# include # include # include using namespace std; # include "stiff_ode.hpp" //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // r8vec_linspace_new() creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Input: // // int N, the number of entries in the vector. // // double A_FIRST, A_LAST, the first and last entries. // // Output: // // double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void stiff_deriv ( double t, double y[], double dydt[] ) //****************************************************************************80 // // stiff_deriv evaluates the right hand side of the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // double T, Y[1]: the time and solution value. // // Output: // // double DYDT[1]: the derivative value. // { double lambda; stiff_parameters ( NULL, NULL, NULL, NULL, &lambda, NULL, NULL, NULL ); dydt[0] = lambda * ( cos ( t ) - y[0] ); return; } //****************************************************************************80 void stiff_euler ( int n, double t[], double y[] ) //****************************************************************************80 // // Purpose: // // stiff_euler() uses the Euler method on the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // int N: the number of steps to take. // // Output: // // double T[N+1], Y[N+1]: the times and estimated solutions. // { double dt; int i; double lambda; double t0; double tstop; double y0; stiff_parameters ( NULL, NULL, NULL, NULL, &lambda, &t0, &y0, &tstop ); dt = ( tstop - t0 ) / ( double ) ( n ); t[0] = t0; y[0] = y0; for ( i = 0; i < n; i++ ) { t[i+1] = t[i] + dt; y[i+1] = y[i] + dt * lambda * ( cos ( t[i] ) - y[i] ); } return; } //****************************************************************************80 void stiff_euler_backward ( int n, double t[], double y[] ) //****************************************************************************80 // // Purpose: // // stiff_euler_backward() uses the backward Euler method on the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // int N: the number of steps to take. // // Output: // // double T[N+1], Y[N+1]: the times and estimated solutions. // { double dt; int i; double lambda; double t0; double tstop; double y0; stiff_parameters ( NULL, NULL, NULL, NULL, &lambda, &t0, &y0, &tstop ); dt = ( tstop - t0 ) / ( double ) ( n ); t[0] = t0; y[0] = y0; for ( i = 0; i < n; i++ ) { t[i+1] = t[i] + dt; y[i+1] = ( y[i] + dt * lambda * cos ( t[i+1] ) ) / ( 1.0 + lambda * dt ); } return; } //****************************************************************************80 double *stiff_exact ( int n, double t[] ) //****************************************************************************80 // // Purpose: // // stiff_exact() evaluates the exact solution of the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // int N: the number of values. // // double T[N]: the evaluation times. // // Output: // // double STIFF_EXACT[N]: the exact solution values. // { int i; double lambda; double *y; stiff_parameters ( NULL, NULL, NULL, NULL, &lambda, NULL, NULL, NULL ); y = new double[n]; for ( i = 0; i < n; i++ ) { y[i] = lambda * ( sin ( t[i] ) + lambda * cos ( t[i] ) - lambda * exp ( - lambda * t[i] ) ) / ( lambda * lambda + 1.0 ); } return y; } //****************************************************************************80 void stiff_midpoint ( int n, double t[], double y[] ) //****************************************************************************80 // // Purpose: // // stiff_midpoint() uses the midpoint method on the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // int N: the number of steps to take. // // Output: // // double T[N+1], Y[N+1]: the times and estimated solutions. // { double dt; int i; double lambda; double t0; double tstop; double y0; stiff_parameters ( NULL, NULL, NULL, NULL, &lambda, &t0, &y0, &tstop ); dt = ( tstop - t0 ) / ( double ) ( n ); t[0] = t0; y[0] = y0; for ( i = 0; i < n; i++ ) { t[i+1] = t[i] + dt; y[i+1] = ( y[i] + lambda * 0.5 * dt * ( cos ( t[i] ) - y[i] + cos ( t[i+1] ) ) ) / ( 1.0 + lambda * 0.5 * dt ); } return; } //****************************************************************************80 void stiff_parameters ( double *lambda_in, double *t0_in, double *y0_in, double *tstop_in, double *lambda_out, double *t0_out, double *y0_out, double *tstop_out ) //****************************************************************************80 // // Purpose: // // stiff_parameters() returns parameters of the stiff ODE. // // Discussion: // // y' = lambda * ( cos(t) - y ) // y(t0) = y0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2025 // // Author: // // John Burkardt // // Input: // // double *lambda_in, a parameter. // // double *t0_in, double *y0_in: the initial time and value. // // double *tstop_in: the final time. // // Output: // // double *lambda_out, a parameter. // // double *t0_out, double *y0_out: the initial time and value. // // double *tstop_out: the final time. // { static double lambda_default = 50.0; static double t0_default = 0.0; static double y0_default = 0.0; static double tstop_default = 1.0; // // New values, if supplied on input, overwrite the current values. // if ( lambda_in ) { lambda_default = *lambda_in; } if ( t0_in ) { t0_default = *t0_in; } if ( y0_in ) { y0_default = *y0_in; } if ( tstop_in ) { tstop_default = *tstop_in; } // // The current values are copied to the output. // if ( lambda_out ) { *lambda_out = lambda_default; } if ( t0_out ) { *t0_out = t0_default; } if ( y0_out ) { *y0_out = y0_default; } if ( tstop_out ) { *tstop_out = tstop_default; } return; }