# include "sandia_rules.hpp" # include "sgmga.hpp" # include # include # include # include int main ( ); void sgmga_weight_tests ( ); void sgmga_weight_test ( int dim_num, double importance[], double level_weight[], int level_max_min, int level_max_max, int rule[], int growth[], int np[], double p[], void ( *gw_compute_points[] ) ( int order, int np, double p[], double w[] ), void ( *gw_compute_weights[] ) ( int order, int np, double p[], double w[] ), double tol ); typedef void ( *GWPointer ) ( int order, int np, double p[], double w[] ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SGMGA_WEIGHT_PRB. // // Discussion: // // SGMGA_WEIGHT_PRB tests the SGMGA_WEIGHT function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 November 2009 // // Author: // // John Burkardt // { webbur::timestamp ( ); std::cout << "\n"; std::cout << "SGMGA_WEIGHT_PRB\n"; std::cout << " C++ version\n"; std::cout << " Test the SGMGA_WEIGHT function.\n"; // // Generate the weights for sparse grid rules. // sgmga_weight_tests ( ); // // That's all. // std::cout << "\n"; std::cout << "SGMGA_WEIGHT_PRB\n"; std::cout << " Normal end of execution.\n"; std::cout << "\n"; webbur::timestamp ( ); return 0; } //****************************************************************************80 void sgmga_weight_tests ( ) //****************************************************************************80 // // Purpose: // // SGMGA_WEIGHT_TESTS calls SGMGA_WEIGHT_TEST. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 June 2010 // // Author: // // John Burkardt // // Local Parameters: // // Local, double TOL, a tolerance for point equality. // A value of sqrt ( eps ) is reasonable, and will allow the code to // consolidate points which are equal, or very nearly so. A value of // -1.0, on the other hand, will force the code to use every point, // regardless of duplication. // { int dim; int dim_num; int *growth; GWPointer *gw_compute_points; GWPointer *gw_compute_weights; double *importance; int level_max_max; int level_max_min; double *level_weight; int *np; int np_sum; int *order_1d; int order_nd; double *p; int *rule; double tol; std::cout << "\n"; std::cout << "SGMGA_WEIGHT_TESTS\n"; std::cout << " Call SGMGA_WEIGHT_TEST with various arguments.\n"; // // Set the point equality tolerance. // tol = std::sqrt ( webbur::r8_epsilon ( ) ); std::cout << "\n"; std::cout << " All tests will use a point equality tolerance of " << tol << "\n"; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = 1.0; } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = 1.0; } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; rule[2] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; growth[2] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; rule[2] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; growth[2] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 3; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::patterson_lookup_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::patterson_lookup_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 4; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::legendre_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 7; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::laguerre_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::laguerre_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 8; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 1; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 1.5; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::gen_laguerre_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::gen_laguerre_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 2; rule[1] = 9; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 2; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 0.5; p[1] = 1.5; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::fejer2_compute_points_np; gw_compute_points[1] = webbur::jacobi_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::fejer2_compute_weights_np; gw_compute_weights[1] = webbur::jacobi_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 6; rule[1] = 10; growth = new int[dim_num]; growth[0] = 3; growth[1] = 4; np = new int[dim_num]; np[0] = 1; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; p[0] = 2.0; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::gen_hermite_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::gen_hermite_compute_weights_np; gw_compute_weights[1] = webbur::legendre_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; // // LEVEL_MAX 0 to 5 // dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 5; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; // // Dimension 3 // dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 4; rule[2] = 5; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; growth[2] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_points[2] = webbur::hermite_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::legendre_compute_weights_np; gw_compute_weights[2] = webbur::hermite_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; // // Repeat, treating rules #2 and #3 as Golub Welsch rules. // dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 2; rule = new int[dim_num]; rule[0] = 1; rule[1] = 11; rule[2] = 11; growth = new int[dim_num]; growth[0] = 6; growth[1] = 3; growth[2] = 3; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::legendre_compute_points_np; gw_compute_points[2] = webbur::hermite_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::legendre_compute_weights_np; gw_compute_weights[2] = webbur::hermite_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; // // Try a case with a dimension of "0 importance". // dim_num = 3; importance = new double[dim_num]; importance[0] = 1.0; importance[1] = 0.0; importance[2] = 1.0; level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 3; rule = new int[dim_num]; rule[0] = 1; rule[1] = 1; rule[2] = 1; growth = new int[dim_num]; growth[0] = 6; growth[1] = 6; growth[2] = 6; np = new int[dim_num]; np[0] = 0; np[1] = 0; np[2] = 0; np_sum = webbur::i4vec_sum ( dim_num, np ); p = new double[np_sum]; gw_compute_points = new GWPointer[dim_num]; gw_compute_points[0] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[1] = webbur::clenshaw_curtis_compute_points_np; gw_compute_points[2] = webbur::clenshaw_curtis_compute_points_np; gw_compute_weights = new GWPointer[dim_num]; gw_compute_weights[0] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[1] = webbur::clenshaw_curtis_compute_weights_np; gw_compute_weights[2] = webbur::clenshaw_curtis_compute_weights_np; sgmga_weight_test ( dim_num, importance, level_weight, level_max_min, level_max_max, rule, growth, np, p, gw_compute_points, gw_compute_weights, tol ); delete [] growth; delete [] gw_compute_points; delete [] gw_compute_weights; delete [] importance; delete [] level_weight; delete [] np; delete [] p; delete [] rule; return; } //***************************************************************************80 void sgmga_weight_test ( int dim_num, double importance[], double level_weight[], int level_max_min, int level_max_max, int rule[], int growth[], int np[], double p[], void ( *gw_compute_points[] ) ( int order, int np, double p[], double w[] ), void ( *gw_compute_weights[] ) ( int order, int np, double p[], double w[] ), double tol ) //***************************************************************************80 // // Purpose: // // SGMGA_WEIGHT_TEST checks the sum of the quadrature weights. // // Discussion: // // If any component rule is of Golub-Welsch type, we cannot compute // the exact weight sum, which we set, instead, to zero. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 June 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, double IMPORTANCE[DIM_NUM], the anisotropic importance. // // Input, double LEVEL_WEIGHT[DIM_NUM], the anisotropic weights. // // Input, int LEVEL_MAX_MIN, LEVEL_MAX_MAX, the minimum and // maximum values of LEVEL_MAX. // // Input, int RULE[DIM_NUM], the rule in each dimension. // 1, "CC", Clenshaw Curtis, Closed Fully Nested. // 2, "F2", Fejer Type 2, Open Fully Nested. // 3, "GP", Gauss Patterson, Open Fully Nested. // 4, "GL", Gauss Legendre, Open Weakly Nested. // 5, "GH", Gauss Hermite, Open Weakly Nested. // 6, "GGH", Generalized Gauss Hermite, Open Weakly Nested. // 7, "LG", Gauss Laguerre, Open Non Nested. // 8, "GLG", Generalized Gauss Laguerre, Open Non Nested. // 9, "GJ", Gauss Jacobi, Open Non Nested. // 10, "HGK", Hermite Genz-Keister, Open Fully Nested. // 11, "UO", User supplied Open, presumably Non Nested. // 12, "UC", User supplied Closed, presumably Non Nested. // // Input, int GROWTH[DIM_NUM], the desired growth in each dimension. // 0, "DF", default growth associated with this quadrature rule; // 1, "SL", slow linear, L+1; // 2 "SO", slow linear odd, O=1+2((L+1)/2) // 3, "ML", moderate linear, 2L+1; // 4, "SE", slow exponential; // 5, "ME", moderate exponential; // 6, "FE", full exponential. // // Input, int NP[RULE_NUM], the number of parameters used by each rule. // // Input, double P[sum(NP[*])], the parameters needed by each rule. // // Input, void ( *GW_COMPUTE_POINTS[] ) ( int order, int np, double p[], double x[] ), // an array of pointers to functions which return the 1D quadrature points // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, void ( *GW_COMPUTE_WEIGHTS[] ) ( int order, int np, double p[], double w[] ), // an array of pointers to functions which return the 1D quadrature weights // associated with each spatial dimension for which a Golub Welsch rule // is used. // // Input, double TOL, a tolerance for point equality. // { double alpha; double arg1; double arg2; double arg3; double arg4; double beta; int dim; int i; int level_max; int p_index; double pi = 3.141592653589793; int point; int point_num; int point_total_num; int *sparse_unique_index; double *sparse_weight; double value1; double value2; double weight_sum; double weight_sum_error; double weight_sum_exact; std::cout << "\n"; std::cout << "SGMGA_WEIGHT_TEST\n"; std::cout << " Compute the weights of a sparse grid.\n"; std::cout << "\n"; std::cout << " Each sparse grid is of spatial dimension DIM_NUM,\n"; std::cout << " and is made up of product grids of levels up to LEVEL_MAX.\n"; std::cout << "\n"; std::cout << " IMPORTANCE: "; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(14) << importance[dim]; } std::cout << "\n"; std::cout << " LEVEL_WEIGHT:"; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(14) << level_weight[dim]; } std::cout << "\n"; std::cout << "\n"; std::cout << " Dimension Rule Growth rate Parameters\n"; std::cout << "\n"; p_index = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( rule[dim] == 1 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 2 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 3 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 4 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 5 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 6 ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << "\n"; } else if ( rule[dim] == 7 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 8 ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << "\n"; } else if ( rule[dim] == 9 ) { alpha = p[p_index]; p_index = p_index + 1; beta = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << " " << std::setw(14) << alpha << " " << std::setw(14) << beta << "\n"; } else if ( rule[dim] == 10 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim] << "\n"; } else if ( rule[dim] == 11 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim]; for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(14) << alpha; } std::cout << "\n"; } else if ( rule[dim] == 12 ) { std::cout << " " << std::setw(8) << dim << " " << std::setw(8) << rule[dim] << " " << std::setw(8) << growth[dim]; for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; std::cout << " " << std::setw(14) << alpha; } std::cout << "\n"; } else { std::cerr << "\n"; std::cerr << "SGMGA_WEIGHT_TEST - Fatal error!\n"; std::cerr << " Unexpected value of RULE = " << rule[dim] << "\n"; std::exit ( 1 ); } } weight_sum_exact = 1.0; p_index = 0; for ( dim = 0; dim < dim_num; dim++ ) { if ( rule[dim] == 1 ) { weight_sum_exact = weight_sum_exact * 2.0; } else if ( rule[dim] == 2 ) { weight_sum_exact = weight_sum_exact * 2.0; } else if ( rule[dim] == 3 ) { weight_sum_exact = weight_sum_exact * 2.0; } else if ( rule[dim] == 4 ) { weight_sum_exact = weight_sum_exact * 2.0; } else if ( rule[dim] == 5 ) { weight_sum_exact = weight_sum_exact * std::sqrt ( pi ); } else if ( rule[dim] == 6 ) { alpha = p[p_index]; p_index = p_index + 1; weight_sum_exact = weight_sum_exact * webbur::r8_gamma ( 0.5 * ( alpha + 1.0 ) ); } else if ( rule[dim] == 7 ) { weight_sum_exact = weight_sum_exact * 1.0; } else if ( rule[dim] == 8 ) { alpha = p[p_index]; p_index = p_index + 1; weight_sum_exact = weight_sum_exact * webbur::r8_gamma ( alpha + 1.0 ); } else if ( rule[dim] == 9 ) { alpha = p[p_index]; p_index = p_index + 1; beta = p[p_index]; p_index = p_index + 1; arg1 = - alpha; arg2 = 1.0; arg3 = beta + 2.0; arg4 = - 1.0; value1 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); arg1 = - beta; arg2 = 1.0; arg3 = alpha + 2.0; arg4 = - 1.0; value2 = webbur::r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); weight_sum_exact = weight_sum_exact * ( value1 / ( beta + 1.0 ) + value2 / ( alpha + 1.0 ) ); } else if ( rule[dim] == 10 ) { weight_sum_exact = weight_sum_exact * std::sqrt ( pi ); } else if ( rule[dim] == 11 ) { for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; } weight_sum_exact = 0.0; } else if ( rule[dim] == 12 ) { for ( i = 0; i < np[dim]; i++ ) { alpha = p[p_index]; p_index = p_index + 1; } weight_sum_exact = 0.0; } else { std::cerr << "\n"; std::cerr << "SGMGA_WEIGHT_TEST - Fatal error!\n"; std::cerr << " Unexpected value of RULE[" << dim << "] = " << rule[dim] << ".\n"; std::exit ( 1 ); } } if ( weight_sum_exact == 0.0 ) { std::cout << "\n"; std::cout << " Because this rule includes Golub-Welsch components,\n"; std::cout << " we do not try to compute the exact weight sum.\n"; } else { std::cout << "\n"; std::cout << " As a simple test, sum these weights.\n"; std::cout << " They should sum to exactly " << weight_sum_exact << "\n"; } std::cout << "\n"; std::cout << " Level Weight sum Expected sum Difference\n"; std::cout << "\n"; for ( level_max = level_max_min; level_max <= level_max_max; level_max++ ) { point_total_num = webbur::sgmga_size_total ( dim_num, level_weight, level_max, rule, growth ); point_num = webbur::sgmga_size ( dim_num, level_weight, level_max, rule, np, p, gw_compute_points, tol, growth ); sparse_unique_index = new int[point_total_num]; webbur::sgmga_unique_index ( dim_num, level_weight, level_max, rule, np, p, gw_compute_points, tol, point_num, point_total_num, growth, sparse_unique_index ); sparse_weight = new double[point_num]; webbur::sgmga_weight ( dim_num, level_weight, level_max, rule, np, p, gw_compute_weights, point_num, point_total_num, sparse_unique_index, growth, sparse_weight ); weight_sum = webbur::r8vec_sum ( point_num, sparse_weight ); weight_sum_error = webbur::r8_abs ( weight_sum - weight_sum_exact ); std::cout << " " << std::setw(8) << level_max << " " << std::setw(14) << weight_sum << " " << std::setw(14) << weight_sum_exact << " " << std::setw(14) << weight_sum_error << "\n"; delete [] sparse_unique_index; delete [] sparse_weight; } return; }