# include # include # include # include using namespace std; # include "r8cb.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8cb_det ( int n, int ml, int mu, double a_lu[] ) //****************************************************************************80 // // Purpose: // // R8CB_DET computes the determinant of an R8CB matrix factored by R8CB_NP_FA. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A_LU[(ML+MU+1)*N], the LU factors from R8CB_FA. // // Output, double R8CB_DET, the determinant of the matrix. // { double det; int j; det = 1.0; for ( j = 0; j < n; j++ ) { det = det * a_lu[mu+j*(ml+mu+1)]; } return det; } //*****************************************************************************/ double *r8cb_dif2 ( int m, int n, int ml, int mu ) //*****************************************************************************/ // // Purpose: // // R8CB_DIF2 sets up an R8CB second difference matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // The original M by N matrix is "collapsed" downward, so that diagonals // become rows of the storage array, while columns are preserved. The // collapsed array is logically ML+MU+1 by N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than min(M,N)-1. // // Output, double R8CB_DIF2[(ML+MU+1)*N], the matrix. // { double *a; int diag; int i; int j; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); for ( j = 0; j < n; j++ ) { for ( diag = 0; diag < ml + mu + 1; diag++ ) { i = diag + j - mu; if ( i == j ) { a[diag+j*(ml+mu+1)] = 2.0; } else if ( i == j + 1 || i == j - 1 ) { a[diag+j*(ml+mu+1)] = -1.0; } } } return a; } //****************************************************************************80 double *r8cb_indicator ( int m, int n, int ml, int mu ) //****************************************************************************80 // // Purpose: // // R8CB_INDICATOR sets up an R8CB indicator matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // The original M by N matrix is "collapsed" downward, so that diagonals // become rows of the storage array, while columns are preserved. The // collapsed array is logically ML+MU+1 by N. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than min(M,N)-1. // // Output, double R8CB_INDICATOR[(ML+MU+1)*N], the R8CB matrix. // { double *a; int col = ml + mu + 1; int diag; int fac; int i; int j; int k; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); k = 0; for ( j = 1; j <= n; j++ ) { for ( diag = 1; diag <= ml + mu + 1; diag++ ) { i = diag + j - mu - 1; if ( 1 <= i && i <= m && i - ml <= j && j <= i + mu ) { a[diag-1+(j-1)*col] = ( double ) ( fac * i + j ); } else { k = k + 1; a[diag-1+(j-1)*col] = - ( double ) k; } } } return a; } //****************************************************************************80 double *r8cb_ml ( int n, int ml, int mu, double a_lu[], double x[], int job ) //****************************************************************************80 // // Purpose: // // R8CB_ML computes A * x or A' * X, using R8CB_NP_FA factors. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // It is assumed that R8CB_NP_FA has overwritten the original matrix // information by LU factors. R8CB_ML is able to reconstruct the // original matrix from the LU factor data. // // R8CB_ML allows the user to check that the solution of a linear // system is correct, without having to save an unfactored copy // of the matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A_LU[(ML+MU+1)*N], the LU factors from R8CB_NP_FA. // // Input, double X[N], the vector to be multiplied. // // Input, int JOB, specifies the operation to be done: // JOB = 0, compute A * x. // JOB nonzero, compute A' * x. // // Output, double R8CB_ML[N], the result of the multiplication. // { double *b; int i; int ihi; int ilo; int j; int jhi; int nrow = ml + mu + 1; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { b[i] = x[i]; } if ( job == 0 ) { // // Y = U * X. // for ( j = 0; j < n; j++ ) { ilo = i4_max ( 0, j - mu ); for ( i = ilo; i < j; i++ ) { b[i] = b[i] + a_lu[i-j+mu+j*nrow] * b[j]; } b[j] = a_lu[j-j+mu+j*nrow] * b[j]; } // // B = PL * Y = PL * U * X = A * x. // for ( j = n - 2; 0 <= j; j-- ) { ihi = i4_min ( n - 1, j + ml ); for ( i = j + 1; i <= ihi; i++ ) { b[i] = b[i] - a_lu[i-j+mu+j*nrow] * b[j]; } } } else { // // Y = ( PL )' * X. // for ( j = 0; j < n - 1; j++ ) { jhi = i4_min ( n - 1, j + ml ); for ( i = j + 1; i <= jhi; i++ ) { b[j] = b[j] - b[i] * a_lu[i-j+mu+j*nrow]; } } // // B = U' * Y = ( PL * U )' * X = A' * X. // for ( i = n - 1; 0 <= i; i-- ) { jhi = i4_min ( n - 1, i + mu ); for ( j = i + 1; j <= jhi; j++ ) { b[j] = b[j] + b[i] * a_lu[i-j+mu+j*nrow]; } b[i] = b[i] * a_lu[i-i+mu+i*nrow]; } } return b; } //****************************************************************************80 double *r8cb_mtv ( int m, int n, int ml, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8CB_MTV multiplies a vector by an R8CB matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A[(ML+MU+1)*N], the R8CB matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double R8CB_MTV[N], the product X*A. // { double *b; int i; int j; int jhi; int jlo; b = r8vec_zeros_new ( n ); for ( i = 0; i < m; i++ ) { jlo = i4_max ( 0, i - ml ); jhi = i4_min ( n - 1, i + mu ); for ( j = jlo; j <= jhi; j++ ) { b[j] = b[j] + x[i] * a[i-j+mu+j*(ml+mu+1)]; } } return b; } //****************************************************************************80 double *r8cb_mv ( int m, int n, int ml, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8CB_MV multiplies an R8CB matrix times a vector. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A[(ML+MU+1)*N], the R8CB matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8CB_MV[M], the product A * x. // { double *b; int i; int j; int jhi; int jlo; b = r8vec_zeros_new ( m ); for ( i = 0; i < m; i++ ) { jlo = i4_max ( 0, i - ml ); jhi = i4_min ( n - 1, i + mu ); for ( j = jlo; j <= jhi; j++ ) { b[i] = b[i] + a[i-j+mu+j*(ml+mu+1)] * x[j]; } } return b; } //****************************************************************************80 int r8cb_np_fa ( int n, int ml, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8CB_NP_FA factors an R8CB matrix by Gaussian elimination. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // R8CB_NP_FA is a version of the LINPACK routine SGBFA, modifed to use // no pivoting, and to be applied to the R8CB compressed band matrix storage // format. It will fail if the matrix is singular, or if any zero // pivot is encountered. // // If R8CB_NP_FA successfully factors the matrix, R8CB_NP_SL may be called // to solve linear systems involving the matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input/output, double A[(ML+MU+1)*N], the compact band matrix. // On input, the coefficient matrix of the linear system. // On output, the LU factors of the matrix. // // Output, int R8CB_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int ju; int k; int lm; int m; int mm; // // The value of M is MU + 1 rather than ML + MU + 1. // m = mu + 1; ju = 0; for ( k = 1; k <= n - 1; k++ ) { // // If our pivot entry A(MU+1,K) is zero, then we must give up. // if ( a[m-1+(k-1)*(ml+mu+1)] == 0.0 ) { cerr << "\n"; cerr << "R8CB_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; exit ( 1 ); } // // LM counts the number of nonzero elements that lie below the current // diagonal entry, A(K,K). // // Multiply the LM entries below the diagonal by -1/A(K,K), turning // them into the appropriate "multiplier" terms in the L matrix. // lm = i4_min ( ml, n - k ); for ( i = m + 1; i <= m + lm; i++ ) { a[i-1+(k-1)*(ml+mu+1)] = -a[i-1+(k-1)*(ml+mu+1)] / a[m-1+(k-1)*(ml+mu+1)]; } // // MM points to the row in which the next entry of the K-th row is, A(K,J). // We then add L(I,K)*A(K,J) to A(I,J) for rows I = K+1 to K+LM. // ju = i4_max ( ju, mu + k ); ju = i4_min ( ju, n ); mm = m; for ( j = k + 1; j <= ju; j++ ) { mm = mm - 1; for ( i = 1; i <= lm; i++ ) { a[mm+i-1+(j-1)*(ml+mu+1)] = a[mm+i-1+(j-1)*(ml+mu+1)] + a[mm-1+(j-1)*(ml+mu+1)] * a[m+i-1+(k-1)*(ml+mu+1)]; } } } if ( a[m-1+(n-1)*(ml+mu+1)] == 0.0 ) { cerr << "\n"; cerr << "R8CB_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 double *r8cb_np_sl ( int n, int ml, int mu, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R8CB_NP_SL solves an R8CB system factored by R8CB_NP_FA. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // R8CB_NP_SL can also solve the related system A' * x = b. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A_LU[(ML+MU+1)*N], the LU factors from R8CB_NP_FA. // // Input, double B[N], the right hand side of the linear system. // // Input, int JOB. // If JOB is zero, the routine will solve A * x = b. // If JOB is nonzero, the routine will solve A' * x = b. // // Output, double R8CB_NP_SL[N], the solution of the linear system, X. // { int i; int k; int la; int lb; int lm; int m; double *x; x = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { x[i] = b[i]; } m = mu + 1; // // Solve A * x = b. // if ( job == 0 ) { // // Solve PL * Y = B. // if ( 0 < ml ) { for ( k = 1; k <= n - 1; k++ ) { lm = i4_min ( ml, n - k ); for ( i = 0; i < lm; i++ ) { x[k+i] = x[k+i] + x[k-1] * a_lu[m+i+(k-1)*(ml+mu+1)]; } } } // // Solve U * X = Y. // for ( k = n; 1 <= k; k-- ) { x[k-1] = x[k-1] / a_lu[m-1+(k-1)*(ml+mu+1)]; lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm-1; i++ ) { x[lb+i-1] = x[lb+i-1] - x[k-1] * a_lu[la+i-1+(k-1)*(ml+mu+1)]; } } } // // Solve A' * X = B. // else { // // Solve U' * Y = B. // for ( k = 1; k <= n; k++ ) { lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm - 1; i++ ) { x[k-1] = x[k-1] - a_lu[la+i-1+(k-1)*(ml+mu+1)] * x[lb+i-1]; } x[k-1] = x[k-1] / a_lu[m-1+(k-1)*(ml+mu+1)]; } // // Solve ( PL )' * X = Y. // if ( 0 < ml ) { for ( k = n - 1; 1 <= k; k-- ) { lm = i4_min ( ml, n - k ); for ( i = 0; i < lm; i++ ) { x[k-1] = x[k-1] + a_lu[m+i+(k-1)*(ml+mu+1)] * x[k+i]; } } } } return x; } //****************************************************************************80 void r8cb_print ( int m, int n, int ml, int mu, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8CB_PRINT prints an R8CB matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than min(M,N)-1.. // // Input, double A[(ML+MU+1)*N], the R8CB matrix. // // Input, string TITLE, a title. // { r8cb_print_some ( m, n, ml, mu, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8cb_print_some ( int m, int n, int ml, int mu, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8CB_PRINT_SOME prints some of an R8CB matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than min(M,N)-1. // // Input, double A[(ML+MU+1)*N], the R8CB matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - mu ); i2hi = i4_min ( ihi, m ); i2hi = i4_min ( i2hi, j2hi + ml ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { if ( ml < i - j || mu < j - i ) { cout << " "; } else { cout << setw(12) << a[i-j+mu+(j-1)*(ml+mu+1)] << " "; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8cb_random ( int m, int n, int ml, int mu, int &seed ) //****************************************************************************80 // // Purpose: // // R8CB_RANDOM randomizes an R8CB matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8CB_RANDOM[(ML+MU+1)*N], the R8CB matrix. // { double *a; int i; int ihi; int ilo; int j; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); // // Set the entries that correspond to matrix elements. // for ( j = 0; j < n; j++ ) { ilo = i4_max ( 0, j - mu ); ihi = i4_min ( m - 1, j + ml ); for ( i = ilo; i <= ihi; i++ ) { a[i-j+mu+j*(ml+mu+1)] = r8_uniform_01 ( seed ); } } return a; } //****************************************************************************80 double *r8cb_to_r8vec ( int m, int n, int ml, int mu, double *a ) //****************************************************************************80 // // Purpose: // // R8CB_TO_R8VEC copies an R8CB matrix to a real vector. // // Discussion: // // In C++ and FORTRAN, this routine is not really needed. In MATLAB, // a data item carries its dimensionality implicitly, and so cannot be // regarded sometimes as a vector and sometimes as an array. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input, int ML, MU, the lower and upper bandwidths. // // Input, double A[(ML+MU+1)*N], the array to be copied. // // Output, double R8CB_TO_R8VEC[(ML+MU+1)*N], the vector. // { int i; int ihi; int ilo; int j; double *x; x = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); for ( j = 0; j < n; j++ ) { ilo = i4_max ( mu - j, 0 ); ihi = mu + i4_min ( ml, m - j - 1 ); for ( i = ilo; i <= ihi; i++ ) { x[i+j*(ml+mu+1)] = a[i+j*(ml+mu+1)]; } } return x; } //****************************************************************************80 double *r8cb_to_r8ge ( int m, int n, int ml, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8CB_TO_R8GE copies an R8CB matrix to an R8GE matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 17 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrices. // // Input, int ML, MU, the lower and upper bandwidths of A. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A[(ML+MU+1)*N], the R8CB matrix. // // Output, double R8CB_TO_R8GE[M*N], the R8GE matrix. // { double *b; int i; int j; b = r8vec_zeros_new ( m * n ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { if ( j - mu <= i && i <= j + ml ) { b[i+j*m] = a[mu+i-j+j*(ml+mu+1)]; } } } return b; } //****************************************************************************80 double *r8cb_zeros ( int n, int ml, int mu ) //****************************************************************************80 // // Purpose: // // R8CB_ZEROS zeros an R8CB matrix. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be nonnegative. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative and no greater than N-1. // // Output, double R8CB_ZERO[(ML+MU+1)*N), the R8CB matrix. // { double *a; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); return a; } //****************************************************************************80 double r8ge_det ( int n, double a_lu[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_DET computes the determinant of a matrix factored by R8GE_FA or R8GE_TRF. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA or R8GE_TRF. // // Input, int PIVOT[N], as computed by R8GE_FA or R8GE_TRF. // // Output, double R8GE_DET, the determinant of the matrix. // { double det; int i; det = 1.0; for ( i = 1; i <= n; i++ ) { det = det * a_lu[i-1+(i-1)*n]; if ( pivot[i-1] != i ) { det = -det; } } return det; } //****************************************************************************80 int r8ge_fa ( int n, double a[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_FA performs a LINPACK-style PLU factorization of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_FA is a simplified version of the LINPACK routine SGEFA. // // The two dimensional array is stored by columns in a one dimensional // array. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N], the matrix to be factored. // On output, A contains an upper triangular matrix and the multipliers // which were used to obtain it. The factorization can be written // A = L * U, where L is a product of permutation and unit lower // triangular matrices and U is upper triangular. // // Output, int PIVOT[N], a vector of pivot indices. // // Output, int R8GE_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; int l; double t; // for ( k = 1; k <= n-1; k++ ) { // // Find L, the index of the pivot row. // l = k; for ( i = k + 1; i <= n; i++ ) { if ( fabs ( a[l-1+(k-1)*n] ) < fabs ( a[i-1+(k-1)*n] ) ) { l = i; } } pivot[k-1] = l; // // If the pivot index is zero, the algorithm has failed. // if ( a[l-1+(k-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; exit ( 1 ); } // // Interchange rows L and K if necessary. // if ( l != k ) { t = a[l-1+(k-1)*n]; a[l-1+(k-1)*n] = a[k-1+(k-1)*n]; a[k-1+(k-1)*n] = t; } // // Normalize the values that lie below the pivot entry A(K,K). // for ( i = k+1; i <= n; i++ ) { a[i-1+(k-1)*n] = -a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } // // Row elimination with column indexing. // for ( j = k+1; j <= n; j++ ) { if ( l != k ) { t = a[l-1+(j-1)*n]; a[l-1+(j-1)*n] = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = t; } for ( i = k+1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } pivot[n-1] = n; if ( a[n-1+(n-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 int r8ge_np_fa ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8GE_NP_FA factors an R8GE matrix by nonpivoting Gaussian elimination. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_NP_FA is a version of the LINPACK routine SGEFA, but uses no // pivoting. It will fail if the matrix is singular, or if any zero // pivot is encountered. // // If R8GE_NP_FA successfully factors the matrix, R8GE_NP_SL may be called // to solve linear systems involving the matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N]. // On input, A contains the matrix to be factored. // On output, A contains information about the factorization, // which must be passed unchanged to R8GE_NP_SL for solutions. // // Output, int R8GE_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; for ( k = 1; k <= n - 1; k++ ) { if ( a[k-1+(k-1)*n] == 0.0 ) { return k; } for ( i = k + 1; i <= n; i++ ) { a[i-1+(k-1)*n] = - a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } for ( j = k + 1; j <= n; j++ ) { for ( i = k + 1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } if ( a[n-1+(n-1)*n] == 0.0 ) { return n; } return 0; } //****************************************************************************80 double *r8ge_np_sl ( int n, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R8GE_NP_SL solves a system factored by R8GE_NP_FA. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_NP_FA. // // Input, double B[N], the right hand side. // // Input, int JOB. // If JOB is zero, the routine will solve A * x = b. // If JOB is nonzero, the routine will solve A' * x = b. // // Output, double R8GE_NP_SL[N], the solution. // { int i; int k; double *x; // // Solve A * x = b. // x = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { x[i] = b[i]; } if ( job == 0 ) { for ( k = 0; k < n - 1; k++ ) { for ( i = k + 1; i < n; i++ ) { x[i] = x[i] + a_lu[i+k*n] * x[k]; } } for ( k = n - 1; 0 <= k; k-- ) { x[k] = x[k] / a_lu[k+k*n]; for ( i = 0; i <= k - 1; i++ ) { x[i] = x[i] - a_lu[i+k*n] * x[k]; } } } // // Solve A' * X = B. // else { for ( k = 0; k < n; k++ ) { for ( i = 0; i <= k - 1; i++ ) { x[k] = x[k] - x[i] * a_lu[i+k*n]; } x[k] = x[k] / a_lu[k+k*n]; } for ( k = n - 2; 0 <= k; k-- ) { for ( i = k + 1; i < n; i++ ) { x[k] = x[k] + x[i] * a_lu[i+k*n]; } } } return x; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = r8vec_zeros_new ( n ); for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_to_r8cb ( int m, int n, int ml, int mu, double *x ) //****************************************************************************80 // // Purpose: // // R8VEC_TO_R8CB copies an R8VEC into an R8CB matrix. // // Discussion: // // In C++ and FORTRAN, this routine is not really needed. In MATLAB, // a data item carries its dimensionality implicitly, and so cannot be // regarded sometimes as a vector and sometimes as an array. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input, int ML, MU, the lower and upper bandwidths. // // Input, double X[(ML+MU+1)*N], the vector to be copied into the array. // // Output, double R8VEC_TO_R8CB[(ML+MU+1)*N], the array. // { double *a; int i; int j; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= ml + mu + 1; i++ ) { if ( ( 1 <= i + j - mu - 1 ) && ( i + j - mu - 1 <= m ) ) { a[i-1+(j-1)*(ml+mu+1)] = x[i-1+(j-1)*(ml+mu+1)]; } } } return a; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; }