# include # include # include # include # include using namespace std; # include "r8to.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8to_dif2 ( int n ) //****************************************************************************80 // // Purpose: // // R8TO_DIF2 sets the second difference as an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, double R8TO_DIF2[2*N-1], the R8TO matrix. // { double *a; int i; a = new double[2*n-1]; for ( i = 0; i < 2 * n - 1; i++ ) { a[i] = 0.0; } a[0] = 2.0; a[1] = -1.0; a[n] = -1.0; return a; } //****************************************************************************80 double *r8to_indicator ( int n ) //****************************************************************************80 // // Purpose: // // R8TO_INDICATOR sets up an R8TO indicator matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Output, double R8TO_INDICATOR[2*N-1], the R8TO matrix. // { double *a; int fac; int i; int j; int k; a = new double[2*n-1]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); i = 1; k = 0; for ( j = 1; j <= n; j++ ) { a[k] = ( double ) ( fac * i + j ); k = k + 1; } j = 1; for ( i = 2; i <= n; i++ ) { a[k] = ( double ) ( fac * i + j ); k = k + 1; } return a; } //****************************************************************************80 double *r8to_mtv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8TO_MTV multiplies a vector times an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[2*N-1], the R8TO matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8TO_MTV[N], the product A' * X. // { double *b; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j <= i; j++ ) { b[i] = b[i] + a[i-j] * x[j]; } for ( j = i + 1; j < n; j++ ) { b[i] = b[i] + a[n+j-i-1] * x[j]; } } return b; } //****************************************************************************80 double *r8to_mv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8TO_MV multiplies an R8TO matrix times a vector. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 November 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[2*N-1], the R8TO matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8TO_MV[N], the product A * x. // { double *b; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { b[i] = b[i] + a[n+i-j-1] * x[j]; } for ( j = i; j < n; j++ ) { b[i] = b[i] + a[j-i] * x[j]; } } return b; } //****************************************************************************80 void r8to_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8TO_PRINT prints an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[2*N-1], the R8TO matrix. // // Input, string TITLE, a title. // { r8to_print_some ( n, a, 1, 1, n, n, title ); return; } //****************************************************************************80 void r8to_print_some ( int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8TO_PRINT_SOME prints some of an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[2*N-1], the R8TO matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, n ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(4) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { if ( i <= j ) { cout << setw(12) << a[j-i] << " "; } else { cout << setw(12) << a[n+i-j-1] << " "; } } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 double *r8to_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8TO_RANDOM randomizes an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8TO_RANDOM[2*N-1], the R8TO matrix. // { double *a; a = r8vec_uniform_01_new ( 2 * n - 1, seed ); return a; } //****************************************************************************80 double *r8to_sl ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8TO_SL solves A*x=b, where A is an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 September 2015 // // Author: // // John Burkardt. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[2*N-1], the R8TO matrix. // // Input, double B[N] the right hand side vector. // // Output, double R8TO_SL[N], the solution vector. X and B may share the // same storage. // { double *c1; double *c2; int i; int nsub; double r1; double r2; double r3; double r5; double r6; double *x; if ( n < 1 ) { return NULL; } x = new double[n]; // // Solve the system with the principal minor of order 1. // r1 = a[0]; x[0] = b[0] / r1; if ( n == 1 ) { return x; } c1 = new double[n-1]; c2 = new double[n-1]; // // Recurrent process for solving the system with the Toeplitz matrix. // for ( nsub = 2; nsub <= n; nsub++ ) { // // Compute multiples of the first and last columns of the inverse of // the principal minor of order NSUB. // r5 = a[n+nsub-2]; r6 = a[nsub-1]; if ( 2 < nsub ) { c1[nsub-2] = r2; for ( i = 1; i <= nsub-2; i++ ) { r5 = r5 + a[n+i-1] * c1[nsub-i-1]; r6 = r6 + a[i] * c2[i-1]; } } r2 = - r5 / r1; r3 = - r6 / r1; r1 = r1 + r5 * r3; if ( 2 < nsub ) { r6 = c2[0]; c2[nsub-2] = 0.0; for ( i = 2; i <= nsub-1; i++ ) { r5 = c2[i-1]; c2[i-1] = c1[i-1] * r3 + r6; c1[i-1] = c1[i-1] + r6 * r2; r6 = r5; } } c2[0] = r3; // // Compute the solution of the system with the principal minor of order NSUB. // r5 = 0.0; for ( i = nsub - 1; 1 <= i; i-- ) { r5 = r5 + a[n+nsub-i-1] * x[i-1]; } r6 = ( b[nsub-1] - r5 ) / r1; for ( i = 0; i < nsub-1; i++ ) { x[i] = x[i] + c2[i] * r6; } x[nsub-1] = r6; } delete [] c1; delete [] c2; return x; } //****************************************************************************80 double *r8to_slt ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8TO_SLT solves A'*x=b, where A is an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 September 2015 // // Author: // // John Burkardt. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[2*N-1], the R8TO matrix. // // Input, double B[N] the right hand side vector. // // Output, double R8TO_SLT[N], the solution vector. X and B may share the // same storage. // { double *c1; double *c2; int i; int nsub; double r1; double r2; double r3; double r5; double r6; double *x; if ( n < 1 ) { return NULL; } x = new double[n]; // // Solve the system with the principal minor of order 1. // r1 = a[0]; x[0] = b[0] / r1; if ( n == 1 ) { return x; } c1 = new double[n-1]; c2 = new double[n-1]; // // Recurrent process for solving the system with the Toeplitz matrix. // for ( nsub = 2; nsub <= n; nsub++ ) { // // Compute multiples of the first and last columns of the inverse of // the principal minor of order NSUB. // r5 = a[nsub-1]; r6 = a[n+nsub-2]; if ( 2 < nsub ) { c1[nsub-2] = r2; for ( i = 1; i <= nsub-2; i++ ) { r5 = r5 + a[i] * c1[nsub-i-1]; r6 = r6 + a[n+i-1] * c2[i-1]; } } r2 = - r5 / r1; r3 = - r6 / r1; r1 = r1 + r5 * r3; if ( 2 < nsub ) { r6 = c2[0]; c2[nsub-2] = 0.0; for ( i = 2; i <= nsub-1; i++ ) { r5 = c2[i-1]; c2[i-1] = c1[i-1] * r3 + r6; c1[i-1] = c1[i-1] + r6 * r2; r6 = r5; } } c2[0] = r3; // // Compute the solution of the system with the principal minor of order NSUB. // r5 = 0.0; for ( i = nsub-1; 1 <= i; i-- ) { r5 = r5 + a[nsub-i] * x[i-1]; } r6 = ( b[nsub-1] - r5 ) / r1; for ( i = 0; i < nsub-1; i++ ) { x[i] = x[i] + c2[i] * r6; } x[nsub-1] = r6; } delete [] c1; delete [] c2; return x; } //****************************************************************************80 double *r8to_to_r8ge ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8TO_TO_R8GE copies an R8TO matrix to an R8GE matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[2*N-1], the R8TO matrix. // // Output, double R8TO_TO_R8GE[N*N], the R8GE matrix. // { double *b; int i; int j; b = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < i; j++ ) { b[i+j*n] = a[n+i-j-1]; } for ( j = i; j < n; j++ ) { b[i+j*n] = a[j-i]; } } return b; } //****************************************************************************80 double *r8to_zeros ( int n ) //****************************************************************************80 // // Purpose: // // R8TO_ZEROS zeros an R8TO matrix. // // Discussion: // // The R8TO storage format is used for a Toeplitz matrix, which is constant // along diagonals. Thus, in an N by N Toeplitz matrix, there are at most // 2*N-1 distinct entries. The format stores the N elements of the first // row, followed by the N-1 elements of the first column (skipping the // entry in the first row). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of rows and columns of the matrix. // N must be positive. // // Output, double R8TO_ZERO[2*N-1], the R8TO matrix. // { double *a; a = r8vec_zeros_new ( 2 * n - 1 ); return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_print_some ( int n, double a[], int i_lo, int i_hi, string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_SOME prints "some" of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 October 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[N], the vector to be printed. // // Input, integer I_LO, I_HI, the first and last indices to print. // The routine expects 1 <= I_LO <= I_HI <= N. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = i4_max ( 1, i_lo ); i <= i4_min ( n, i_hi ); i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i-1] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; }