# include # include # include # include using namespace std; int main ( int argc, char *argv[] ); int prime_default ( int n ); int prime_static ( int n ); int prime_dynamic ( int n ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SCHEDULE_OPENMP. // // Discussion: // // This program demonstrates the difference between default, // static and dynamic scheduling for a loop parallelized in OpenMP. // // The purpose of scheduling is to deal with loops in which there is // known or suspected imbalance in the work load. In this example, // if the work is divided in the default manner between two threads, // the second thread has 3 times the work of the first. // // Both static and dynamic scheduling, if used, even out the work // so that both threads have about the same load. This could be // expected to decrease the run time of the loop by about 1/3. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2010 // // Author: // // John Burkardt // { int n; int n_factor; int n_hi; int n_lo; int primes; double time1; double time2; double time3; cout << "\n"; cout << "SCHEDULE_OPENMP\n"; cout << " C++/OpenMP version\n"; cout << " Count the primes from 1 to N.\n"; cout << " This is an unbalanced work load, particular for two threads.\n"; cout << " Demonstrate default, static and dynamic scheduling.\n"; cout << "\n"; cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n"; cout << " Number of threads = " << omp_get_max_threads ( ) << "\n"; n_lo = 1; n_hi = 131072; n_factor = 2; cout << "\n"; cout << " Default Static Dynamic\n"; cout << " N Pi(N) Time Time Time\n"; cout << "\n"; n = n_lo; while ( n <= n_hi ) { time1 = omp_get_wtime ( ); primes = prime_default ( n ); time1 = omp_get_wtime ( ) - time1; time2 = omp_get_wtime ( ); primes = prime_static ( n ); time2 = omp_get_wtime ( ) - time2; time3 = omp_get_wtime ( ); primes = prime_dynamic ( n ); time3 = omp_get_wtime ( ) - time3; cout << " " << setw(8) << n << " " << setw(8) << primes << " " << setw(12) << time1 << " " << setw(12) << time2 << " " << setw(12) << time3 << "\n"; n = n * n_factor; } // // Terminate. // cout << "\n"; cout << "SCHEDULE_OPENMP\n"; cout << " Normal end of execution.\n"; return 0; } //****************************************************************************80 int prime_default ( int n ) //****************************************************************************80 // // Purpose: // // PRIME_DEFAULT counts primes, using default scheduling. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the maximum number to check. // // Output, int PRIME_DEFAULT, the number of prime numbers up to N. // { int i; int j; int prime; int total = 0; # pragma omp parallel \ shared ( n ) \ private ( i, j, prime ) # pragma omp for reduction ( + : total ) for ( i = 2; i <= n; i++ ) { prime = 1; for ( j = 2; j < i; j++ ) { if ( i % j == 0 ) { prime = 0; break; } } total = total + prime; } return total; } //****************************************************************************80 int prime_static ( int n ) //****************************************************************************80 // // Purpose: // // PRIME_STATIC counts primes using static scheduling. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the maximum number to check. // // Output, int PRIME_STATIC, the number of prime numbers up to N. // { int i; int j; int prime; int total = 0; # pragma omp parallel \ shared ( n ) \ private ( i, j, prime ) # pragma omp for reduction ( + : total ) schedule ( static, 100 ) for ( i = 2; i <= n; i++ ) { prime = 1; for ( j = 2; j < i; j++ ) { if ( i % j == 0 ) { prime = 0; break; } } total = total + prime; } return total; } //****************************************************************************80 int prime_dynamic ( int n ) //****************************************************************************80 // // Purpose: // // PRIME_DYNAMIC counts primes using dynamic scheduling. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the maximum number to check. // // Output, int PRIME_DYNAMIC, the number of prime numbers up to N. // { int i; int j; int prime; int total = 0; # pragma omp parallel \ shared ( n ) \ private ( i, j, prime ) # pragma omp for reduction ( + : total ) schedule ( dynamic, 100 ) for ( i = 2; i <= n; i++ ) { prime = 1; for ( j = 2; j < i; j++ ) { if ( i % j == 0 ) { prime = 0; break; } } total = total + prime; } return total; }