C - LAMBDA * X // for ( j = 0; j < k; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = c[i+j*n] - lambda[j] * x[i+j*n]; } } error_frobenius = r8mat_norm_fro ( n, k, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 double r8mat_is_identity ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_identity() determines if an R8MAT is the identity. // // Discussion: // // An R8MAT is a matrix of double values. // // The routine returns the Frobenius norm of A - I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix. // // Output, double R8MAT_IS_IDENTITY, the Frobenius norm // of the difference matrix A - I, which would be exactly zero // if A were the identity matrix. // { double error_frobenius; int i; int j; double t; error_frobenius = 0.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j ) { t = a[i+j*n] - 1.0; } else { t = a[i+j*n]; } error_frobenius = error_frobenius + t * t; } } error_frobenius = sqrt ( error_frobenius ); return error_frobenius; } //****************************************************************************80 double r8mat_is_integer ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_integer() checks whether an R8MAT has only integer entries. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_INTEGER, the Frobenius norm of // the difference between A and the nearest integer matrix. // { double error_frobenius; int i; int j; double t; error_frobenius = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { t = a[i+j*m] - round ( a[i+j*m] ); error_frobenius = error_frobenius + t * t; } } error_frobenius = sqrt ( error_frobenius ); return error_frobenius; } //****************************************************************************80 double r8mat_is_inverse ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_inverse() determines if one R8MAT is the inverse of another. // // Discussion: // // An R8MAT is a matrix of double values. // // This routine returns the sum of the Frobenius norms of // A * B - I and B * A - I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], B[N*N], the matrices. // // Output, double R8MAT_IS_INVERSE, the sum of the Frobenius norms // of the difference matrices A * B - I and B * A - I, which would be exactly zero // if B was the exact inverse of A and computer arithmetic were exact. // { double error_frobenius; double error_left; double error_right; error_left = r8mat_is_inverse_left ( n, n, a, b ); error_right = r8mat_is_inverse_right ( n, n, a, b ); error_frobenius = error_left + error_right; return error_frobenius; } //****************************************************************************80 double r8mat_is_inverse_left ( int m, int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_inverse_left() determines if one R8MAT is the left inverse of another. // // Discussion: // // An R8MAT is a matrix of double values. // // This routine returns the Frobenius norm of B * A - I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Input, double B[N*M], the matrix which is to be tested as a left inverse // of A. // // Output, double R8MAT_IS_INVERSE_LEFT, the Frobenius norm // of the difference matrix B * A - I, which would be exactly zero // if B was the exact left inverse of A and computer arithmetic were exact. // { double *c; double error_frobenius; int i; int j; int k; c = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = 0.0; for ( k = 0; k < m; k++ ) { c[i+j*n] = c[i+j*n] + b[i+k*n] * a[k+j*m]; } } } for ( i = 0; i < n; i++ ) { c[i+i*n] = c[i+i*n] - 1.0; } error_frobenius = r8mat_norm_fro ( n, n, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 double r8mat_is_inverse_right ( int m, int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_inverse_right() determines if one R8MAT is the right inverse of another. // // Discussion: // // An R8MAT is a matrix of double values. // // This routine returns the Frobenius norm of A * B - I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Input, double B[N*M], the matrix which is to be tested as a right inverse // of A. // // Output, double R8MAT_IS_INVERSE_RIGHT, the Frobenius norm // of the difference matrix A * B - I, which would be exactly zero // if B was the exact right inverse of A and computer arithmetic were exact. // { double *c; double error_frobenius; int i; int j; int k; c = new double[m*m]; for ( j = 0; j < m; j++ ) { for ( i = 0; i < m; i++ ) { c[i+j*m] = 0.0; for ( k = 0; k < n; k++ ) { c[i+j*m] = c[i+j*m] + b[i+k*n] * a[k+j*m]; } } } for ( i = 0; i < m; i++ ) { c[i+i*m] = c[i+i*m] - 1.0; } error_frobenius = r8mat_norm_fro ( m, m, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 double r8mat_is_llt ( int m, int n, double a[], double l[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_llt() measures the error in a lower triangular Cholesky factorization. // // Discussion: // // An R8MAT is a matrix of R8 values. // // This routine simply returns the Frobenius norm of the M x M matrix: // A - L * L'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*M], the matrix. // // Input, double L[M*N], the Cholesky factor. // // Output, double R8MAT_IS_LLT, the Frobenius norm of A - L * L'. // { double *d; int i; int j; double error_frobenius; d = r8mat_mmt_new ( m, n, m, l, l ); for ( j = 0; j < m; j++ ) { for ( i = 0; i < m; i++ ) { d[i+j*m] = a[i+j*m] - d[i+j*m]; } } error_frobenius = r8mat_norm_fro ( m, n, d ); delete [] d; return error_frobenius; } //****************************************************************************80 double r8mat_is_null_left ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_null_left() determines if x is a left null vector of an R8MAT. // // Discussion: // // An R8MAT is a matrix of doubles. // // The nonzero M vector x is a left null vector of the MxN matrix A if // // x' * A = A' * x = 0 // // If A is a square matrix, then this implies that A is singular. // // If A is a square matrix, this implies that 0 is an eigenvalue of A, // and that x is an associated eigenvector. // // This routine returns 0 if x is exactly a null vector of A. // // It returns a "huge" value if x is the zero vector. // // Otherwise, it returns the L2 norm of A' * x divided by the L2 norm of x: // // ERROR_L2 = NORM_L2 ( A' * x ) / NORM_L2 ( x ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 May 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Input, double X[M], the vector. // // Output, double R8MAT_IS_NULL_LEFT, the result. // 0.0 indicates that X is exactly a left null vector. // A "huge" value indicates that ||x|| = 0; // Otherwise, the value returned is a relative error ||A'*x||/||x||. // { double atx; double atx_norm; double error_l2; int i; int j; double x_norm; x_norm = 0.0; for ( i = 0; i < m; i++ ) { x_norm = x_norm + x[i] * x[i]; } x_norm = sqrt ( x_norm ); if ( x_norm == 0.0 ) { error_l2 = HUGE_VAL; return error_l2; } atx_norm = 0.0; for ( j = 0; j < n; j++ ) { atx = 0.0; for ( i = 0; i < m; i++ ) { atx = atx + x[i] * a[i+j*m]; } atx_norm = atx_norm + atx * atx; } atx_norm = sqrt ( atx_norm ); error_l2 = atx_norm / x_norm; return error_l2; } //****************************************************************************80 double r8mat_is_null_right ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_null_right() determines if x is a right null vector of an R8MAT. // // Discussion: // // An R8MAT is a matrix of doubles. // // The nonzero N vector x is a right null vector of the MxN matrix A if // // A * x = 0 // // If A is a square matrix, then this implies that A is singular. // // If A is a square matrix, this implies that 0 is an eigenvalue of A, // and that x is an associated eigenvector. // // This routine returns 0 if x is exactly a null vector of A. // // It returns a "huge" value if x is the zero vector. // // Otherwise, it returns the L2 norm of A * x divided by the L2 norm of x: // // ERROR_L2 = NORM_L2 ( A * x ) / NORM_L2 ( x ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 31 May 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Input, double X[N], the vector. // // Output, double R8MAT_IS_NULL_RIGHT, the result. // 0.0 indicates that X is exactly a null vector. // A "huge" value indicates that ||x|| = 0; // Otherwise, the value returned is a relative error ||A*x||/||x||. // { double ax; double ax_norm; double error_l2; int i; int j; double x_norm; x_norm = 0.0; for ( i = 0; i < n; i++ ) { x_norm = x_norm + x[i] * x[i]; } x_norm = sqrt ( x_norm ); if ( x_norm == 0.0 ) { error_l2 = HUGE_VAL; return error_l2; } ax_norm = 0.0; for ( i = 0; i < m; i++ ) { ax = 0.0; for ( j = 0; j < n; j++ ) { ax = ax + a[i+j*m] * x[j]; } ax_norm = ax_norm + ax * ax; } ax_norm = sqrt ( ax_norm ); error_l2 = ax_norm / x_norm; return error_l2; } //****************************************************************************80 double r8mat_is_orthogonal ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_orthogonal() checks whether an R8MAT is orthogonal. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_ORTHOGONAL, the Frobenius orthogonality // error, which is zero if the matrix is exactly orthogonal. // { double *b; double error_frobenius; if ( ! r8mat_is_square ( m, n, a ) ) { error_frobenius = HUGE_VAL; return error_frobenius; } b = r8mat_mtm_new ( n, n, n, a, a ); error_frobenius = r8mat_is_identity ( n, b ); delete [] b; return error_frobenius; } //****************************************************************************80 double r8mat_is_orthogonal_column ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_orthogonal_column() checks whether an R8MAT has orthogonal columns. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_ORTHOGONAL_COLUMN, the sum of the errors. // { double *b; double error_frobenius; b = r8mat_mtm_new ( n, m, n, a, a ); error_frobenius = r8mat_is_identity ( n, b ); delete [] b; return error_frobenius; } //****************************************************************************80 double r8mat_is_orthogonal_row ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_orthogonal_row() checks whether an R8MAT has orthogonal rows. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_ORTHOGONAL_ROW, the sum of the errors. // { double *b; double error_frobenius; b = r8mat_mmt_new ( m, n, m, a, a ); error_frobenius = r8mat_is_identity ( m, b ); delete [] b; return error_frobenius; } //****************************************************************************80 int r8mat_is_permutation ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_permutation() checks whether an R8MAT is a permutation matrix. // // Discussion: // // An R8MAT is a matrix of doubles. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_PERMUTATION: // -1, the matrix is not square; // -2, the matrix is not a zero-one matrix. // -3, there is a row that does not sum to 1. // -4, there is a column that does not sum to 1. // 1, the matrix is a permutation matrix, // { int i; int ival; int j; int jval; double sum; if ( ! r8mat_is_square ( m, n, a ) ) { ival = -1; return ival; } jval = r8mat_is_zero_one ( n, n, a ); if ( jval != 1 ) { ival = -2; return ival; } for ( i = 0; i < m; i++ ) { sum = 0.0; for ( j = 0; j < n; j++ ) { sum = sum + a[i+j*m]; } if ( sum != 1.0 ) { ival = -3; return ival; } } for ( j = 0; j < n; j++ ) { sum = 0.0; for ( i = 0; i < m; i++ ) { sum = sum + a[i+j*m]; } if ( sum != 1.0 ) { ival = -4; return ival; } } ival = 1; return ival; } //****************************************************************************80 double r8mat_is_plu ( int m, int n, double a[], double p[], double l[], double u[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_plu() measures the error in a PLU factorization. // // Discussion: // // An R8MAT is a matrix of real ( kind = 8 ) values. // // This routine simply returns the Frobenius norm of the M x N matrix: // A - P * L * U. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Input, double P[M*M], L[M*M], U[M*N], the PLU factors. // // Output, double R8MAT_IS_PLU, the Frobenius norm // of the difference matrix A - P * L * U. // { double *d; int i; int j; double *lu; double *plu; double error_frobenius; lu = r8mat_mm_new ( m, m, n, l, u ); plu = r8mat_mm_new ( m, m, n, p, lu ); d = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { d[i+j*m] = a[i+j*m] - plu[i+j*m]; } } error_frobenius = r8mat_norm_fro ( m, n, d ); // // Free memory. // delete [] d; delete [] lu; delete [] plu; return error_frobenius; } //****************************************************************************80 double r8mat_is_solution ( int m, int n, int k, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_solution() measures the error in a linear system solution. // // Discussion: // // An R8MAT is a matrix of doubles. // // The system matrix A is an M x N matrix. // It is not required that A be invertible. // // The solution vector X is actually allowed to be an N x K matrix. // // The right hand side "vector" B is actually allowed to be an M x K matrix. // // This routine simply returns the Frobenius norm of the M x K matrix: // A * X - B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 June 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, K, the order of the matrices. // // Input, double A[M*N], X[N*K], B[M*K], the matrices. // // Output, double R8MAT_IS_SOOLUTION, the Frobenius norm // of the difference matrix A * X - B, which would be exactly zero // if X was the "solution" of the linear system. // { double *c; double error_frobenius; int i; int j; int l; c = new double[m*k]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < k; j++ ) { c[i+j*m] = - b[i+j*m]; for ( l = 0; l < n; l++ ) { c[i+j*m] = c[i+j*m] + a[i+l*m] * x[l+j*n]; } } } error_frobenius = r8mat_norm_fro ( m, k, c ); // // Free memory. // delete [] c; return error_frobenius; } //****************************************************************************80 bool r8mat_is_square ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_square() checks whether an R8MAT is square. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 April 2017 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, bool R8MAT_IS_SQUARE, is TRUE if the matrix is square. // { bool lvalue; lvalue = ( m == n ); return lvalue; } //****************************************************************************80 double r8mat_is_symmetric ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_symmetric() checks an R8MAT for symmetry. // // Discussion: // // An R8MAT is a matrix of double precision real values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[M*N], the matrix. // // Output, double RMAT_IS_SYMMETRIC, measures the // Frobenius norm of ( A - A' ), which would be zero if the matrix // were exactly symmetric. // { int i; int j; double value; if ( ! r8mat_is_square ( m, n, a ) ) { value = HUGE_VAL; return value; } value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + pow ( a[i+j*m] - a[j+i*m], 2 ); } } value = sqrt ( value ); return value; } //****************************************************************************80 double r8mat_is_transition ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_transition() checks whether an R8MAT is a transition matrix. // // Discussion: // // A transition matrix: // * is a square matrix; // * with real, nonnegative entries; // * whose columns each sum to 1. // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of A. // // Input, double A[M*N], the matrix. // // Output, double R8MAT_IS_TRANSITION. // This value is HUGE_VAL, if M /= N. // This value is HUGE_VAL, if any entry is negative. // Otherwise, it is the square root of the sum of the squares of the // deviations of the column sums from 1. // { double error_frobenius; int i; int j; double t; if ( ! r8mat_is_square ( m, n, a ) ) { error_frobenius = HUGE_VAL; return error_frobenius; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] < 0.0 ) { error_frobenius = HUGE_VAL; return error_frobenius; } } } // // Take column sums. // error_frobenius = 0.0; for ( j = 0; j < n; j++ ) { t = 0.0; for ( i = 0; i < m; i++ ) { t = t + a[i+j*m]; } t = t - 1.0; error_frobenius = error_frobenius + t * t; } error_frobenius = sqrt ( error_frobenius ); return error_frobenius; } //****************************************************************************80 void r8mat_is_triangular ( int m, int n, double a[], int &ival, int &jval ) //****************************************************************************80 // // Purpose: // // r8mat_is_triangular() determines whether an R8MAT is triangular. // // Discussion: // // An R8MAT is a matrix of double values. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 July 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int &IVAL: // -1, the matrix is not upper triangular // 1, the matrix is upper triangular. // 2, the matrix is unit upper triangular. // // Output, int &JVAL: // -1, the matrix is not lower triangular. // 1, the matrix is lower triangular. // 2, the matrix is unit lower triangular. // { int i; int j; ival = 2; jval = 2; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == j ) { if ( a[i+j*m] != 1.0 ) { if ( ival == 2 ) { ival = 1; } if ( jval == 2 ) { jval = 1; } } } else if ( i < j ) { if ( a[i+j*m] != 0.0 ) { jval = -1; } } else if ( j < i ) { if ( a[i+j*m] != 0.0 ) { ival = -1; } } if ( ival == -1 && jval == -1 ) { return; } } } return; } //****************************************************************************80 int r8mat_is_zero_one ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_is_zero_one() checks whether an R8MAT is a zero/one matrix. // // Discussion: // // An R8MAT is a matrix of doubles. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the row and column dimensions of // the matrix. M and N must be positive. // // Input, double A[M*N], the matrix. // // Output, int R8MAT_IS_ZERO_ONE: // -1, the matrix is not a zero/one matrix. // 1, the matrix is a zero/one matrix. // { int i; int ival; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] != 0.0 && a[i+j*m] != 1.0 ) { ival = -1; return ival; } } } ival = 1; return ival; } //****************************************************************************80 double *r8mat_mm_new ( int n1, int n2, int n3, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_mm_new() multiplies two matrices. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the order of the matrices. // // Input, double A[N1*N2], double B[N2*N3], the matrices to multiply. // // Output, double R8MAT_MM[N1*N3], the product matrix C = A * B. // { double *c; int i; int j; int k; c = new double[n1*n3]; for ( i = 0; i < n1; i ++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[k+j*n2]; } } } return c; } //****************************************************************************80 double *r8mat_mmt_new ( int n1, int n2, int n3, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_mmt_new() computes C = A * B'. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 November 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the order of the matrices. // // Input, double A[N1*N2], double B[N3*N2], the matrices to multiply. // // Output, double R8MAT_MMT_NEW[N1*N3], the product matrix C = A * B'. // { double *c; int i; int j; int k; c = new double[n1*n3]; for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[j+k*n3]; } } } return c; } //****************************************************************************80 double *r8mat_mtm_new ( int n1, int n2, int n3, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // r8mat_mtm_new() computes C = A' * B. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the order of the matrices. // // Input, double A[N2*N1], double B[N2*N3], the matrices to multiply. // // Output, double R8MAT_MTM_NEW[N1*N3], the product matrix C = A' * B. // { double *c; int i; int j; int k; c = new double[n1*n3]; for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[k+i*n2] * b[k+j*n2]; } } } return c; } //****************************************************************************80 double r8mat_norm_eis ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_norm_eis() returns the EISPACK norm of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The EISPACK norm is defined as: // // R8MAT_NORM_EIS = // sum ( 1 <= I <= M ) sum ( 1 <= J <= N ) abs ( A(I,J) ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the matrix whose EISPACK norm is desired. // // Output, double R8MAT_NORM_EIS, the EISPACK norm of A. // { int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + fabs ( a[i+j*m] ); } } return value; } //****************************************************************************80 double r8mat_norm_fro ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_norm_fro() returns the Frobenius norm of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The Frobenius norm is defined as // // R8MAT_NORM_FRO = sqrt ( // sum ( 1 <= I <= M ) sum ( 1 <= j <= N ) A(I,J)^2 ) // The matrix Frobenius norm is not derived from a vector norm, but // is compatible with the vector L2 norm, so that: // // r8vec_norm_l2 ( A * x ) <= r8mat_norm_fro ( A ) * r8vec_norm_l2 ( x ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the matrix whose Frobenius // norm is desired. // // Output, double R8MAT_NORM_FRO, the Frobenius norm of A. // { int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + pow ( a[i+j*m], 2 ); } } value = sqrt ( value ); return value; } //****************************************************************************80 double r8mat_norm_l1 ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_norm_l1() returns the matrix L1 norm of an R8MAT. // // Discussion: // // An R8MAT is an array of R8 values. // // The matrix L1 norm is defined as: // // R8MAT_NORM_L1 = max ( 1 <= J <= N ) // sum ( 1 <= I <= M ) abs ( A(I,J) ). // // The matrix L1 norm is derived from the vector L1 norm, and // satisifies: // // r8vec_norm_l1 ( A * x ) <= r8mat_norm_l1 ( A ) * r8vec_norm_l1 ( x ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A(M,N), the matrix whose L1 norm is desired. // // Output, double R8MAT_NORM_L1, the L1 norm of A. // { double col_sum; int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { col_sum = 0.0; for ( i = 0; i < m; i++ ) { col_sum = col_sum + fabs ( a[i+j*m] ); } value = fmax ( value, col_sum ); } return value; } //****************************************************************************80 double r8mat_norm_l2 ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_norm_l2() returns the matrix L2 norm of an R8MAT. // // Discussion: // // An R8MAT is an array of R8 values. // // The matrix L2 norm is defined as: // // R8MAT_NORM_L2 = sqrt ( max ( 1 <= I <= M ) LAMBDA(I) ) // // where LAMBDA contains the eigenvalues of A * A'. // // The matrix L2 norm is derived from the vector L2 norm, and // satisifies: // // r8vec_norm_l2 ( A * x ) <= r8mat_norm_l2 ( A ) * r8vec_norm_l2 ( x ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A(M,N), the matrix whose L2 norm is desired. // // Output, double R8MAT_NORM_L2, the L2 norm of A. // { double *at; double *b; double *diag; double value; at = r8mat_transpose_new ( m, n, a ); // // Compute B = A * A'. // b = r8mat_mm_new ( m, n, m, a, at ); // // Diagonalize B. // r8mat_symm_jacobi ( m, b ); // // Find the maximum eigenvalue, and take its square root. // diag = r8mat_diag_get_vector ( m, b ); value = sqrt ( r8vec_max ( m, diag ) ); // // Free memory. // delete [] at; delete [] b; delete [] diag; return value; } //****************************************************************************80 double r8mat_norm_li ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_norm_li() returns the matrix L-oo norm of an R8MAT. // // Discussion: // // An R8MAT is an array of R8 values. // // The matrix L-oo norm is defined as: // // R8MAT_NORM_LI = max ( 1 <= I <= M ) sum ( 1 <= J <= N ) abs ( A(I,J) ). // // The matrix L-oo norm is derived from the vector L-oo norm, // and satisifies: // // r8vec_norm_li ( A * x ) <= r8mat_norm_li ( A ) * r8vec_norm_li ( x ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the matrix whose L-oo // norm is desired. // // Output, double R8MAT_NORM_LI, the L-oo norm of A. // { int i; int j; double row_sum; double value; value = 0.0; for ( i = 0; i < m; i++ ) { row_sum = 0.0; for ( j = 0; j < n; j++ ) { row_sum = row_sum + fabs ( a[i+j*m] ); } value = fmax ( value, row_sum ); } return value; } //****************************************************************************80 void r8mat_plot ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // r8mat_plot() "plots" an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N}, the matrix. // // Input, string TITLE. // { int i; int j; int jhi; int jlo; cout << "\n"; cout << title << "\n"; for ( jlo = 1; jlo <= n; jlo = jlo + 70 ) { jhi = i4_min ( jlo + 70-1, n ); cout << "\n"; cout << " "; for ( j = jlo; j <= jhi; j++ ) { cout << ( j % 10 ); } cout << "\n"; cout << "\n"; for ( i = 1; i <= m; i++ ) { cout << setw(6) << i << " "; for ( j = jlo; j <= jhi; j++ ) { cout << r8mat_plot_symbol ( a[i-1+(j-1)*m] ); } cout << "\n"; } } return; } //****************************************************************************80 char r8mat_plot_symbol ( double r ) //****************************************************************************80 // // Purpose: // // r8mat_plot_symbol() returns a symbol for a double precision number. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double R, a value whose symbol is desired. // // Output, char R8MAT_PLOT_SYMBOL, is // '-' if R is negative, // '0' if R is zero, // '+' if R is positive. // { char c; if ( r < 0.0 ) { c = '-'; } else if ( r == 0.0 ) { c = '0'; } else if ( 0.0 < r ) { c = '+'; } return c; } //****************************************************************************80 double *r8mat_poly_char ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_poly_char() computes the characteristic polynomial of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix A. // // Input, double A[N*N], the N by N matrix. // // Output, double R8MAT_POLY_CHAR[N+1], the coefficients of the characteristic // polynomial of A. P(N) contains the coefficient of X^N // (which will be 1), P(I) contains the coefficient of X^I, // and P(0) contains the constant term. // { int i; int order; double *p; double trace; double *work1; double *work2; p = new double[n+1]; // // Initialize WORK1 to the identity matrix. // work1 = r8mat_identity ( n ); p[n] = 1.0; for ( order = n-1; 0 <= order; order-- ) { // // Work2 = A * WORK1. // work2 = r8mat_mm_new ( n, n, n, a, work1 ); // // Take the trace. // trace = r8mat_trace ( n, work2 ); // // P(ORDER) = -Trace ( WORK2 ) / ( N - ORDER ) // p[order] = -trace / ( double ) ( n - order ); // // WORK1 := WORK2 + P(IORDER) * Identity. // delete [] work1; r8mat_copy ( n, n, work2, work1 ); delete [] work2; for ( i = 0; i < n; i++ ) { work1[i+i*n] = work1[i+i*n] + p[order]; } } // // Free memory. // delete [] work1; return p; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // r8mat_print() prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // r8mat_print_some() prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_symm_jacobi ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_symm_jacobi() applies Jacobi eigenvalue iteration to a symmetric matrix. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // This code was modified so that it treats as zero the off-diagonal // elements that are sufficiently close to, but not exactly, zero. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 October 2005 // // Author: // // John Burkardt // // Input: // // int N, the order of A. // // double A[N*N], a symmetric N by N matrix. // // Output: // // double A[N*N], the matrix has been overwritten by an approximately // diagonal matrix, with the eigenvalues on the diagonal. // { double c; double eps = 0.00001; int i; int it; int it_max = 100; int j; int k; double norm_fro; double s; double sum2; double t; double t1; double t2; double u; norm_fro = r8mat_norm_fro ( n, n, a ); it = 0; for ( ; ; ) { it = it + 1; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { if ( eps * norm_fro < fabs ( a[i+j*n] ) + fabs ( a[j+i*n] ) ) { u = ( a[j+j*n] - a[i+i*n] ) / ( a[i+j*n] + a[j+i*n] ); t = r8_sign ( u ) / ( fabs ( u ) + sqrt ( u * u + 1.0 ) ); c = 1.0 / sqrt ( t * t + 1.0 ); s = t * c; // // A -> A * Q. // for ( k = 0; k < n; k++ ) { t1 = a[i+k*n]; t2 = a[j+k*n]; a[i+k*n] = t1 * c - t2 * s; a[j+k*n] = t1 * s + t2 * c; } // // A -> QT * A // for ( k = 0; k < n; k++ ) { t1 = a[k+i*n]; t2 = a[k+j*n]; a[k+i*n] = c * t1 - s * t2; a[k+j*n] = s * t1 + c * t2; } } } } // // Test the size of the off-diagonal elements. // sum2 = 0.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { sum2 = sum2 + fabs ( a[i+j*n] ); } } if ( sum2 <= eps * ( norm_fro + 1.0 ) ) { break; } if ( it_max <= it ) { break; } } return; } //****************************************************************************80 complex *r8mat_to_c8mat ( int m, int n, double r8mat[] ) //****************************************************************************80 // // Purpose: // // r8mat_to_c8mat() copies an R8MAT to a C8MAT. // // Discussion: // // An R8MAT is a matrix of real numbers. // // A C8MAT is a matrix of complex numbers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 May 2021 // // Author: // // John Burkardt // // Input: // // int M, N, the number of rows and columns. // // double R8MAT[M*N], the matrix to be copied. // // Output: // // complex C8MAT[M*N], the complex copy of R8MAT. // { complex *c8mat; int i; int j; c8mat = new complex [m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { c8mat[i+j*m] = r8mat[i+j*m]; } } return c8mat; } //****************************************************************************80 double r8mat_trace ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_trace() computes the trace of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The trace of a square matrix is the sum of the diagonal elements. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix A. // // Input, double A[N*N], the matrix whose trace is desired. // // Output, double R8MAT_TRACE, the trace of the matrix. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i+i*n]; } return value; } //****************************************************************************80 double *r8mat_transpose_new ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_transpose_new() returns the transpose of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix A. // // Input, double A[M*N], the matrix whose transpose is desired. // // Output, double R8MAT_TRANSPOSE_NEW[N*M], the transposed matrix. // { double *b; int i; int j; b = new double[n*m]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { b[j+i*n] = a[i+j*m]; } } return b; } //****************************************************************************80 void r8mat_transpose_in_place ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8mat_transpose_in_place() transposes a square matrix in place. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2008 // // Author: // // John Burkardt // // Input: // // int N, the number of rows and columns of the matrix A. // // double A[N*N], the matrix to be transposed. // // Output: // // double A[N*N]: the transposed matrix. // { int i; int j; double t; for ( j = 0; j < n; j++ ) { for ( i = 0; i < j; i++ ) { t = a[i+j*n]; a[i+j*n] = a[j+i*n]; a[j+i*n] = t; } } return; } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // r8mat_uniform_01_new() returns a unit pseudorandom R8MAT. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Input: // // int M, N, the number of rows and columns. // // int &SEED, the "seed" value. // // Output: // // double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // // int &SEED, an updated seed. // { int i; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01_NEW(): Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge ( ); } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8mat_uniform_ab_new ( int m, int n, double b, double c, int &seed ) //****************************************************************************80 // // Purpose: // // r8mat_uniform_ab_new() returns a scaled pseudorandom R8MAT. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Input: // // int M, N, the number of rows and columns. // // double B, C, the limits of the pseudorandom values. // // int &SEED, the "seed" value. // // Output: // // double R8MAT_UNIFORM_AB_NEW[M*N], a matrix of pseudorandom values. // // int &SEED, an updated seed. // { int i; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_AB_NEW(): Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge ( ); } r[i+j*m] = b + ( c - b ) * ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // r8mat_zero_new() returns a new zeroed R8MAT. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 int r8poly_degree ( int na, double a[] ) //****************************************************************************80 // // Purpose: // // r8poly_degree() returns the degree of an R8POLY. // // Discussion: // // The degree of a polynomial is the index of the highest power // of X with a nonzero coefficient. // // The degree of a constant polynomial is 0. The degree of the // zero polynomial is debatable, but this routine returns the // degree as 0. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int NA, the dimension of A. // // Input, double A[NA+1], the coefficients of the polynomials. // // Output, int R8POLY_DEGREE, the degree of the polynomial. // { int degree; degree = na; while ( 0 < degree ) { if ( a[degree] != 0.0 ) { return degree; } degree = degree - 1; } return degree; } //****************************************************************************80 void r8poly_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // r8poly_print() prints out a polynomial. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of A. // // Input, double A[N+1], the polynomial coefficients. // A(0) is the constant term and // A(N) is the coefficient of X^N. // // Input, string TITLE, a title. // { int i; double mag; int n2; char plus_minus; cout << "\n"; cout << title << "\n"; cout << "\n"; n2 = r8poly_degree ( n, a ); if ( n2 <= 0 ) { cout << " p(x) = 0\n"; return; } if ( a[n2] < 0.0 ) { plus_minus = '-'; } else { plus_minus = ' '; } mag = fabs ( a[n2] ); if ( 2 <= n2 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x ^ " << n2 << "\n"; } else if ( n2 == 1 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << " * x\n"; } else if ( n2 == 0 ) { cout << " p(x) = " << plus_minus << setw(14) << mag << "\n"; } for ( i = n2-1; 0 <= i; i-- ) { if ( a[i] < 0.0 ) { plus_minus = '-'; } else { plus_minus = '+'; } mag = fabs ( a[i] ); if ( mag != 0.0 ) { if ( 2 <= i ) { cout << " " << plus_minus << setw(14) << mag << " * x ^ " << i << "\n"; } else if ( i == 1 ) { cout << " " << plus_minus << setw(14) << mag << " * x\n"; } else if ( i == 0 ) { cout << " " << plus_minus << setw(14) << mag << "\n"; } } } return; } //****************************************************************************80 void r8row_swap ( int m, int n, double a[], int irow1, int irow2 ) //****************************************************************************80 // // Purpose: // // r8row_swap() swaps two rows of an R8ROW. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based// However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Input: // // int M, N, the number of rows and columns. // // double A[M*N], an array of data. // // int IROW1, IROW2, the two rows to swap. // These indices should be between 1 and M. // // Output: // // double A[M*N]: the array after row swapping. // { int j; double t; // // Check. // if ( irow1 < 1 || m < irow1 ) { cerr << "\n"; cerr << "R8ROW_SWAP(): Fatal error!\n"; cerr << " IROW1 is out of range.\n"; exit ( 1 ); } if ( irow2 < 1 || m < irow2 ) { cerr << "\n"; cerr << "R8ROW_SWAP(): Fatal error!\n"; cerr << " IROW2 is out of range.\n"; exit ( 1 ); } if ( irow1 == irow2 ) { return; } for ( j = 0; j < n; j++ ) { t = a[irow1-1+j*m]; a[irow1-1+j*m] = a[irow2-1+j*m]; a[irow2-1+j*m] = t; } return; # undef OFFSET } //****************************************************************************80 double *r8row_to_r8vec ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8row_to_r8vec() converts an R8ROW into an R8VEC. // // Example: // // M = 3, N = 4 // // A = // 11 12 13 14 // 21 22 23 24 // 31 32 33 34 // // R8ROW_TO_R8VEC = ( 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the M by N array. // // Output, double R8ROW_TO_R8VEC[M*N], a vector containing the M rows of A. // { int i; int j; int k; double *x; x = new double[m*n]; k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { x[k] = a[i+j*m]; k = k + 1; } } return x; } //****************************************************************************80 double r8vec_amax ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_amax() returns the maximum absolute value in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], the array. // // Output, double AMAX, the value of the entry // of largest magnitude. // { double amax; int i; amax = 0.0; for ( i = 0; i < n; i++ ) { if ( amax < fabs ( a[i] ) ) { amax = fabs ( a[i] ); } } return amax; } //****************************************************************************80 double r8vec_amin ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_amin() returns the minimum absolute value in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], the array. // // Output, double R8VEC_AMIN, the value of the entry // of smallest magnitude. // { int i; double value; value = HUGE_VAL; for ( i = 0; i < n; i++ ) { if ( fabs ( a[i] ) < value ) { value = fabs ( a[i] ); } } return value; } //****************************************************************************80 double r8vec_asum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_asum() sums the absolute values of the entries of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 January 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_ASUM, the sum of absolute values of the entries. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + fabs ( a[i] ); } return value; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // r8vec_copy() copies an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double *r8vec_copy_new ( int n, double a1[] ) //****************************************************************************80 // // Purpose: // // r8vec_copy_new() copies an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double R8VEC_COPY_NEW[N], the copy of A1. // { double *a2; int i; a2 = new double[n]; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return a2; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // r8vec_dot_product() computes the dot product of a pair of R8VEC's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_house_column ( int n, double a[], int k ) //****************************************************************************80 // // Purpose: // // r8vec_house_column() defines a Householder premultiplier that "packs" a column. // // Discussion: // // The routine returns a vector V that defines a Householder // premultiplier matrix H(V) that zeros out the subdiagonal entries of // column K of the matrix A. // // H(V) = I - 2 * v * v' // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix A. // // Input, double A[N], column K of the matrix A. // // Input, int K, the column of the matrix to be modified. // // Output, double R8VEC_HOUSE_COLUMN[N], a vector of unit L2 norm which // defines an orthogonal Householder premultiplier matrix H with the property // that the K-th column of H*A is zero below the diagonal. // { int i; double s; double *v; v = r8vec_zero_new ( n ); if ( k < 1 || n <= k ) { return v; } s = r8vec_norm_l2 ( n+1-k, a+k-1 ); if ( s == 0.0 ) { return v; } v[k-1] = a[k-1] + fabs ( s ) * r8_sign ( a[k-1] ); r8vec_copy ( n-k, a+k, v+k ); s = r8vec_norm_l2 ( n-k+1, v+k-1 ); for ( i = k-1; i < n; i++ ) { v[i] = v[i] / s; } return v; } //****************************************************************************80 double *r8vec_indicator_new ( int n ) //****************************************************************************80 // // Purpose: // // r8vec_indicator_new() sets an R8VEC to the indicator vector {1,2,3...}. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // r8vec_linspace_new() creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double r8vec_max ( int n, double r8vec[] ) //****************************************************************************80 // // Purpose: // // r8vec_max() returns the value of the maximum element in an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double R8VEC[N], a pointer to the first entry of the array. // // Output, double R8VEC_MAX, the value of the maximum element. This // is set to 0.0 if N <= 0. // { int i; double value; value = r8vec[0]; for ( i = 1; i < n; i++ ) { if ( value < r8vec[i] ) { value = r8vec[i]; } } return value; } //****************************************************************************80 double r8vec_norm_l2 ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_norm_l2() returns the L2 norm of an R8VEC. // // Discussion: // // The vector L2 norm is defined as: // // R8VEC_NORM_L2 = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM_L2, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // r8vec_print() prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_product ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_product() returns the product of the entries of an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_PRODUCT, the product of the vector. // { int i; double product; product = 1.0; for ( i = 0; i < n; i++ ) { product = product * a[i]; } return product; } //****************************************************************************80 void r8vec_sort_bubble_a ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_sort_bubble_a() ascending sorts an R8VEC using bubble sort. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 1999 // // Author: // // John Burkardt // // Input: // // int N, length of input array. // // double A[N], an array to be sorted. // // Output: // // double A[N]: the sorted array. // { int i; int j; double temp; for ( i = 0; i < n-1; i++ ) { for ( j = i+1; j < n; j++ ) { if ( a[j] < a[i] ) { temp = a[i]; a[i] = a[j]; a[j] = temp; } } } } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_sum() returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double *r8vec_uniform_ab_new ( int n, double b, double c, int &seed ) //****************************************************************************80 // // Purpose: // // r8vec_uniform_ab_new() returns a scaled pseudorandom R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 October 2004 // // Author: // // John Burkardt // // Input: // // int N, the number of entries in the vector. // // double B, C, the range allowed for the entries. // // int &SEED, a seed for the random number generator. // // Output: // // double R8VEC_UNIFORM_AB_NEW[N], the vector of pseudorandom values. // // int &SEED, an updated seed. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = r8_uniform_ab ( b, c, seed ); } return a; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // r8vec_uniform_01_new() returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Input: // // int N, the number of entries in the vector. // // int &SEED, a seed for the random number generator. // // Output: // // double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // // int &SEED, an updated seed. { int i; int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW(): Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_zero ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // r8vec_zero() zeroes an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double A[N], a vector of zeroes. // { int i; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // r8vec_zero_new() creates and zeroes an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // r8vec2_print() prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; } //****************************************************************************80 double rayleigh ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // rayleigh() returns the Rayleigh quotient of the matrix A and the vector X. // // Formula: // // RAYLEIGH = X' * A * X / ( X' * X ) // // Properties: // // If X is an eigenvector of A, then RAYLEIGH will equal the // corresponding eigenvalue. // // The set of all Rayleigh quotients for a matrix is known // as its "field of values". // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix. // // Input, double X[N], the vector used in the Rayleigh quotient. // // Output, double RAYLEIGH, the Rayleigh quotient of A and X. // { double *ax; int i; int j; double value; double xax; double xx; ax = r8vec_zero_new ( n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { ax[i] = ax[i] + a[i+j*n] * x[j]; } } xax = r8vec_dot_product ( n, x, ax ); xx = r8vec_dot_product ( n, x, x ); value = xax / xx; // // Free memory. // delete [] ax; return value; } //****************************************************************************80 double rayleigh2 ( int n, double a[], double x[], double y[] ) //****************************************************************************80 // // Purpose: // // rayleigh2() returns the generalized Rayleigh quotient. // // Formula: // // RAYLEIGH2 = X' * A * Y / ( X' * Y ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 May 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N*N], the matrix. // // Input, double X[N], Y[N], the vectors used in the // Rayleigh quotient. // // Output, double RAYLEIGH2, the Rayleigh quotient of A and X. // { double *ay; int i; int j; double value; double xay; double xy; ay = r8vec_zero_new ( n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { ay[i] = ay[i] + a[i+j*n] * y[j]; } } xay = r8vec_dot_product ( n, x, ay ); xy = r8vec_dot_product ( n, x, y ); value = xay / xy; // // Free memory. // delete [] ay; return value; } //****************************************************************************80 double rectangle_adj_determinant ( int row_num, int col_num ) //****************************************************************************80 // // Purpose: // // rectangle_adj_determinant(): the determinant of the RECTANGLE_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int ROW_NUM, COL_NUM, the number of rows and // columns in the rectangle. // // Output, double RECTANGLE_ADJ_DETERMINANT, the determinant. // { double determ; // // If ROW_NUM == 1 or COL_NUM == 1 we have a case of the LINE_ADJ matrix. // if ( row_num == 1 ) { if ( ( row_num % 4 ) == 1 ) { determ = 0.0; } else if ( ( row_num % 4 ) == 2 ) { determ = - 1.0; } else if ( ( row_num % 4 ) == 3 ) { determ = 0.0; } else if ( ( row_num % 4 ) == 0 ) { determ = + 1.0; } } else if ( col_num == 1 ) { if ( ( col_num % 4 ) == 1 ) { determ = 0.0; } else if ( ( col_num % 4 ) == 2 ) { determ = - 1.0; } else if ( ( col_num % 4 ) == 3 ) { determ = 0.0; } else if ( ( col_num % 4 ) == 0 ) { determ = + 1.0; } } // // Otherwise, we can form at least one square, hence a null vector, // hence the matrix is singular. // else { determ = 0.0; } return determ; } //****************************************************************************80 double *redheffer_matrix ( int n ) //****************************************************************************80 // // Purpose: // // redheffer_matrix() returns the REDHEFFER matrix. // // Formula: // // if ( J = 1 or mod ( J, I ) == 0 ) // A(I,J) = 1 // else // A(I,J) = 0 // // Example: // // N = 5 // // 1 1 1 1 1 // 1 1 0 1 0 // 1 0 1 0 0 // 1 0 0 1 0 // 1 0 0 0 1 // // Properties: // // A is generally not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The diagonal entries of A are all 1. // // A is a zero/one matrix. // // N - int ( log2 ( N ) ) - 1 eigenvalues are equal to 1. // // There is a real eigenvalue of magnitude approximately sqrt ( N ), // which is the spectral radius of the matrix. // // There is a negative eigenvalue of value approximately -sqrt ( N ). // // The remaining eigenvalues are "small", and there is a conjecture // that they lie inside the unit circle in the complex plane. // // The determinant is equal to the Mertens function M(N). // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 June 2011 // // Author: // // John Burkardt // // Reference: // // Wayne Barrett, Tyler Jarvis, // Spectral Properties of a Matrix of Redheffer, // Linear Algebra and Applications, // Volume 162, 1992, pages 673-683. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double REDHEFFER[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == 0 || ( ( j + 1 ) % ( i + 1 ) == 0 ) ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double redheffer_determinant ( int n ) //****************************************************************************80 // // Purpose: // // redheffer_determinant() returns the determinant of the REDHEFFER matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, REDHEFFER_DETERMINANT, the determinant. // { double determ; determ = ( double ) ( mertens ( n ) ); return determ; } //****************************************************************************80 double *ref_random_matrix ( int m, int n, double prob, int key ) //****************************************************************************80 // // Purpose: // // ref_random_matrix() returns a REF_RANDOM matrix. // // Discussion: // // The matrix returned is a random matrix in row echelon form. // // The definition of row echelon form requires: // // 1) the first nonzero entry in any row is 1. // // 2) the first nonzero entry in row I occurs in a later column // than the first nonzero entry of every previous row. // // 3) rows that are entirely zero occur after all rows with // nonzero entries. // // Example: // // M = 6, N = 5, PROB = 0.8 // // 1.0 0.3 0.2 0.0 0.5 // 0.0 0.0 1.0 0.7 0.9 // 0.0 0.0 0.0 1.0 0.3 // 0.0 0.0 0.0 0.0 1.0 // 0.0 0.0 0.0 0.0 0.0 // 0.0 0.0 0.0 0.0 0.0 // // Properties: // // A is generally not symmetric: A' /= A. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double PROB, the probability that the 1 in the next // row will be placed as early as possibly. // Setting PROB = 1 forces the 1 to occur immediately, setting // PROB = 0 forces the entire matrix to be zero. A more reasonable // value might be PROB = 0.8 or 0.9. // // Input, int KEY, a positive value that selects the data. // // Output, double REF_RANDOM[M*N], the matrix. // { double *a; int i; int j; int jnew; int jprev; int seed; double temp; a = new double[m*n]; seed = key; jprev = - 1; for ( i = 0; i < m; i++ ) { jnew = - 1; for ( j = 0; j < n; j++ ) { if ( j <= jprev ) { a[i+j*m] = 0.0; } else if ( jnew == -1 ) { temp = r8_uniform_01 ( seed ); if ( temp <= prob ) { jnew = j; a[i+j*m] = 1.0; } else { a[i+j*m] = 0.0; } } else { a[i+j*m] = r8_uniform_01 ( seed ); } } if ( jnew == - 1 ) { jnew = n; } jprev = jnew; } return a; } //****************************************************************************80 double ref_random_determinant ( int n, double prob, int key ) //****************************************************************************80 // // Purpose: // // ref_random_determinant(): determinant of a REF_RANDOM matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double PROB, the probability that the 1 in the next // row will be placed as early as possibly. // Setting PROB = 1 forces the 1 to occur immediately, setting // PROB = 0 forces the entire matrix to be zero. A more reasonable // value might be PROB = 0.8 or 0.9. // // Input, int KEY, a positive value that selects the data. // // Output, double REF_RANDOM_DETERMINANT, the determinant. // { double determ; int i; int j; int jnew; int jprev; int seed; double temp; determ = 1.0; seed = key; jprev = - 1; for ( i = 0; i < n; i++ ) { jnew = - 1; for ( j = 0; j < n; j++ ) { if ( j <= jprev ) { } else if ( jnew == - 1 ) { temp = r8_uniform_01 ( seed ); if ( temp <= prob ) { jnew = j; } else { } } else { temp = r8_uniform_01 ( seed ); } } if ( jnew != i ) { determ = 0.0; } if ( jnew == - 1 ) { jnew = n; } jprev = jnew; } return determ; } //****************************************************************************80 double *riemann_matrix ( int m, int n ) //****************************************************************************80 // // Purpose: // // riemann_matrix() returns the RIEMANN matrix. // // Formula: // // if ( I + 1 divides J + 1 evenly ) // A(I,J) = I // else // A(I,J) = -1 // // Example: // // M = 5, N = 5 // // 1 -1 1 -1 1 // -1 2 -1 -1 2 // -1 -1 3 -1 -1 // -1 -1 -1 4 -1 // -1 -1 -1 -1 5 // // Discussion: // // The Riemann hypothesis is true if and only if the determinant of A // is of order (N! * N^(-.5 + epsilon)) for every positive epsilon. // // Properties: // // A is generally not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The strict lower triangular entries are all -1. // // If A is square, then each eigenvalue LAMBDA(I) satisfies // abs ( LAMBDA(I) ) <= (N+1) - 1 / (N+1), // and eigenvalue LAMBDA(I) satisfies // 1 <= LAMBDA(I) <= I + 1 // except for at most (N+1) - sqrt ( N + 1 ) values, and // all integers in the interval ( (N+1)/3, (N+1)/2 ] are eigenvalues. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Reference: // // Friedrich Roesler, // Riemann's hypothesis as an eigenvalue problem, // Linear Algebra and Applications, // Volume 81, 1986, pages 153-198. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double RIEMANN[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( ( j + 2 ) % ( i + 2 ) == 0 ) { a[i+j*m] = ( double ) ( i ); } else { a[i+j*m] = - 1.0; } } } return a; } //****************************************************************************80 double *ring_adj_matrix ( int n ) //****************************************************************************80 // // Purpose: // // ring_adj_matrix() returns the RING_ADJ matrix. // // Discussion: // // This is the adjacency matrix for a ring, or set of points on a circle. // // Example: // // N = 5 // // 0 1 0 0 1 // 1 0 1 0 0 // 0 1 0 1 0 // 0 0 1 0 1 // 1 0 0 1 0 // // Properties: // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The determinant for N = 1 is 1, for N = 2 is -1, and for 2 < N, // mod ( N, 4 ) = 1 ==> det ( A ) = 2 // mod ( N, 4 ) = 2 ==> det ( A ) = -4 // mod ( N, 4 ) = 3 ==> det ( A ) = 2 // mod ( N, 4 ) = 0 ==> det ( A ) = 0 // // A is a zero/one matrix. // // A is an adjacency matrix. // // A has a zero diagonal. // // A is cyclic tridiagonal. // // A is a circulant matrix: each row is shifted once to get the next row. // // A has a constant row sum of 2. // // Because it has a constant row sum of 2, // A has an eigenvalue of 2, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has a constant column sum of 2. // // Because it has a constant column sum of 2, // A has an eigenvalue of 2, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // When N is a multiple of 4, A has the null vector // (1,1,-1,-1, 1,1,-1,-1, ..., 1,1,-1,-1) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RING_ADJ[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i + 1 || j == i - 1 || j == i + 1 - n || j == i - 1 + n ) { a[i+j*n] = 1.0; } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double ring_adj_determinant ( int n ) //****************************************************************************80 // // Purpose: // // ring_adj_determinant() returns the determinant of the RING_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RING_ADJ_DETERMINANT, the determinant. // { double determ; if ( n == 1 ) { determ = 1.0; } else if ( n == 2 ) { determ = -1.0; } else if ( ( n % 4 ) == 0 ) { determ = 0.0; } else if ( ( n % 4 ) == 1 ) { determ = 2.0; } else if ( ( n % 4 ) == 2 ) { determ = -4.0; } else if ( ( n % 4 ) == 3 ) { determ = 2.0; } return determ; } //****************************************************************************80 double *ring_adj_null_left ( int m, int n ) //****************************************************************************80 // // Purpose: // // ring_adj_null_left() returns a left null vector of the RING_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 March 2015 // // Author: // // John Burkardt // // Parameters: // // Input, integer M, N, the order of the matrix. // // Output, double RING_ADJ_NULL_LEFT[M], the null vector. // { int i; double *x; x = new double[m]; if ( ( m % 4 ) != 0 ) { cerr << "\n"; cerr << "RING_ADJ_NULL_LEFT(): Fatal error!\n"; cerr << " M must be a multiple of 4.\n"; exit ( 1 ); } for ( i = 0; i < m; i = i + 4 ) { x[i] = + 1.0; x[i+1] = + 1.0; x[i+2] = - 1.0; x[i+3] = - 1.0; } return x; } //****************************************************************************80 double *ring_adj_null_right ( int m, int n ) //****************************************************************************80 // // Purpose: // // ring_adj_null_right() returns a right null vector of the RING_ADJ matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, integer M, N, the order of the matrix. // // Output, double RING_ADJ_NULL_RIGHT[N], the null vector. // { int i; double *x; x = new double[n]; if ( ( n % 4 ) != 0 ) { cerr << "\n"; cerr << "RING_ADJ_NULL_RIGHT(): Fatal error!\n"; cerr << " N must be a multiple of 4.\n"; exit ( 1 ); } for ( i = 0; i < n; i = i + 4 ) { x[i] = + 1.0; x[i+1] = + 1.0; x[i+2] = - 1.0; x[i+3] = - 1.0; } return x; } //****************************************************************************80 double *ris_matrix ( int n ) //****************************************************************************80 // // Purpose: // // ris_matrix() returns the RIS matrix. // // Discussion: // // This matrix is also called the dingdong matrix. It was invented // by FN Ris. // // Formula: // // A(I,J) = 1 / ( 3 + 2 * N - 2 * I - 2 * J ) // // Example: // // N = 5 // // 1/9 1/7 1/5 1/3 1 // 1/7 1/5 1/3 1 -1 // 1/5 1/3 1 -1 -1/3 // 1/3 1 -1 -1/3 -1/5 // 1 -1 -1/3 -1/5 -1/7 // // Properties: // // A is a Cauchy matrix. // // A is a Hankel matrix: constant along anti-diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // The eigenvalues of A cluster around PI/2 and -PI/2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Reference: // // John Nash, // Compact Numerical Methods for Computers: Linear Algebra and // Function Minimisation, // Second Edition, // Taylor & Francis, 1990, // ISBN: 085274319X, // LC: QA184.N37. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RIS[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 1.0 / ( double ) ( 2 * n - 2 * i - 2 * j - 1 ); } } return a; } //****************************************************************************80 double ris_determinant ( int n ) //****************************************************************************80 // // Purpose: // // ris_determinant() returns the determinant of the RIS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RIS_DETERMINANT, the determinant. // { double bottom; double determ; int i; int j; double top; top = 1.0; for ( i = 0; i < n; i++ ) { for ( j = i + 1; j < n; j++ ) { top = top * ( double ) ( 4 * ( i - j ) * ( i - j ) ); } } bottom = 1.0; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { bottom = bottom * ( double ) ( 2 * n - 2 * i - 2 * j - 1 ); } } determ = top / bottom; return determ; } //****************************************************************************80 double *ris_inverse ( int n ) //****************************************************************************80 // // Purpose: // // ris_inverse() returns the inverse of the RIS matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RIS_INVERSE[N*N], the matrix. // { double *a; double bot1; double bot2; int i; int j; int k; double top; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { top = 1.0; bot1 = 1.0; bot2 = 1.0; for ( k = 0; k < n; k++ ) { top = top * ( 2 * n - 2 * j - 2 * k - 1 ) * ( 2 * n - 2 * k - 2 * i - 1 ); if ( k != j ) { bot1 = bot1 * ( double ) ( 2 * ( k - j ) ); } if ( k != i ) { bot2 = bot2 * ( double ) ( 2 * ( k - i ) ); } } a[i+j*n] = top / ( ( double ) ( 2 * n - 2 * j - 2 * i - 1 ) * bot1 * bot2 ); } } return a; } //****************************************************************************80 double *rodman_matrix ( int m, int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_matrix() returns the RODMAN matrix. // // Formula: // // If ( I = J ) then // A(I,J) = 1 // else // A(I,J) = ALPHA // // Example: // // M = 5, N = 5, // ALPHA = 2 // // 1 2 2 2 2 // 2 1 2 2 2 // 2 2 1 2 2 // 2 2 2 1 2 // 2 2 2 2 1 // // Properties: // // A is a special case of the combinatorial matrix. // // A is Toeplitz: constant along diagonals. // // A is a circulant matrix: each row is shifted once to get the next row. // // A has constant row sum. // // Because it has a constant row sum of 1+(N-1)*ALPHA, // A has an eigenvalue of 1+(N-1)*ALPHA, and // a (right) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has constant column sum. // // Because it has a constant column sum of 1+(N-1)*ALPHA, // A has an eigenvalue of 1+(N-1)*ALPHA, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). // // A is positive definite for ALPHA < 1. // // The eigenvalues and eigenvectors of A are: // // For I = 1 to N-1: // // LAMBDA(I) = 1 - ALPHA // V(I) = ( - sum ( 2 <= J <= N ) X(J), X(2), X(3), ..., X(N) ) // // For I = N: // // LAMBDA(I) = 1 + ALPHA * ( N - 1 ) // V(I) = ( 1, 1, 1, ..., 1 ) // // det ( A ) = ( 1 - ALPHA )^(N-1) * ( 1 + ALPHA * ( N - 1 ) ). // // A is nonsingular if ALPHA is not 1, and ALPHA is not -1/(N-1). // // The inverse of A is known. // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double RODMAN[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( i == j ) { a[i+j*m] = 1.0; } else { a[i+j*m] = alpha; } } } return a; } //****************************************************************************80 double rodman_condition ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_condition() returns the L1 condition of the RODMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 April 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double RODMAN_CONDITION, the L1 condition. // { double a_norm; double b_norm; double bot; double top; double value; a_norm = 1.0 + ( double ) ( n - 1 ) * fabs ( alpha ); top = fabs ( 1.0 + alpha * ( double ) ( n - 2 ) ) + ( double ) ( n - 1 ) * fabs ( alpha ); bot = fabs ( 1.0 + alpha * ( double ) ( n - 2 ) - alpha * alpha * ( double ) ( n - 1 ) ); b_norm = top / bot; value = a_norm * b_norm; return value; } //****************************************************************************80 double rodman_determinant ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_determinant() returns the determinant of the RODMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double RODMAN_DETERMINANT, the determinant. // { double determ; determ = pow ( 1.0 - alpha, n - 1 ) * ( 1.0 + alpha * ( double ) ( n - 1 ) ); return determ; } //****************************************************************************80 double *rodman_eigen_right ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_eigen_right() returns the right eigenvectors of the RODMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double X[N*N], the right eigenvectors. // { int i; int j; double *x; x = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = 0.0; } } for ( j = 0; j < n - 1; j++ ) { x[ 0+j*n] = +1.0; x[j+1+j*n] = -1.0; } j = n - 1; for ( i = 0; i < n; i++ ) { x[i+j*n] = 1.0; } return x; } //****************************************************************************80 double *rodman_eigenvalues ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_eigenvalues() returns the eigenvalues of the RODMAN matrix. // // Licensing: // // This code is distributed under the MIT license. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double RODMAN_EIGENVALUES[N], the eigenvalues. // { int i; double *lambda; lambda = new double[n]; for ( i = 0; i < n - 1; i++ ) { lambda[i] = 1.0 - alpha; } lambda[n-1] = 1.0 + alpha * ( double ) ( n - 1 ); return lambda; } //****************************************************************************80 double *rodman_inverse ( int n, double alpha ) //****************************************************************************80 // // Purpose: // // rodman_inverse() returns the inverse of the RODMAN matrix. // // Formula: // // If ( I = J ) then // A(I,J) = ( 1 + ALPHA * ( N - 2 ) ) / // ( 1 + ALPHA * ( N - 2 ) - ALPHA^2 * ( N - 1 ) ) // else // A(I,J) = - ALPHA / // ( 1 + ALPHA * ( N - 2 ) - ALPHA^2 * ( N - 1 ) ) // // Example: // // N = 5, ALPHA = 2.0 // // -0.7778 0.2222 0.2222 0.2222 0.2222 // 0.2222 -0.7778 0.2222 0.2222 0.2222 // 0.2222 0.2222 -0.7778 0.2222 0.2222 // 0.2222 0.2222 0.2222 -0.7778 0.2222 // 0.2222 0.2222 0.2222 0.2222 -0.7778 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double ALPHA, the parameter. // // Output, double RODMAN_INVERSE[N*N}, the matrix. // { double *a; double bot; int i; int j; a = new double[n*n]; bot = 1.0 + alpha * ( double ) ( n - 2 ) - alpha * alpha * ( double ) ( n - 1 ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[i+j*n] = ( 1.0 + alpha * ( double ) ( n - 2 ) ) / bot; } else { a[i+j*n] = - alpha / bot; } } } return a; } //****************************************************************************80 double *rosser1_matrix ( ) //****************************************************************************80 // // Purpose: // // rosser1_matrix() returns the ROSSER1 matrix. // // Formula: // // 611 196 -192 407 -8 -52 -49 29 // 196 899 113 -192 -71 -43 -8 -44 // -192 113 899 196 61 49 8 52 // 407 -192 196 611 8 44 59 -23 // -8 -71 61 8 411 -599 208 208 // -52 -43 49 44 -599 411 208 208 // -49 -8 8 59 208 208 99 -911 // 29 -44 52 -23 208 208 -911 99 // // Properties: // // A is singular. // // det ( A ) = 0. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // The eigenvalues of A are: // // a = sqrt(10405), b = sqrt(26), // // LAMBDA = (-10*a, 0, 510-100*b, 1000, 1000, 510+100*b, 1020, 10*a) // // ( 10*a = 1020.04901843, 510-100*b = 0.09804864072 ) // // The eigenvectors are // // ( 2, 1, 1, 2, 102+a, 102+a, -204-2a, -204-2a ) // ( 1, 2, -2, -1, 14, 14, 7, 7 ) // ( 2, -1, 1, -2, 5-b, -5+b, -10+2b, 10-2b ) // ( 7, 14, -14, -7, -2, -2, -1, -1 ) // ( 1, -2, -2, 1, -2, 2, -1, 1 ) // ( 2, -1, 1, -2, 5+b, -5-b, -10-2b, 10+2b ) // ( 1, -2, -2, 1, 2, -2, 1, -1 ) // ( 2, 1, 1, 2, 102-a, 102-a, -204+2a, -204+2a ) // // trace ( A ) = 4040. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double ROSSER1[8*8], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[8*8] = { 611.0, 196.0, -192.0, 407.0, -8.0, -52.0, -49.0, 29.0, 196.0, 899.0, 113.0, -192.0, -71.0, -43.0, -8.0, -44.0, -192.0, 113.0, 899.0, 196.0, 61.0, 49.0, 8.0, 52.0, 407.0, -192.0, 196.0, 611.0, 8.0, 44.0, 59.0, -23.0, -8.0, -71.0, 61.0, 8.0, 411.0, -599.0, 208.0, 208.0, -52.0, -43.0, 49.0, 44.0, -599.0, 411.0, 208.0, 208.0, -49.0, -8.0, 8.0, 59.0, 208.0, 208.0, 99.0, -911.0, 29.0, -44.0, 52.0, -23.0, 208.0, 208.0, -911.0, 99.0 }; a = r8mat_copy_new ( 8, 8, a_save ); return a; } //****************************************************************************80 double rosser1_determinant ( ) //****************************************************************************80 // // Purpose: // // rosser1_determinant() returns the determinant of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_DETERMINANT, the determinant. // { double determ; determ = 0.0; return determ; } //****************************************************************************80 double *rosser1_eigen_left ( ) //****************************************************************************80 // // Purpose: // // rosser1_eigen_left() returns left eigenvectors of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_EIGEN_LEFT[8*8], the eigenvectors. // { double a; double b; int n = 8; double *x; a = sqrt ( 10405.0 ); b = sqrt ( 26.0 ); x = new double[n*n]; x[0+0*n] = 2.0; x[1+0*n] = 1.0; x[2+0*n] = 1.0; x[3+0*n] = 2.0; x[4+0*n] = 102.0 + a; x[5+0*n] = 102.0 + a; x[6+0*n] = - 204.0 - 2.0 * a; x[7+0*n] = - 204.0 - 2.0 * a; x[0+1*n] = 1.0; x[1+1*n] = 2.0; x[2+1*n] = - 2.0; x[3+1*n] = - 1.0; x[4+1*n] = 14.0; x[5+1*n] = 14.0; x[6+1*n] = 7.0; x[7+1*n] = 7.0; x[0+2*n] = 2.0; x[1+2*n] = - 1.0; x[2+2*n] = 1.0; x[3+2*n] = - 2.0; x[4+2*n] = 5.0 - b; x[5+2*n] = - 5.0 + b; x[6+2*n] = - 10.0 + 2.0 * b; x[7+2*n] = 10.0 - 2.0 * b; x[0+3*n] = 7.0; x[1+3*n] = 14.0; x[2+3*n] = - 14.0; x[3+3*n] = - 7.0; x[4+3*n] = - 2.0; x[5+3*n] = - 2.0; x[6+3*n] = - 1.0; x[7+3*n] = - 1.0; x[0+4*n] = 1.0; x[1+4*n] = - 2.0; x[2+4*n] = - 2.0; x[3+4*n] = 1.0; x[4+4*n] = - 2.0; x[5+4*n] = 2.0; x[6+4*n] = - 1.0; x[7+4*n] = 1.0; x[0+5*n] = 2.0; x[1+5*n] = - 1.0; x[2+5*n] = 1.0; x[3+5*n] = - 2.0; x[4+5*n] = 5.0 + b; x[5+5*n] = - 5.0 - b; x[6+5*n] = - 10.0 - 2.0 * b; x[7+5*n] = 10.0 + 2.0 * b; x[0+6*n] = 1.0; x[1+6*n] = - 2.0; x[2+6*n] = - 2.0; x[3+6*n] = 1.0; x[4+6*n] = 2.0; x[5+6*n] = - 2.0; x[6+6*n] = 1.0; x[7+6*n] = - 1.0; x[0+7*n] = 2.0; x[1+7*n] = 1.0; x[2+7*n] = 1.0; x[3+7*n] = 2.0; x[4+7*n] = 102.0 - a; x[5+7*n] = 102.0 - a; x[6+7*n] = - 204.0 + 2.0 * a; x[7+7*n] = - 204.0 + 2.0 * a; r8mat_transpose_in_place ( 8, x ); return x; } //****************************************************************************80 double *rosser1_eigen_right ( ) //****************************************************************************80 // // Purpose: // // rosser1_eigen_right() returns the right eigenvectors of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_EIGEN_RIGHT[8*8], the eigenvector matrix. // { double a; double b; int n = 8; double *x; a = sqrt ( 10405.0 ); b = sqrt ( 26.0 ); x = new double[n*n]; x[0+0*n] = 2.0; x[1+0*n] = 1.0; x[2+0*n] = 1.0; x[3+0*n] = 2.0; x[4+0*n] = 102.0 + a; x[5+0*n] = 102.0 + a; x[6+0*n] = - 204.0 - 2.0 * a; x[7+0*n] = - 204.0 - 2.0 * a; x[0+1*n] = 1.0; x[1+1*n] = 2.0; x[2+1*n] = - 2.0; x[3+1*n] = - 1.0; x[4+1*n] = 14.0; x[5+1*n] = 14.0; x[6+1*n] = 7.0; x[7+1*n] = 7.0; x[0+2*n] = 2.0; x[1+2*n] = - 1.0; x[2+2*n] = 1.0; x[3+2*n] = - 2.0; x[4+2*n] = 5.0 - b; x[5+2*n] = - 5.0 + b; x[6+2*n] = - 10.0 + 2.0 * b; x[7+2*n] = 10.0 - 2.0 * b; x[0+3*n] = 7.0; x[1+3*n] = 14.0; x[2+3*n] = - 14.0; x[3+3*n] = - 7.0; x[4+3*n] = - 2.0; x[5+3*n] = - 2.0; x[6+3*n] = - 1.0; x[7+3*n] = - 1.0; x[0+4*n] = 1.0; x[1+4*n] = - 2.0; x[2+4*n] = - 2.0; x[3+4*n] = 1.0; x[4+4*n] = - 2.0; x[5+4*n] = 2.0; x[6+4*n] = - 1.0; x[7+4*n] = 1.0; x[0+5*n] = 2.0; x[1+5*n] = - 1.0; x[2+5*n] = 1.0; x[3+5*n] = - 2.0; x[4+5*n] = 5.0 + b; x[5+5*n] = - 5.0 - b; x[6+5*n] = - 10.0 - 2.0 * b; x[7+5*n] = 10.0 + 2.0 * b; x[0+6*n] = 1.0; x[1+6*n] = - 2.0; x[2+6*n] = - 2.0; x[3+6*n] = 1.0; x[4+6*n] = 2.0; x[5+6*n] = - 2.0; x[6+6*n] = 1.0; x[7+6*n] = - 1.0; x[0+7*n] = 2.0; x[1+7*n] = 1.0; x[2+7*n] = 1.0; x[3+7*n] = 2.0; x[4+7*n] = 102.0 - a; x[5+7*n] = 102.0 - a; x[6+7*n] = - 204.0 + 2.0 * a; x[7+7*n] = - 204.0 + 2.0 * a; return x; } //****************************************************************************80 double *rosser1_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // rosser1_eigenvalues() returns the eigenvalues of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_EIGENVALUES[8], the eigenvalues. // { double *lambda; static double lambda_save[8] = { -1020.0490184299969, 0.0000000000000000, 0.0980486407215721556, 1000.0000000000000, 1000.0000000000000, 1019.9019513592784, 1020.0000000000000, 1020.0490184299969 }; lambda = r8vec_copy_new ( 8, lambda_save ); return lambda; } //****************************************************************************80 double *rosser1_null_left ( ) //****************************************************************************80 // // Purpose: // // rosser1_null_left() returns a left null vector of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 March 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_NULL_LEFT[8], the null vector. // { double *x; static double x_save[8] = { 1.0, 2.0, -2.0, -1.0, 14.0, 14.0, 7.0, 7.0 }; x = r8vec_copy_new ( 8, x_save ); return x; } //****************************************************************************80 double *rosser1_null_right ( ) //****************************************************************************80 // // Purpose: // // rosser1_null_right() returns a right null vector of the ROSSER1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double ROSSER1_NULL_RIGHT[8], the null vector. // { double *x; static double x_save[8] = { 1.0, 2.0, -2.0, -1.0, 14.0, 14.0, 7.0, 7.0 }; x = r8vec_copy_new ( 8, x_save ); return x; } //****************************************************************************80 double *routh_matrix ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // routh_matrix() returns the ROUTH matrix. // // Formula: // // A is tridiagonal. // A(1,1) = X(1). // A(I-1,I) = sqrt ( X(I) ), for I = 2 to N. // A(I,I-1) = - sqrt ( X(I) ), for I = 2 to N. // // Example: // // N = 5, X = ( 1, 4, 9, 16, 25 ) // // 1 -2 0 0 0 // 2 0 -3 0 0 // 0 3 0 -4 0 // 0 0 4 0 -5 // 0 0 0 5 0 // // Properties: // // A is generally not symmetric: A' /= A. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is banded, with bandwidth 3. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // det ( A ) = product ( X(N) * X(N-2) * X(N-4) * ... * X(N+1-2*(N/2)) ) // // The family of matrices is nested as a function of N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the data that defines the matrix. // // Output, double ROUTH[N*N], the matrix. // { double *a; int i; int j; a = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == 0 && j == 0 ) { a[i+j*n] = fabs ( x[0] ); } else if ( i == j + 1 ) { a[i+j*n] = sqrt ( fabs ( x[i] ) ); } else if ( i == j - 1 ) { a[i+j*n] = - sqrt ( fabs ( x[i+1] ) ); } else { a[i+j*n] = 0.0; } } } return a; } //****************************************************************************80 double routh_determinant ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // routh_determinant() returns the determinant of the ROUTH matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double X[N], the data that defines the matrix. // // Output, double ROUTH_DETERMINANT, the determinant. // { double determ; int i; determ = 1.0; for ( i = n - 1; 0 <= i; i = i - 2 ) { determ = determ * x[i]; } return determ; } //****************************************************************************80 double *rowcolsum_matrix ( int row_num, int col_num, int &m, int &n ) //****************************************************************************80 // // Purpose: // // rowcolsum_matrix() returns the ROWCOLSUM matrix. // // Discussion: // // The row and column sum matrix is the linear operator which returns // the sums of the rows and columns of a rectangular data array. // // For instance, if the data array has 2 rows and 3 columns, // with the values: // // 1 2 3 // 4 5 6 // // then the row sums are (6,15) and the column sums are (5,7,9), and // the matrix, data, and row/column sums can be put in the form: // // 1 1 1 0 0 0 1 6 // 0 0 0 1 1 1 2 15 // 1 0 0 1 0 0 * 3 = 5 // 0 1 0 0 1 0 4 7 // 0 0 1 0 0 1 5 9 // 6 // // Here, we have linearly arranged the data array to constitute an // element X of an N = ROW_NUM * COL_NUM space, and the row and column sum // vectors now form a right hand side vector B which is an element of // M = ROW_NUM + COL_NUM space. // // The M by N matrix A has an interesting structure and properties. In // particular, its row rank, rank, range, null space, eigenvalues and // eigenvectors are worth knowing. In some cases, these abstract properties // have an interesting explanation or interpretation when looked at // in terms of the data array and its row and column sums. // // (Determining something about a matrix from its row and column sums // comes up in computer tomography. A sort of generalized problem of // determining the contents of the cells in a rectangular array based on // row and column summary information is presented as a game called // "Paint by Numbers" or "Descartes's Enigma". The interpretation of // tables of data representing the abundance of different species in // different habitats is of some interest in biology, and requires the // ability to generate random matrices with 0 or 1 data entries and // given row and column sum vectors.) // // Row Rank: // // It is clear that most values of ROW_NUM and COL_NUM, the matrix // maps a very large space into a small one, and hence must be // chock full of singularity. We may still wonder if the matrix // has as much nonsingularity as possible. Except for the 1 by 1 case, // it doesn't. // // The fact that the sum of the first ROW_NUM rows of the // matrix equals the sum of the last COL_NUM rows of the matrix means // that the matrix has row rank no more than M-1. Assuming that 1 < M, // then this means we have less than full row rank, and hence there is // a corresponding null vector. // // (But this loss of full row rank HAD to happen: the fact that // the sum of the row sums equals the sum of the column sums means // that the "B" objects that A creates are constrained. Hence A does // not have full range in the image space, and hence there // must be some additional loss of rank beyond the requirements imposed // simply by the number of rows in the matrix//) // // To determine this null vector, note that: // // * if either ROW_NUM or COL_NUM is even, then a corresponding null // vector is the checkerboard vector which is +1 on "red" data cells // and -1 on "black" ones. // // * If ROW_NUM and COL_NUM are both odd and greater than 1, then // put -1 in each corner, +4 in the center and zeros elsewhere. // // * If ROW_NUM and COL_NUM are both odd, and exactly one of them is 1, // then the data array is a single row or column containing an odd number // of cells greater than 1. Put a -1 in the first and last, and put // +2 in the center cell. The other cells can be set to zero. // // * If ROW_NUM and COL_NUM are both odd, and both are in fact 1, then // we already pointed out that the matrix has full row rank and there // is no corresponding null vector. // // We can deduce that the row rank of A is exactly M-1 (when 1 < M ) // by noting that if we placed the column summing rows first, // and then listed the row summing rows, except that we replaced the // first row summing row by a zero row, and moved that to the end, // then A is in REDUCED ROW ECHELON FORM and hence must have row rank // at least M-1, since there is a leading one in each row. // // Rank: // // This in turn means that (for 1 < M ) the rank of A is also M-1. // // Range: // // We have noted that, by construction, a vector B can be an image // of some data vector X only if the sum of the row sum entries equals // the sum of the column sum entries. In fact, we can regard this // as defining the range of A, which is the linear subspace of // M-space in which the sum of the first ROW_NUM entries equals the // sum of the final COL_NUM entries. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int ROW_NUM, COL_NUM, the number of rows and // columns in the data array associated with the row and column sum matrix. // // Output, int &M, the number of rows of A, which is // ROW_NUM + COL_NUM. // // Output, int &N, the number of columns of A, which is // ROW_NUM * COL_NUM. // // Output, double ROWCOLSUM_MATRIX[M*N], the matrix. // { double *a; int col; int j; int jhi; int jlo; int row; m = row_num + col_num; n = row_num * col_num; a = r8mat_zero_new ( m, n ); // // Set the matrix rows that compute a row sum. // for ( row = 0; row < row_num; row++ ) { jlo = row * col_num; jhi = ( row + 1 ) * col_num - 1; for ( j = row * col_num; j < ( row + 1 ) * col_num; j++ ) { a[row+j*(row_num + col_num)] = 1.0; } } // // Set the matrix rows that compute a column sum. // for ( col = 0; col < col_num; col++ ) { jlo = col; jhi = col + ( row_num - 1 ) * col_num; for ( j = jlo; j <= jhi; j = j + col_num ) { a[row_num+col+j*(row_num + col_num)] = 1.0; } } return a; } //****************************************************************************80 double *rutis1_matrix ( ) //****************************************************************************80 // // Purpose: // // rutis1_matrix() returns the RUTIS1 matrix. // // Example: // // 6 4 4 1 // 4 6 1 4 // 4 1 6 4 // 1 4 4 6 // // Properties: // // A is symmetric: A' = A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A has constant row sums. // // Because it has a constant row sum of 15, // A has an eigenvalue of 15, and // a (right) eigenvector of ( 1, 1, 1, 1 ). // // A has constant column sums. // // Because it has a constant column sum of 15, // A has an eigenvalue of 15, and // a (left) eigenvector of ( 1, 1, 1, ..., 1 ). // // A has a repeated eigenvalue. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS1[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, 4.0, 1.0, 4.0, 4.0, 6.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double rutis1_condition ( ) //****************************************************************************80 // // Purpose: // // rutis1_condition() returns the L1 condition of the RUTIS1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 January 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS1_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 15.0; b_norm = 1.0; value = a_norm * b_norm; return value; } //****************************************************************************80 double rutis1_determinant ( ) //****************************************************************************80 // // Purpose: // // rutis1_determinant() returns the determinant of the RUTIS1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS1_DETERMINANT, the determinant. // { double determ; determ = - 375.0; return determ; } //****************************************************************************80 double *rutis1_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // rutis1_eigenvalues() returns the eigenvalues of the RUTIS1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS1_EIGENVALUES[4], the eigenvalues. // { double *lambda; static double lambda_save[4] = { 15.0, 5.0, 5.0, -1.0 }; lambda = r8vec_copy_new ( 4, lambda_save ); return lambda; } //****************************************************************************80 double *rutis1_inverse ( ) //****************************************************************************80 // // Purpose: // // rutis1_inverse() returns the inverse of the RUTIS1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS1_INVERSE[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { -2.0, 4.0, 4.0, -5.0, 4.0, -2.0, -5.0, 4.0, 4.0, -5.0, -2.0, 4.0, -5.0, 4.0, 4.0, -2.0 }; int i; int j; a = r8mat_copy_new ( 4, 4, a_save ); for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 4; i++ ) { a[i+j*4] = a[i+j*4] / 15.0; } } return a; } //****************************************************************************80 double *rutis1_eigen_right ( ) //****************************************************************************80 // // Purpose: // // rutis1_eigen_right() returns the right eigenvectors of the RUTIS1 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS1_EIGEN_RIGHT[4*4], the right eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, -1.0, -1.0, 1.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *rutis2_matrix ( ) //****************************************************************************80 // // Purpose: // // rutis2_matrix() returns the RUTIS2 matrix. // // Example: // // 5 4 1 1 // 4 5 1 1 // 1 1 4 2 // 1 1 2 4 // // Properties: // // A is symmetric: A' = A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A has distinct eigenvalues. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS2[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0, 2.0, 1.0, 1.0, 2.0, 4.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double rutis2_condition ( ) //****************************************************************************80 // // Purpose: // // rutis2_condition() returns the L1 condition of the RUTIS2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 January 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS2_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 11.0; b_norm = 1.04; value = a_norm * b_norm; return value; } //****************************************************************************80 double rutis2_determinant ( ) //****************************************************************************80 // // Purpose: // // rutis2_determinant() returns the determinant of the RUTIS2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS2_DETERMINANT, the determinant. // { double determ; determ = 100.0; return determ; } //****************************************************************************80 double *rutis2_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // rutis2_eigenvalues() returns the eigenvalues of the RUTIS2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS2_EIGENVALUES[4], the eigenvalues. // { double *lambda; static double lambda_save[4] = { 10.0, 5.0, 2.0, 1.0 }; lambda = r8vec_copy_new ( 4, lambda_save ); return lambda; } //****************************************************************************80 double *rutis2_inverse ( ) //****************************************************************************80 // // Purpose: // // rutis2_inverse() returns the inverse of the RUTIS2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS2_INVERSE[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 0.56, -0.44, -0.02, -0.02, -0.44, 0.56, -0.02, -0.02, -0.02, -0.02, 0.34, -0.16, -0.02, -0.02, -0.16, 0.34 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *rutis2_eigen_right ( ) //****************************************************************************80 // // Purpose: // // rutis2_eigen_right() returns the right eigenvectors of the RUTIS2 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS2_EIGEN_RIGHT[4*4], the right eigenvector matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 2.0, 2.0, 1.0, 1.0, -1.0, -1.0, 2.0, 2.0, 0.0, 0.0, -1.0, 1.0, -1.0, 1.0, 0.0, 0.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *rutis3_matrix ( ) //****************************************************************************80 // // Purpose: // // rutis3_matrix() returns the RUTIS3 matrix. // // Example: // // 4 -5 0 3 // 0 4 -3 -5 // 5 -3 4 0 // 3 0 5 4 // // Properties: // // A is not symmetric: A' /= A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A has distinct eigenvalues. // // A has a pair of complex eigenvalues. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 August 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS3[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 4.0, 0.0, 5.0, 3.0, -5.0, 4.0, -3.0, 0.0, 0.0, -3.0, 4.0, 5.0, 3.0, -5.0, 0.0, 4.0 }; a = r8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double rutis3_condition ( ) //****************************************************************************80 // // Purpose: // // rutis3_condition() returns the L1 condition of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 January 2015 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS3_CONDITION, the L1 condition. // { double a_norm; double b_norm; double value; a_norm = 12.0; b_norm = 0.5; value = a_norm * b_norm; return value; } //****************************************************************************80 double rutis3_determinant ( ) //****************************************************************************80 // // Purpose: // // rutis3_determinant() returns the determinant of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 August 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double RUTIS3_DETERMINANT, the determinant. // { double determ; determ = 624.0; return determ; } //****************************************************************************80 complex *rutis3_eigenvalues ( ) //****************************************************************************80 // // Purpose: // // rutis3_eigenvalues() returns the eigenvalues of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex RUTIS3_EIGENVALUES[4], the eigenvalues. // { complex *lambda; static complex lambda_save[4] = { complex ( 12.0, 0.0 ), complex ( 1.0, 5.0 ), complex ( 1.0, -5.0 ), complex ( 2.0, 0.0 ) }; lambda = c8vec_copy_new ( 4, lambda_save ); return lambda; } //****************************************************************************80 double *rutis3_inverse ( ) //****************************************************************************80 // // Purpose: // // rutis3_inverse() returns the inverse of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 August 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Output, double RUTIS3_INVERSE[4*4], the matrix. // { double *a; // // Note that the matrix entries are listed by column. // static double a_save[4*4] = { 103.0, 5.0, -125.0, 79.0, 125.0, 103.0, -79.0, 5.0, -5.0, -79.0, 103.0, -125.0, 79.0, 125.0, -5.0, 103.0 }; int i; int j; a = r8mat_copy_new ( 4, 4, a_save ); for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 4; i++ ) { a[i+j*4] = a[i+j*4] / 624.0; } } return a; } //****************************************************************************80 complex *rutis3_eigen_left ( ) //****************************************************************************80 // // Purpose: // // rutis3_eigen_left() returns the left eigenvectors of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex RUTIS3_EIGEN_LEFT[4*4], the left eigenvector matrix. // { complex *a; // // Note that the matrix entries are listed by column. // static complex a_save[4*4] = { complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( -1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 0.0, 1.0 ), complex ( 0.0, -1.0 ), complex ( 1.0, 0.0 ), complex ( -1.0, 0.0 ), complex ( 0.0, 1.0 ), complex ( 0.0, -1.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( -1.0, 0.0 ), complex ( -1.0, 0.0 ) }; a = c8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 complex *rutis3_eigen_right ( ) //****************************************************************************80 // // Purpose: // // rutis3_eigen_right() returns the right eigenvectors of the RUTIS3 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 June 2011 // // Author: // // John Burkardt // // Parameters: // // Output, complex RUTIS3_EIGEN_RIGHT[4*4], the right eigenvector matrix. // { complex *a; // // Note that the matrix entries are listed by column. // static complex a_save[4*4] = { complex ( 1.0, 0.0 ), complex ( -1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 0.0, -1.0 ), complex ( 0.0, -1.0 ), complex ( -1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 0.0, 1.0 ), complex ( 0.0, 1.0 ), complex ( -1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( 1.0, 0.0 ), complex ( -1.0, 0.0 ), complex ( 1.0, 0.0 ) }; a = c8mat_copy_new ( 4, 4, a_save ); return a; } //****************************************************************************80 double *rutis4_matrix ( int n ) //****************************************************************************80 // // Purpose: // // rutis4_matrix() returns the RUTIS4 matrix. // // Example: // // N = 6 // // 14 14 6 1 0 0 // 14 20 15 6 1 0 // 6 15 20 15 6 1 // 1 6 15 20 15 6 // 0 1 6 15 20 14 // 0 0 1 6 14 14 // // Properties: // // A is symmetric: A' = A. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is banded with a bandwidth of 7. // // A is persymmetric: a[I,J) = a[N+1-J,N+1-I). // // A is the cube of the scalar tridiagonal matrix whose diagonals // are ( 1, 2, 1 ). // // LAMBDa[I) = 64 * ( cos ( i * pi / ( 2 * ( n + 1 ) ) ) )**6 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 August 2008 // // Author: // // John Burkardt // // Reference: // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RUTIS4[N*N], the matrix. // { double *a; int i; a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { if ( 0 <= i - 3 ) { a[i+(i-3)*n] = 1.0; } if ( 0 <= i - 2 ) { a[i+(i-2)*n] = 6.0; } if ( 0 <= i - 1 ) { a[i+(i-1)*n] = 15.0; } a[i+i*n] = 20.0; if ( i + 1 <= n - 1 ) { a[i+(i+1)*n] = 15.0; } if ( i + 2 <= n - 1 ) { a[i+(i+2)*n] = 6.0; } if ( i + 3 <= n - 1 ) { a[i+(i+3)*n] = 1.0; } } a[0+0*n] = 14.0; a[0+1*n] = 14.0; a[1+0*n] = 14.0; a[n-1+(n-1)*n] = 14.0; a[n-2+(n-1)*n] = 14.0; a[n-1+(n-2)*n] = 14.0; return a; } //****************************************************************************80 double rutis4_determinant ( int n ) //****************************************************************************80 // // Purpose: // // rutis4_determinant() returns the determinant of the RUTIS4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RUTIS4_DETERMINANT, the determinant. // { double angle; double determ; int i; const double r8_pi = 3.141592653589793; determ = 1.0; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( 2 * ( n + 1 ) ); determ = determ * 64.0 * pow ( cos ( angle ), 6 ); } return determ; } //****************************************************************************80 double *rutis4_eigenvalues ( int n ) //****************************************************************************80 // // Purpose: // // rutis4_eigenvalues() returns the eigenvalues of the RUTIS4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RUTIS4_EIGENVALUES[N], the eigenvalues. // { double angle; int i; double *lambda; const double r8_pi = 3.141592653589793; lambda = new double[n]; for ( i = 0; i < n; i++ ) { angle = ( double ) ( i + 1 ) * r8_pi / ( double ) ( 2 * ( n + 1 ) ); lambda[i] = 64.0 * pow ( cos ( angle ), 6 ); } return lambda; } //****************************************************************************80 double *rutis4_inverse ( int n ) //****************************************************************************80 // // Purpose: // // rutis4_inverse() returns the inverse of the RUTIS4 matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double RUTIS4_INVERSE[N*N], the matrix. // { double *a; double *b; double *c; int i; int j; int k; c = oto_inverse ( n ); b = new double[n*n];