# include # include # include # include # include # include using namespace std; # include "point_merge.hpp" //****************************************************************************80 double cpu_time ( ) //****************************************************************************80 // // Purpose: // // cpu_time() reports the elapsed CPU time. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 September 2005 // // Author: // // John Burkardt // // Parameters: // // Output, double CPU_TIME, the current total elapsed CPU time in second. // { double value; value = ( double ) clock ( ) / ( double ) CLOCKS_PER_SEC; return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // i4_max() returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_uniform ( int a, int b, int *seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM returns a scaled pseudorandom I4. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 12 November 2006 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int *SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int k; float r; int value; if ( *seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( float ) ( *seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) ( i4_min ( a, b ) ) - 0.5 ) + r * ( ( float ) ( i4_max ( a, b ) ) + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = r4_nint ( r ); value = i4_max ( value, i4_min ( a, b ) ); value = i4_min ( value, i4_max ( a, b ) ); return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int point_radial_tol_unique_count ( int m, int n, double a[], double tol, int *seed ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_COUNT counts the tolerably unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The output is the number of tolerably unique points in the list. // // This program performs the same task as POINT_TOL_UNIQUE_COUNT. // But that program is guaranteed to use N^2 comparisons. // // It is hoped that this function, on the other hand, will tend // to use O(N) comparisons after an O(NLog(N)) sort. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance for equality. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, int POINT_RADIAL_TOL_UNIQUE_COUNT, the number of tolerably // unique points. // { double dist; int hi; int i; int *indx; int j; int k; double *r; bool *unique; int unique_num; double *w; double w_sum; double *z; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Assign a base point Z randomly in the convex hull. // w = r8vec_uniform_01_new ( n, seed ); w_sum = r8vec_sum ( n, w ); for ( j = 0; j < n; j++ ) { w[j] = w[j] / w_sum; } z = new double[m]; for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j = 0; j < n; j++ ) { z[i] = z[i] + a[i+j*m] * w[j]; } } // // Compute the radial distance R of each point to Z. // r = new double[n]; for ( j = 0; j < n; j++ ) { r[j] = 0.0; for ( i = 0; i < m; i++ ) { r[j] = r[j] + pow ( a[i+j*m] - z[i], 2 ); } r[j] = sqrt ( r[j] ); } // // Implicitly sort the R array. // indx = r8vec_sort_heap_index_a ( n, r ); // // To determine if a point I is tolerably unique, we only have to check // whether it is distinct from all points J such that R(I) <= R(J) <= R(J)+TOL. // unique_num = 0; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } for ( i = 0; i < n; i++ ) { if ( unique[indx[i]] ) { // // Point INDX(I) is unique, in that no earlier point is near it. // unique_num = unique_num + 1; // // Look for later points which are close to point INDX(I) // in terms of R. // hi = i; while ( hi < n - 1 ) { if ( r[indx[i]] + tol < r[indx[hi+1]] ) { break; } hi = hi + 1; } // // Points INDX(I+1) through INDX(HI) have an R value close to // point INDX(I). Are they truly close to point INDEX(I)? // for ( j = i + 1; j <= hi; j++ ) { if ( unique[indx[j]] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + pow ( a[k+indx[i]*m] - a[k+indx[j]*m], 2 ); } dist = sqrt ( dist ); if ( dist <= tol ) { unique[indx[j]] = false; } } } } } delete [] indx; delete [] r; delete [] unique; delete [] w; delete [] z; return unique_num; } //****************************************************************************80 int point_radial_tol_unique_index ( int m, int n, double a[], double tol, int *seed, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_TOL_UNIQUE_INDEX indexes the tolerably unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The output is: // * the number of tolerably unique points in the list; // * the index, in the list of unique items, of the representatives // of each point; // * the index, in A, of the tolerably unique representatives. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance for equality. // // Input/output, int SEED, a seed for the random // number generator. // // Output, int UNDX[UNIQUE_NUM], the index, in A, of the // tolerably unique points. // // Output, int XDNU[N], the index, in UNDX, of the // tolerably unique point that "represents" this point. // // Output, int POINT_RADIAL_TOL_UNIQUE_INDEX, the number of tolerably // unique points. // { double dist; int hi; int i; int *indx; int j; int k; double *r; bool *unique; int unique_num; double *w; double w_sum; double *z; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Assign a base point Z randomly in the convex hull. // w = r8vec_uniform_01_new ( n, seed ); w_sum = r8vec_sum ( n, w ); for ( j = 0; j < n; j++ ) { w[j] = w[j] / w_sum; } z = new double[m]; for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j = 0; j < n; j++ ) { z[i] = z[i] + a[i+j*m] * w[j]; } } // // Compute the radial distance R of each point to Z. // r = new double[n]; for ( j = 0; j < n; j++ ) { r[j] = 0.0; for ( i = 0; i < m; i++ ) { r[j] = r[j] + pow ( a[i+j*m] - z[i], 2 ); } r[j] = sqrt ( r[j] ); } // // Implicitly sort the R array. // indx = r8vec_sort_heap_index_a ( n, r ); // // To determine if a point I is tolerably unique, we only have to check // whether it is distinct from all points J such that R(I) <= R(J) <= R(J)+TOL. // unique_num = 0; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } for ( i = 0; i < n; i++ ) { if ( unique[indx[i]] ) { // // Point INDX(I) is unique, in that no earlier point is near it. // xdnu[indx[i]] = unique_num; undx[unique_num] = indx[i]; unique_num = unique_num + 1; // // Look for later points which are close to point INDX(I) // in terms of R. // hi = i; while ( hi < n - 1 ) { if ( r[indx[i]] + tol < r[indx[hi+1]] ) { break; } hi = hi + 1; } // // Points INDX(I+1) through INDX(HI) have an R value close to // point INDX(I). Are they truly close to point INDEX(I)? // for ( j = i + 1; j <= hi; j++ ) { if ( unique[indx[j]] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + pow ( a[k+indx[i]*m] - a[k+indx[j]*m], 2 ); } dist = sqrt ( dist ); if ( dist <= tol ) { unique[indx[j]] = false; xdnu[indx[j]] = xdnu[indx[i]]; } } } } } delete [] indx; delete [] r; delete [] unique; delete [] w; delete [] z; return unique_num; } //****************************************************************************80 int point_radial_unique_count ( int m, int n, double a[], int *seed ) //****************************************************************************80 // // Purpose: // // POINT_RADIAL_UNIQUE_COUNT counts the unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The output is the number of unique points in the list. // // This program performs the same task as POINT_UNIQUE_COUNT, and // carries out more work. Hence, it is not a substitute for // POINT_UNIQUE_COUNT. Instead, it is intended to be a starting point // for a similar program which includes a tolerance. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, int POINT_RADIAL_UNIQUE_COUNT, the number of unique points. // { bool equal; int hi; int i; int *indx; int j; int j1; int j2; int lo; double *r; int unique_num; double *w; double w_sum; double *z; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Assign a base point Z randomly in the convex hull. // w = r8vec_uniform_01_new ( n, seed ); w_sum = r8vec_sum ( n, w ); for ( j = 0; j < n; j++ ) { w[j] = w[j] / w_sum; } z = new double[m]; for ( i = 0; i < m; i++ ) { z[i] = 0.0; for ( j = 0; j < n; j++ ) { z[i] = z[i] + a[i+j*m] * w[j]; } } // // Compute the radial distance R of each point to Z. // r = new double[n]; for ( j = 0; j < n; j++ ) { r[j] = 0.0; for ( i = 0; i < m; i++ ) { r[j] = r[j] + pow ( a[i+j*m] - z[i], 2 ); } r[j] = sqrt ( r[j] ); } // // Implicitly sort the R array. // indx = r8vec_sort_heap_index_a ( n, r ); // // To determine if a point is unique, we only have to check // whether it is distinct from all points with the same // R value and lower ordering. // unique_num = 0; hi = - 1; while ( hi < n - 1 ) { // // Advance LO. // lo = hi + 1; // // Extend HI. // hi = lo; while ( hi < n - 1 ) { if ( r[indx[hi+1]] == r[indx[lo]] ) { hi = hi + 1; } else { break; } } // // Points INDX(LO) through INDX(HI) have same R value. // // Find the unique ones. // unique_num = unique_num + 1; for ( j1 = lo + 1; j1 <= hi; j1++ ) { for ( j2 = lo; j2 < j1; j2++ ) { equal = true; for ( i = 0; i < m; i++ ) { if ( a[i+indx[j2]*m] != a[i+indx[j1]*m] ) { equal = false; break; } } if ( equal ) { break; } } if ( !equal ) { unique_num = unique_num + 1; } } } delete [] indx; delete [] r; delete [] w; delete [] z; return unique_num; } //****************************************************************************80 int point_tol_unique_count ( int m, int n, double a[], double tol ) //****************************************************************************80 // // Purpose: // // POINT_TOL_UNIQUE_COUNT counts the tolerably unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // This function uses a simple but expensive approach. The first point // is accepted as unique. Each subsequent point is accepted as unique // only if it is at least a tolerance away from all accepted unique points. // This means the expected amount of work is O(N^2). // // The output is the number of unique points in the list. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Input, double TOL, a tolerance. // // Output, int POINT_TOL_UNIQUE_COUNT, the number of unique points. // { double dist; int i; int j; int k; bool *unique; int unique_num; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } unique_num = n; for ( i = 1; i < n; i++ ) { for ( j = 0; j < i; j++ ) { if ( unique[j] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + pow ( a[k+i*m] - a[k+j*m], 2 ); } dist = sqrt ( dist ); if ( dist <= tol ) { unique[i] = false; unique_num = unique_num - 1; break; } } } } delete [] unique; return unique_num; } //****************************************************************************80 int point_tol_unique_index ( int m, int n, double a[], double tol, int xdnu[] ) //****************************************************************************80 // // Purpose: // // POINT_TOL_UNIQUE_INDEX indexes the tolerably unique points. // // Discussion: // // This routine uses an algorithm that is O(N^2). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the data values. // // Input, int N, the number of data values. // // Input, double A[M*N], the data values. // // Input, double TOL, a tolerance for equality. // // Output, int XDNU[N], the index, in A, of the tolerably unique // point that "represents" this point. // // Output, int POINT_TOL_UNIQUE_INDEX, the number of tolerably // unique points. // { double dist; int i; int j; int k; bool *unique; int unique_num; unique = new bool[n]; for ( i = 0; i < n; i++ ) { unique[i] = true; } for ( i = 0; i < n; i++ ) { xdnu[i] = i; } unique_num = n; i = 0; xdnu[0] = 0; for ( i = 1; i < n; i++ ) { for ( j = 0; j < i; j++ ) { if ( unique[j] ) { dist = 0.0; for ( k = 0; k < m; k++ ) { dist = dist + pow ( a[k+i*m] - a[k+j*m], 2 ); } dist = sqrt ( dist ); if ( dist <= tol ) { unique[i] = false; unique_num = unique_num - 1; xdnu[i] = j; break; } } } } delete [] unique; return unique_num; } //****************************************************************************80 int point_unique_count ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // POINT_UNIQUE_COUNT counts the unique points. // // Discussion: // // The input data is an M x N array A, representing the M-dimensional // coordinates of N points. // // The algorithm relies on the fact that, in a sorted list, points that // are exactly equal must occur consecutively. // // The output is the number of unique points in the list. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows. // // Input, int N, the number of columns. // // Input, double A[M*N], the array of N columns of data. // // Output, int POINT_UNIQUE_COUNT, the number of unique points. // { int i; int *indx; int j; int unique_index; int unique_num; if ( n <= 0 ) { unique_num = 0; return unique_num; } // // Implicitly sort the array. // indx = r8col_sort_heap_index_a ( m, n, a ); // // Two points are considered equal only if they exactly match. // In that case, equal points can only occur as consecutive items // in the sorted list. This makes counting easy. // unique_num = 1; unique_index = indx[0]; for ( j = 1; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+unique_index*m] != a[i+indx[j]*m] ) { unique_num = unique_num + 1; unique_index = indx[j]; } } } delete [] indx; return unique_num; } //****************************************************************************80 void point_unique_index ( int m, int n, double a[], int unique_num, int undx[], int xdnu[] ) //****************************************************************************80 // // Purpose: // // POINT_UNIQUE_INDEX indexes unique points. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The goal of this routine is to determine a vector UNDX, // which points to the unique elements of A, in sorted order, // and a vector XDNU, which identifies, for each entry of A, the index of // the unique sorted element of A. // // This is all done with index vectors, so that the elements of // A are never moved. // // The first step of the algorithm requires the indexed sorting // of A, which creates arrays INDX and XDNI. (If all the entries // of A are unique, then these arrays are the same as UNDX and XDNU.) // // We then use INDX to examine the entries of A in sorted order, // noting the unique entries, creating the entries of XDNU and // UNDX as we go. // // Once this process has been completed, the vector A could be // replaced by a compressed vector XU, containing the unique entries // of A in sorted order, using the formula // // XU(*) = A(UNDX(*)). // // We could then, if we wished, reconstruct the entire vector A, or // any element of it, by index, as follows: // // A(I) = XU(XDNU(I)). // // We could then replace A by the combination of XU and XDNU. // // Later, when we need the I-th entry of A, we can locate it as // the XDNU(I)-th entry of XU. // // Here is an example of a vector A, the sort and inverse sort // index vectors, and the unique sort and inverse unique sort vectors // and the compressed unique sorted vector. // // I A Indx Xdni XU Undx Xdnu // ----+-----+-----+-----+--------+-----+-----+ // 0 | 11. 0 0 | 11. 0 0 // 1 | 22. 2 4 | 22. 1 1 // 2 | 11. 5 1 | 33. 3 0 // 3 | 33. 8 7 | 55. 4 2 // 4 | 55. 1 8 | 3 // 5 | 11. 6 2 | 0 // 6 | 22. 7 5 | 1 // 7 | 22. 3 6 | 1 // 8 | 11. 4 3 | 0 // // INDX(2) = 3 means that sorted item(2) is A(3). // XDNI(2) = 5 means that A(2) is sorted item(5). // // UNDX(3) = 4 means that unique sorted item(3) is at A(4). // XDNU(8) = 2 means that A(8) is at unique sorted item(2). // // XU(XDNU(I))) = A(I). // XU(I) = A(UNDX(I)). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the data values. // // Input, int N, the number of data values, // // Input, double A[M*N], the data values. // // Input, int UNIQUE_NUM, the number of unique values in A. // This value is only required for languages in which the size of // UNDX must be known in advance. // // Output, int UNDX[UNIQUE_NUM], the UNDX vector. // // Output, int XDNU[N], the XDNU vector. // { double diff; int i; int *indx; int j; int k; // // Implicitly sort the array. // indx = r8col_sort_heap_index_a ( m, n, a ); // // Walk through the implicitly sorted array. // i = 0; j = 0; undx[j] = indx[i]; xdnu[indx[i]] = j; for ( i = 1; i < n; i++ ) { diff = 0.0; for ( k = 0; k < m; k++ ) { diff = r8_max ( diff, r8_abs ( a[k+indx[i]*m] - a[k+undx[j]*m] ) ); } if ( 0.0 < diff ) { j = j + 1; undx[j] = indx[i]; } xdnu[indx[i]] = j; } delete [] indx; return; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( - x + 0.5 ); } else { value = ( int ) ( x + 0.5 ); } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double *r8col_duplicates ( int m, int n, int n_unique, int *seed ) //****************************************************************************80 // // Purpose: // // R8COL_DUPLICATES generates an R8COL with some duplicate columns. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // This routine generates a random R8COL with a specified number of // duplicate columns. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in each column of A. // // Input, int N, the number of columns in A. // // Input, int N_UNIQUE, the number of unique columns in A. // 1 <= N_UNIQUE <= N. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, double R8COL_DUPLICATES[M*N], the array. // { double *a; int i; int j1; int j2; double temp; if ( n_unique < 1 || n < n_unique ) { cout << "\n"; cout << "R8COL_DUPLICATES - Fatal error!\n"; cout << " 1 <= N_UNIQUE <= N is required.\n"; exit ( 1 ); } a = new double[m*n]; r8mat_uniform_01 ( m, n_unique, seed, a ); // // Randomly copy unique columns. // for ( j1 = n_unique; j1 < n; j1++ ) { j2 = i4_uniform ( 0, n_unique - 1, seed ); for ( i = 0; i < m; i++ ) { a[i+j1*m] = a[i+j2*m]; } } // // Permute the columns. // for ( j1 = 0; j1 < n; j1 ++ ) { j2 = i4_uniform ( j1, n - 1, seed ); for ( i = 0; i < m; i++ ) { temp = a[i+j1*m]; a[i+j1*m] = a[i+j2*m]; a[i+j2*m] = temp; } } return a; } //****************************************************************************80 int *r8col_sort_heap_index_a ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8COL_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // A(*,J1) < A(*,J2) if the first nonzero entry of A(*,J1)-A(*,J2) is negative. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // A(*,INDX(*)) is sorted, // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in each column of A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the array. // // Output, int R8COL_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th column of the sorted array is A(*,INDX(I)). // { double *column; int i; int *indx; int indxt; int ir; int isgn; int j; int k; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { indx[0] = indx[0]; return indx; } column = new double[m]; l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; for ( k = 0; k < m; k++ ) { column[k] = a[k+indxt*m]; } } else { indxt = indx[ir-1]; for ( k = 0; k < m; k++ ) { column[k] = a[k+indxt*m]; } indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { isgn = r8vec_compare ( m, a+indx[j-1]*m, a+indx[j]*m ); if ( isgn < 0 ) { j = j + 1; } } isgn = r8vec_compare ( m, column, a+indx[j-1]*m ); if ( isgn < 0 ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } delete [] column; for ( i = 0; i < n; i++ ) { indx[i] = indx[i]; } return indx; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_uniform_01 ( int m, int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; int i4_huge = 2147483647; int j; int k; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 int r8vec_compare ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COMPARE compares two R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // The lexicographic ordering is used. // // Example: // // Input: // // A1 = ( 2.0, 6.0, 2.0 ) // A2 = ( 2.0, 8.0, 12.0 ) // // Output: // // ISGN = -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A[N], B[N], the vectors to be compared. // // Output, int R8VEC_COMPARE, the results of the comparison: // -1, A is lexicographically less than B, // 0, A is equal to B, // +1, A is lexicographically greater than B. // { int isgn; int k; isgn = 0; for ( k = 0; k < n; k++ ) { if ( a[k] < b[k] ) { isgn = -1; return isgn; } else if ( b[k] < a[k] ) { isgn = +1; return isgn; } } return isgn; } //****************************************************************************80 double r8vec_norm_l2 ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_L2 returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM_L2 = sqrt ( sum ( 1 <= I <= N ) A(I)**2 ). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM_L2, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 int *r8vec_sort_heap_index_a ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8VEC // // Discussion: // // An R8VEC is a vector of R8's. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(indx(*)) // // or explicitly, by the call // // r8vec_permute ( n, indx, 0, a ) // // after which a(*) is sorted. // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], an array to be index-sorted. // // Output, int R8VEC_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { double aval; int i; int *indx; int indxt; int ir; int j; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { indx[0] = indx[0]; return indx; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt]; } else { indxt = indx[ir-1]; aval = a[indxt]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]] < a[indx[j]] ) { j = j + 1; } } if ( aval < a[indx[j-1]] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } return indx; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }