04 April 2020 04:24:24 PM QWGW_TEST: C++ version Test the QWGW library. TEST01: Compute points and weights for Gauss quadrature with the Chebyshev Type 1 weight w(x) = 1/sqrt(1-x^2). Order N = 5 Interval = [-1,1] Abscissas: 0 -0.951057 1 -0.587785 2 2.26221e-18 3 0.587785 4 0.951057 Weights: 0 0.628319 1 0.628319 2 0.628319 3 0.628319 4 0.628319 TEST02: Compute points and weights for Gauss quadrature with the Chebyshev Type 2 weight w(x) = sqrt(1-x^2). Order N = 5 Interval = [-1,1] Abscissas: 0 -0.866025 1 -0.5 2 5.95249e-17 3 0.5 4 0.866025 Weights: 0 0.1309 1 0.392699 2 0.523599 3 0.392699 4 0.1309 TEST03: Compute points and weights for Gauss quadrature with the Gegenbauer weight w(x) = (1-x^2)^alpha. Order N = 5 ALPHA = 0.25 Interval = [-1,1] Abscissas: 0 -0.885526 1 -0.518146 2 6.84469e-18 3 0.518146 4 0.885526 Weights: 0 0.171047 1 0.43055 2 0.544843 3 0.43055 4 0.171047 TEST04: Compute points and weights for Gauss quadrature with the generalized Hermite weight w(x) = |x|^alpha * exp(-x^2). ALPHA = 2 Order N = 5 Interval = (-oo,+oo) Abscissas: 0 -2.3175 1 -1.27639 2 5.11203e-16 3 1.27639 4 2.3175 Weights: 0 0.0288027 1 0.313028 2 0.202566 3 0.313028 4 0.0288027 TEST05: Compute points and weights for Gauss quadrature with the generalized Laguerre weight w(x) = x^alpha * exp(-x). Order N = 5 ALPHA = 2 Interval = [0,+oo) Abscissas: 0 1.03111 1 2.83721 2 5.62029 3 9.68291 4 15.8285 Weights: 0 0.520917 1 1.06671 2 0.38355 3 0.0285642 4 0.000262713 TEST06: Compute points and weights for Gauss quadrature with the Hermite weight w(x) = exp(-x^2). Order N = 5 Interval = (-oo,+oo) Abscissas: 0 -2.02018 1 -0.958572 2 2.40258e-16 3 0.958572 4 2.02018 Weights: 0 0.0199532 1 0.393619 2 0.945309 3 0.393619 4 0.0199532 TEST07: Compute points and weights for Gauss quadrature with the Jacobi weight w(x) = (1-x^2)^alpha*(1+x)^beta Order N = 5 ALPHA = 0.25 BETA = 0.75 Interval = [-1,1] Abscissas: 0 -0.835553 1 -0.446113 2 0.062007 3 0.552614 4 0.894318 Weights: 0 0.0874589 1 0.330899 2 0.538382 3 0.495706 4 0.213635 TEST08: Compute points and weights for Gauss quadrature with the Laguerre weight w(x) = exp(-x). Order N = 5 Interval = [0,+oo) Abscissas: 0 0.26356 1 1.4134 2 3.59643 3 7.08581 4 12.6408 Weights: 0 0.521756 1 0.398667 2 0.0759424 3 0.00361176 4 2.337e-05 TEST09: Compute points and weights for Gauss quadrature with the Legendre weight w(x) = 1. Order N = 5 Interval = [-1,1] Abscissas: 0 -0.90618 1 -0.538469 2 -1.08185e-16 3 0.538469 4 0.90618 Weights: 0 0.236927 1 0.478629 2 0.568889 3 0.478629 4 0.236927 QWGW_TEST: Normal end of execution. 04 April 2020 04:24:24 PM