# include # include # include # include # include # include using namespace std; # include "r8st.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8ncf_print ( int m, int n, int nz_num, int rowcol[], double a[], string title ) //****************************************************************************80 // // Purpose: // // R8NCF_PRINT prints an R8NCF matrix. // // Discussion: // // The R8NCF storage format stores NZ_NUM, the number of nonzeros, // a real array containing the nonzero values, a 2 by NZ_NUM integer // array storing the row and column of each nonzero entry. // // The R8NCF format is used by NSPCG. NSPCG requires that the information // for the diagonal entries of the matrix must come first. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROWCOL[2*NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, string TITLE, a title. // { r8ncf_print_some ( m, n, nz_num, rowcol, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ncf_print_some ( int m, int n, int nz_num, int rowcol[], double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8NCF_PRINT_SOME prints some of an R8NCF matrix. // // Discussion: // // The R8NCF storage format stores NZ_NUM, the number of nonzeros, // a real array containing the nonzero values, a 2 by NZ_NUM integer // array storing the row and column of each nonzero entry. // // The R8NCF format is used by NSPCG. NSPCG requires that the information // for the diagonal entries of the matrix must come first. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROWCOL[2*NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; int k; bool nonzero; double temp[INCX]; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // nonzero = false; for ( j2 = 1; j2 <= INCX; j2++ ) { temp[j2-1] = 0.0; } for ( k = 1; k <= nz_num; k++ ) { if ( i == rowcol[0+(k-1)*2] && j2lo <= rowcol[1+(k-1)*2] && rowcol[1+(k-1)*2] <= j2hi ) { j2 = rowcol[1+(k-1)*2] - j2lo + 1; if ( a[k-1] == 0.0 ) { continue; } nonzero = true; temp[j2-1] = a[k-1]; } } if ( nonzero ) { cout << setw(6) << i; for ( j2 = 1; j2 <= inc; j2++ ) { cout << setw(12) << temp[j2-1] << " "; } cout << "\n"; } } } cout << "\n"; return; # undef INCX } //****************************************************************************80 void r8st_cg ( int n, int nz_num, int row[], int col[], double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // r8st_CG uses the conjugate gradient method on an r8st linear system. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // For the conjugate gradient method to be applicable, the matrix A must // be a positive definite symmetric matrix. // // The method is designed to reach the solution to the linear system // A * x = b // after N computational steps. However, roundoff may introduce // unacceptably large errors for some problems. In such a case, // calling the routine a second time, using the current solution estimate // as the new starting guess, should result in improved results. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8st_mv ( n, n, nz_num, row, col, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP = A*P. // delete [] ap; ap = r8st_mv ( n, n, nz_num, row, col, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); if ( pap == 0.0 ) { delete [] ap; break; } pr = r8vec_dot_product ( n, p, r ); alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = -rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return; } //****************************************************************************80 bool r8st_check ( int m, int n, int nz_num, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // r8st_CHECK checks that an r8st matrix data structure is properly sorted. // // Discussion: // // This routine assumes that the data structure has been sorted, // so that the entries of ROW are ascending sorted, and that the // entries of COL are ascending sorted, within the group of entries // that have a common value of ROW. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // ("nonsymmetric SLAP triad"), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of // the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and // column indices of the nonzero elements. // // Output, bool r8st_CHECK, is TRUE if the matrix is properly defined. // { bool check; int k; check = true; // // Check 1 <= ROW(*) <= M. // for ( k = 0; k < nz_num; k++ ) { if ( row[k] < 0 || m <= row[k] ) { check = false; return check; } } // // Check 1 <= COL(*) <= N. // for ( k = 0; k < nz_num; k++ ) { if ( col[k] < 0 || n <= col[k] ) { check = false; return check; } } // // Check that ROW(K) <= ROW(K+1). // for ( k = 0; k < nz_num - 1; k++ ) { if ( row[k+1] < row[k] ) { check = false; return check; } } // // Check that, if ROW(K) == ROW(K+1), that COL(K) < COL(K+1). // for ( k = 0; k < nz_num - 1; k++ ) { if ( row[k] == row[k+1] ) { if ( col[k+1] <= col[k] ) { check = false; return check; } } } return check; } //****************************************************************************80 void r8st_diagonal ( int m, int n, int nz_num, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // r8st_DIAGONAL reorders an r8st matrix so diagonal entries are first. // // Discussion: // // The r8st storage format corresponds to the SLAP Triad format. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // This routine reorders the entries of A so that the first N entries // are exactly the diagonal entries of the matrix, in order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and // column indices of the nonzero elements. // // Input/output, double A[NZ_NUM], the nonzero elements // of the matrix. // { int found; int i; int j; int k; double t; found = 0; for ( k = 0; k < nz_num; k++ ) { while ( row[k] == col[k] ) { if ( row[k] == k ) { found = found + 1; break; } i = row[k]; j = row[i]; row[i] = row[k]; row[k] = j; j = col[i]; col[i] = col[k]; col[k] = j; t = a[i]; a[i] = a[k]; a[k] = t; found = found + 1; if ( i4_min ( m, n ) <= found ) { break; } } if ( i4_min ( m, n ) <= found ) { break; } } if ( found < i4_min ( m, n ) ) { cerr << "\n"; cerr << "r8st_DIAGONAL - Warning!\n"; cerr << " Number of diagonal entries expected: " << i4_min ( m, n ) << "\n"; cerr << " Number found was " << found << "\n"; } return; } //****************************************************************************80 double *r8st_dif2 ( int m, int n, int nz_num, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // r8st_DIF2 returns the DIF2 matrix in r8st format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I. // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 September 2015 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int NZ_NUM, the number of nonzeros. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], space in which the rows and columns // of nonzero entries will be stored. // // Output, double r8st_DIF2[NZ_NUM], the matrix. // { double *a; int i; int j; int k; a = new double[nz_num]; for ( k = 0; k < nz_num; k++ ) { row[k] = 0; col[k] = 0; a[k] = 0.0; } k = 0; for ( i = 0; i < m; i++ ) { j = i - 1; if ( 0 <= j && j < n ) { row[k] = i; col[k] = j; a[k] = -1.0; k = k + 1; } j = i; if ( 0 <= j && j < n ) { row[k] = i; col[k] = j; a[k] = 2.0; k = k + 1; } j = i + 1; if ( 0 <= j && j < n ) { row[k] = i; col[k] = j; a[k] = -1.0; k = k + 1; } } return a; } //****************************************************************************80 int r8st_ij_to_k ( int nz_num, int row[], int col[], int i, int j ) //****************************************************************************80 // // Purpose: // // r8st_IJ_TO_K seeks the compressed index of the (I,J) entry of A. // // Discussion: // // If A(I,J) is nonzero, then its value is stored in location K. // // This routine searches the r8st storage structure for the index K // corresponding to (I,J), returning -1 if no such entry was found. // // This routine assumes that the data structure has been sorted, // so that the entries of ROW are ascending sorted, and that the // entries of COL are ascending sorted, within the group of entries // that have a common value of ROW. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // ("nonsymmetric SLAP triad"), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and // column indices of the nonzero elements. // // Input, int I, J, the row and column indices of the // matrix entry. // // Output, int r8st_IJ_TO_K, the r8st index of the (I,J) entry. // { int hi; int k; int lo; int md; lo = 0; hi = nz_num - 1; for ( ; ; ) { if ( hi < lo ) { k = -1; break; } md = ( lo + hi ) / 2; if ( row[md] < i || ( row[md] == i && col[md] < j ) ) { lo = md + 1; } else if ( i < row[md] || ( row[md] == i && j < col[md] ) ) { hi = md - 1; } else { k = md; break; } } return k; } //****************************************************************************80 double *r8st_indicator ( int m, int n, int nz_num, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // r8st_INDICATOR sets up an r8st indicator matrix. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double r8st_INDICATOR[NZ_NUM], the nonzero elements of the matrix. // { double *a; int fac; int i; int j; int k; a = new double[nz_num]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; a[k] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); } return a; } //****************************************************************************80 void r8st_jac_sl ( int n, int nz_num, int row[], int col[], double a[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // r8st_JAC_SL solves an r8st system using Jacobi iteration. // // Discussion: // // The r8st storage format corresponds to the SLAP Triad format. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // This routine REQUIRES that the matrix be square, that the matrix // have nonzero diagonal entries, and that the first N entries of // the array A be exactly the diagonal entries of the matrix, in order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution // to the system. // // Input, int IT_MAX, the maximum number of iterations. // { int i; int it_num; int j; int k; double *x_new; r8st_diagonal ( n, n, nz_num, row, col, a ); x_new = new double[n]; for ( it_num = 1; it_num <= it_max; it_num++ ) { // // Initialize to right hand side. // for ( j = 0; j < n; j++ ) { x_new[j] = b[j]; } // // Subtract off-diagonal terms. // for ( k = n; k < nz_num; k++ ) { i = row[k]; j = col[k]; x_new[i] = x_new[i] - a[k] * x[j]; } // // Divide by diagonal terms and update. // for ( j = 0; j < n; j++ ) { x[j] = x_new[j] / a[j]; } } delete [] x_new; return; } //****************************************************************************80 double *r8st_mtv ( int m, int n, int nz_num, int row[], int col[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // r8st_MTV multiplies a vector times an r8st matrix. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double B[N], the product vector A'*X. // { double *b; int i; int j; int k; b = r8vec_zeros_new ( n ); for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[j] = b[j] + a[k] * x[i]; } return b; } //****************************************************************************80 double *r8st_mv ( int m, int n, int nz_num, int row[], int col[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // r8st_MV multiplies an r8st matrix times a vector. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double r8st_MV[M], the product vector A*X. // { double *b; int i; int j; int k; b = r8vec_zeros_new ( m ); for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[i] = b[i] + a[k] * x[j]; } return b; } //****************************************************************************80 void r8st_print ( int m, int n, int nz_num, int row[], int col[], double a[], string title ) //****************************************************************************80 // // Purpose: // // r8st_PRINT prints an r8st matrix. // // Discussion: // // This version of r8st_PRINT has been specifically modified to allow, // and correctly handle, the case in which a single matrix location // A(I,J) is referenced more than once by the sparse matrix structure. // In such cases, the routine prints out the sum of all the values. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, string TITLE, a title. // { r8st_print_some ( m, n, nz_num, row, col, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void r8st_print_some ( int m, int n, int nz_num, int row[], int col[], double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // r8st_PRINT_SOME prints some of an r8st matrix. // // Discussion: // // This version of r8st_PRINT_SOME has been specifically modified to allow, // and correctly handle, the case in which a single matrix location // A(I,J) is referenced more than once by the sparse matrix structure. // In such cases, the routine prints out the sum of all the values. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij[INCX]; int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; int k; bool nonzero; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, m - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // nonzero = false; for ( j2 = 0; j2 < INCX; j2++ ) { aij[j2] = 0.0; } for ( k = 1; k <= nz_num; k++ ) { if ( i == row[k-1] && j2lo <= col[k-1] && col[k-1] <= j2hi ) { j2 = col[k-1] - j2lo; if ( a[k-1] == 0.0 ) { continue; } nonzero = true; aij[j2] = aij[j2] + a[k-1]; } } if ( nonzero ) { cout << setw(6) << i; for ( j2 = 0; j2 < inc; j2++ ) { cout << setw(12) << aij[j2] << " "; } cout << "\n"; } } } cout << "\n"; return; # undef INCX } //****************************************************************************80 double *r8st_random ( int m, int n, int nz_num, int row[], int col[], int &seed ) //****************************************************************************80 // // Purpose: // // r8st_RANDOM sets a random r8st matrix. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double r8st_RANDOM[NZ_NUM], the nonzero elements of the matrix. // { double *r; r = r8vec_uniform_01_new ( nz_num, seed ); return r; } //****************************************************************************80 void r8st_read ( string input_file, int m, int n, int nz_num, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // r8st_READ reads an r8st matrix from a file. // // Discussion: // // This routine needs the value of NZ_NUM, which can be determined // by a call to r8st_READ_SIZE. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILE, the name of the file to be read. // // Unused, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Output, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double A[NZ_NUM], the nonzero elements of the matrix. // { ifstream input; int k; input.open ( input_file.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "r8st_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_file << "\"\n"; exit ( 1 ); } for ( k = 0; k < nz_num; k++ ) { input >> row[k] >> col[k] >> a[k]; } input.close ( ); return; } //****************************************************************************80 void r8st_read_size ( string input_file, int &m, int &n, int &nz_num ) //****************************************************************************80 // // Purpose: // // r8st_READ_SIZE reads the size of an r8st matrix from a file. // // Discussion: // // The value of NZ_NUM is simply the number of records in the input file. // // The values of M and N are determined as the maximum entry in the row // and column vectors. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILE, the name of the file to // be read. // // Output, int &M, &N, the number of rows and columns of the matrix. // // Output, int &NZ_NUM, the number of nonzero elements in the matrix. // { double a_k; int col_k; ifstream input; int row_k; m = 0; n = 0; nz_num = 0; input.open ( input_file.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "r8st_READ_SIZE - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_file << "\"\n"; exit ( 1 ); } for ( ; ; ) { input >> row_k >> col_k >> a_k; if ( input.eof ( ) ) { break; } m = i4_max ( m, row_k + 1 ); n = i4_max ( n, col_k + 1 ); nz_num = nz_num + 1; } input.close ( ); return; } //****************************************************************************80 double *r8st_res ( int m, int n, int nz_num, int row[], int col[], double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // r8st_RES computes the residual R = B-A*X for r8st matrices. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int NZ_NUM, the number of nonzeros. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices. // // Input, double A[NZ_NUM], the values. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double r8st_RES[M], the residual R = B - A * X. // { int i; double *r; r = r8st_mv ( m, n, nz_num, row, col, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 double *r8st_to_r8ge ( int m, int n, int nz_num, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // r8st_TO_R8GE converts an r8st matrix to an R8GE matrix. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Output, double B[M*N], the R8GE matrix. // { double *b; int i; int j; int k; b = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { b[i+j*m] = 0.0; } } for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[i+j*m] = a[k]; } return b; } //****************************************************************************80 void r8st_to_r8ncf ( int m, int n, int nz_num, int row[], int col[], double a[], int rowcol[] ) //****************************************************************************80 // // Purpose: // // r8st_TO_R8NCF converts an r8st matrix to an R8NCF matrix. // // Discussion: // // The r8st and R8NCF formats are essentially identical, except that // r8st keeps separate ROW and COLUMN vectors, while R8NCF uses a single // ROWCOL array. Therefore, the input values NZ_NUM and A used in // the r8st representation can be regarded as part of the output // values used for the R8NCF representation. // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // The R8NCF storage format stores NZ_NUM, the number of nonzeros, // a real array containing the nonzero values, a 2 by NZ_NUM integer // array storing the row and column of each nonzero entry. // // The R8NCF format is used by NSPCG. NSPCG requires that the information // for the diagonal entries of the matrix must come first. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Output, int ROWCOL[2*NZ_NUM], the R8NCF row and column index vector. // { int i; for ( i = 0; i < nz_num; i++ ) { rowcol[0+i*2] = row[i]; rowcol[1+i*2] = col[i]; } return; } //****************************************************************************80 void r8st_write ( int m, int n, int nz_num, int row[], int col[], double a[], string output_file ) //****************************************************************************80 // // Purpose: // // r8st_WRITE writes an r8st matrix to a file. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The r8st format is used by CSPARSE ("sparse triplet"), SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements // of the matrix. // // Input, string OUTPUT_FILE, the name of the file to which // the information is to be written. // { int k; ofstream output; output.open ( output_file.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "r8st_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } for ( k = 0; k < nz_num; k++ ) { output << " " << setw(8) << row[k] << " " << setw(8) << col[k] << " " << setw(16) << a[k] << "\n"; } output.close ( ); return; } //****************************************************************************80 double *r8st_zeros ( int m, int n, int nz_num, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // r8st_ZEROS returns a zero r8st matrix. // // Discussion: // // The r8st storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // The r8st format is used by SLAP (nonsymmetric case), by MATLAB, // and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double r8st_ZERO[NZ_NUM], the (potentially) nonzero elements // of the matrix. // { double *a; a = r8vec_zeros_new ( nz_num ); return a; } //****************************************************************************80 double r8vec_dot_product ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of two R8VEC's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 22 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements in the vectors. // // Input, double X[N], Y[N], the two vectors. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { double dot; int i; dot = 0.0; for ( i = 0; i < n; i++ ) { dot = dot + x[i] * y[i]; } return dot; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 double r8vec_norm_affine ( int n, double v0[], double v1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_AFFINE returns the affine L2 norm of an R8VEC. // // Discussion: // // The affine vector L2 norm is defined as: // // R8VEC_NORM_AFFINE(V0,V1) // = sqrt ( sum ( 1 <= I <= N ) ( V1(I) - V0(I) )^2 ) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the vectors. // // Input, double V0[N], the base vector. // // Input, double V1[N], the vector. // // Output, double R8VEC_NORM_AFFINE, the affine L2 norm. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( v1[i] - v0[i] ) * ( v1[i] - v0[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }