# include # include using namespace std; # include "steinerberger.hpp" //****************************************************************************80 double harmonic_number ( int n ) //****************************************************************************80 // // Purpose: // // harmonic_number() computes the Nth harmonic number. // // Discussion: // // H(N) = Sum ( 1 <= I <= N ) 1 / I // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2025 // // Author: // // John Burkardt // // Input: // // integer N: the index of the harmonic number. // // Output: // // real VALUE: the value of the harmonic number. // { int i; double value; value = 0.0; for ( i = 1; i <= n; i++ ) { value = value + 1.0 / i; } return value; } //****************************************************************************80 double steinerberger_function ( int n, double x ) //****************************************************************************80 // // Purpose: // // steinerberger_function() evaluates the Steinerberger function. // // Discussion: // // f(n,x) = sum ( 1 <= k <= n ) abs ( sin ( pi * k * x ) ) / k // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2025 // // Author: // // John Burkardt // // Reference: // // John D Cook, // Pushing numerical integration software to its limits, // https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ // Posted 12 June 2023. // // John D Cook, // Plotting a function with lots of local minima, // https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ // Posted 12 June 2023. // // Stefan Steinerberger, // A amusing sequence of functions, // Mathematics Magazine, // Volume 91, Number 4, October 2018, pages 262-266. // // Input: // // integer N: the index of the function. // // real X: the evaluation point. // // Output: // // real VALUE: the function value. // { int k; static double r8_pi = 3.141592653589793; double value; value = 0.0; for ( k = 1; k <= n; k++ ) { value = value + fabs ( sin ( k * r8_pi * x ) ) / k; } return value; } //****************************************************************************80 double steinerberger_integral01 ( int n ) //****************************************************************************80 // // Purpose: // // steinerberger_integral01() returns the Steinerberger integral from 0 to 1. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2025 // // Author: // // John Burkardt // // Reference: // // John D Cook, // Pushing numerical integration software to its limits, // https://www.johndcook.com/blog/2023/06/12/stressing-numerical-integration/ // Posted 12 June 2023. // // John D Cook, // Plotting a function with lots of local minima, // https://www.johndcook.com/blog/2023/06/12/lots-of-local-minima/ // Posted 12 June 2023. // // Stefan Steinerberger, // A amusing sequence of functions, // Mathematics Magazine, // Volume 91, Number 4, October 2018, pages 262-266. // // Input: // // integer N: the index of the function. // // Output: // // real VALUE: the value of the integral from 0 to 1. // { static double r8_pi = 3.141592653589793; double value; value = 2.0 * harmonic_number ( n ) / r8_pi; return value; }