# include "sandia_rules.hpp" # include "sgmga.hpp" # include # include # include # include int main ( ); void sgmga_vcn_coef_tests ( ); void sgmga_vcn_coef_test ( int dim_num, double importance[], double level_weight[], int level_max_min, int level_max_max ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SGMGA_VCN_COEF_PRB. // // Discussion: // // SGMGA_VCN_COEF_PRB tests the SGMGA_VCN_COEF function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 September 2009 // // Author: // // John Burkardt // { webbur::timestamp ( ); std::cout << "\n"; std::cout << "SGMGA_VCN_COEF_PRB\n"; std::cout << " C++ version\n"; std::cout << " Test the SGMGA_VCN_COEF function.\n"; // // Compute examples of the combinatorial coefficent. // sgmga_vcn_coef_tests ( ); // // That's all. // std::cout << "\n"; std::cout << "SGMGA_VCN_COEF_PRB\n"; std::cout << " Normal end of execution.\n"; std::cout << "\n"; webbur::timestamp ( ); return 0; } //****************************************************************************80 void sgmga_vcn_coef_tests ( ) //****************************************************************************80 // // Purpose: // // SGMGA_VCN_COEF_TESTS calls SGMGA_VCN_COEF_TEST. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 November 2009 // // Author: // // John Burkardt // { int dim; int dim_num; double *importance; int level_max; int level_max_max; int level_max_min; double *level_weight; std::cout << "\n"; std::cout << "SGMGA_VCN_COEF_TESTS\n"; std::cout << " calls SGMGA_VCN_COEF_TEST.\n"; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = 1.0; } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 4; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; dim_num = 2; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 4; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = 1.0; } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 4; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; dim_num = 3; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 4; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; dim_num = 4; importance = new double[dim_num]; for ( dim = 0; dim < dim_num; dim++ ) { importance[dim] = ( double ) ( dim + 1 ); } level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 3; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; // // Try a case with a dimension of "0 importance". // dim_num = 3; importance = new double[dim_num]; importance[0] = 1.0; importance[1] = 0.0; importance[2] = 1.0; level_weight = new double[dim_num]; webbur::sgmga_importance_to_aniso ( dim_num, importance, level_weight ); level_max_min = 0; level_max_max = 3; sgmga_vcn_coef_test ( dim_num, importance, level_weight, level_max_min, level_max_max ); delete [] importance; delete [] level_weight; return; } //****************************************************************************80 void sgmga_vcn_coef_test ( int dim_num, double importance[], double level_weight[], int level_max_min, int level_max_max ) //****************************************************************************80 // // Purpose: // // SGMGA_VCN_COEF_TEST tests SGMGA_VCN_COEF. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 May 2010 // // Author: // // John Burkardt // { double coef1; double coef1_sum; double coef2; double coef2_sum; int dim; int i; int *level_1d; int *level_1d_max; int *level_1d_min; int level_max; double level_weight_min_pos; double level_weight_norm; bool more_grids; double q; double q_max; double q_min; level_1d = new int[dim_num]; level_1d_max = new int[dim_num]; level_1d_min = new int[dim_num]; std::cout << "\n"; std::cout << "SGMGA_VCN_COEF_TEST\n"; std::cout << " For anisotropic problems, a \"combinatorial coefficent\"\n"; std::cout << " must be computed for each component product grid.\n"; std::cout << " SGMGA_VCN_COEF_NAIVE does this in a simple, inefficient way.\n"; std::cout << " SGMGA_VCN_COEF tries to be more efficient.\n"; std::cout << " Here, we simply compare COEF1 and COEF2, the same\n"; std::cout << " coefficient computed by the naive and efficient ways.\n"; std::cout << "\n"; std::cout << " IMPORTANCE:\n"; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(14) << importance[dim]; } std::cout << "\n"; std::cout << " LEVEL_WEIGHT:\n"; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(14) << level_weight[dim]; } std::cout << "\n"; for ( level_max = level_max_min; level_max <= level_max_max; level_max++ ) { i = 0; coef1_sum = 0.0; coef2_sum = 0.0; // // Initialization. // level_weight_min_pos = webbur::r8vec_min_pos ( dim_num, level_weight ); q_min = ( double ) ( level_max ) * level_weight_min_pos - webbur::r8vec_sum ( dim_num, level_weight ); q_max = ( double ) ( level_max ) * level_weight_min_pos; for ( dim = 0; dim < dim_num; dim++ ) { level_1d_min[dim] = 0; } for ( dim = 0; dim < dim_num; dim++ ) { if ( 0.0 < level_weight[dim] ) { level_1d_max[dim] = webbur::r8_floor ( q_max / level_weight[dim] ) + 1; if ( q_max <= ( level_1d_max[dim] - 1 ) * level_weight[dim] ) { level_1d_max[dim] = level_1d_max[dim] - 1; } } else { level_1d_max[dim] = 0; } } more_grids = false; std::cout << "\n"; std::cout << " I Q Coef1 Coef2 X\n"; std::cout << " MIN" << " " << std::setw(14) << q_min << " "; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(2) << level_1d_min[dim]; } std::cout << "\n"; // // Seek all vectors LEVEL_1D which satisfy the constraint: // // LEVEL_MAX * LEVEL_WEIGHT_MIN_POS - sum ( LEVEL_WEIGHT ) // < sum ( 0 <= I < DIM_NUM ) LEVEL_WEIGHT[I] * LEVEL_1D[I] // <= LEVEL_MAX * LEVEL_WEIGHT_MIN_POS. // for ( ; ; ) { webbur::sgmga_vcn_ordered_naive ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max, &more_grids ); if ( !more_grids ) { break; } // // Compute the combinatorial coefficient. // coef1 = webbur::sgmga_vcn_coef_naive ( dim_num, level_weight, level_1d_max, level_1d, q_min, q_max ); coef2 = webbur::sgmga_vcn_coef ( dim_num, level_weight, level_1d, q_max ); i = i + 1; q = 0.0; for ( dim = 0; dim < dim_num; dim++ ) { q = q + level_weight[dim] * ( double ) level_1d[dim]; } coef1_sum = coef1_sum + coef1; coef2_sum = coef2_sum + coef2; std::cout << " " << std::setw(4) << i << " " << std::setw(14) << q << " " << std::setw(10) << coef1 << " " << std::setw(10) << coef2; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(2) << level_1d[dim]; } std::cout << "\n"; } std::cout << " MAX" << " " << std::setw(14) << q_max << " "; for ( dim = 0; dim < dim_num; dim++ ) { std::cout << " " << std::setw(2) << level_1d_max[dim]; } std::cout << "\n"; std::cout << " SUM " << " " << std::setw(10) << coef1_sum << " " << std::setw(10) << coef2_sum << "\n"; } delete [] level_1d; delete [] level_1d_max; delete [] level_1d_min; return; }