29 May 2021 10:39:36 PM local_min_rc_test(): C++ version local_min_rc() seeks a local minimizer of a function F(X) in an interval [A,B], using reverse communication. g_01(x) = ( x - 2 ) * ( x - 2 ) + 1 Step X F(X) 0 0 5 0 3.141592653589793 2.303233786730186 1 1.199981614864327 1.640029416555091 2 1.941611038725466 1.003409270798719 3 2.399963229728653 1.159970585134975 4 2 1 5 2.000000029802322 1.000000000000001 6 1.999999970197678 1.000000000000001 7 1.999999970197678 1.000000000000001 g_02(x) = x * x + exp ( - x ) Step X F(X) 0 0 1 0 1 1.367879441171442 1 0.3819660112501051 0.8284162845035989 2 0.6180339887498948 0.9209690939741497 3 0.2360679774997897 0.8454550784427712 4 0.3528496811495104 0.8271857093986708 5 0.3518917166104074 0.8271840598740323 6 0.3517320418182495 0.8271840261312916 7 0.3517337036958197 0.8271840261275244 8 0.3517337112615478 0.8271840261275243 9 0.3517337165027886 0.8271840261275244 10 0.3517337165027886 0.8271840261275244 g_03(x) = x^4 + 2x^2 + x + 3 Step X F(X) 0 -2 25 0 2 29 1 -0.4721359549995796 3.02337868524942 2 0.4721359549995792 3.967650595248578 3 -1.055728090000841 5.415643516089551 4 -0.1498138939889126 2.895578253916099 5 -0.2226817817160358 2.878951458114974 6 -0.2318072413850192 2.878549359863836 7 -0.237056101926344 2.878493033943844 8 -0.2367455245027443 2.878492790245848 9 -0.2367325704732761 2.878492789873986 10 -0.2367329046684402 2.878492789873726 11 -0.2367329011408449 2.878492789873726 12 -0.2367328976132497 2.878492789873726 13 -0.2367327726568989 2.878492789873766 14 -0.2367328498841708 2.878492789873733 15 -0.2367328793823638 2.878492789873727 16 -0.236732890649671 2.878492789873726 17 -0.236732890649671 2.878492789873726 g_04(x) = exp ( x ) + 1 / ( 100 x ) Step X F(X) 0 0.0001 101.0001000050002 0 1 2.728281828459045 1 0.3820278146489801 1.491428944564399 2 0.6180721853510198 1.871527165190991 3 0.2361443707020397 1.308704097842649 4 0.1459834439469404 1.225677948134214 5 0.09026092675509928 1.205249730835979 6 0.06987608932080662 1.215485764492621 7 0.1020637327872526 1.205432046585031 8 0.09568202682193082 1.20492194401373 9 0.09551304332896546 1.204920914847202 10 0.09535723006160622 1.20492057445533 11 0.09534430133398021 1.204920572533846 12 0.09534460687029817 1.204920572532641 13 0.09534461723542657 1.20492057253264 14 0.09534461865617216 1.20492057253264 15 0.09534462007691777 1.20492057253264 16 0.09534462007691777 1.20492057253264 g_05(x) = exp ( x ) - 2x + 1/(100x) - 1/(1000000x^2) Step X F(X) 0 0.0002 25.99980002000133 0 2 3.39405584893065 1 0.7640556292979601 0.6319409659880333 2 1.23614437070204 0.9781158267720461 3 0.4722887414040793 0.680251882055913 4 0.6885274466075678 0.6282485878721349 5 0.7016460077946312 0.628028243845387 6 0.7030662791367996 0.6280257405372534 7 0.703208406706925 0.6280257206060759 8 0.7032048702467216 0.6280257205928642 9 0.7032048403471922 0.628025720592863 10 0.7032048298686234 0.628025720592863 11 0.7032048193900549 0.6280257205928637 12 0.7032048193900549 0.6280257205928637 g_06(x) = - x sin ( 10 pi x ) - 1 Step X F(X) 0 1.8 -0.999999999999996 0 1.9 -1.000000000000011 1 1.838196601125011 -2.713258833591779 2 1.86180339887499 -2.735261134517162 3 1.876393202250021 -2.26748539633819 4 1.850539501476262 -2.850273708813559 5 1.850516208936006 -2.850272874170462 6 1.850547591323781 -2.850273766753762 7 1.850547466103234 -2.850273766768098 8 1.850547438527927 -2.850273766767406 9 1.85054749367854 -2.850273766767401 10 1.85054749367854 -2.850273766767401 g_07(x) = 2x^4 - 4x^2 + x + 20 Step X F(X) 0 0 20 0 2 38 1 0.7639320225002102 19.11072304256583 2 1.23606797749979 19.7933488775082 3 0.4721359549995794 19.67986635547066 4 0.837395217865838 19.01592134627593 5 0.9896746616572905 18.99051877879461 6 0.9302916588062723 18.96650306250342 7 0.9270989997419914 18.96657244396596 8 0.9302908467108124 18.96650306366181 9 0.9304033652746766 18.96650298343073 10 0.9530429859355664 18.96986409186055 11 0.9304029336377662 18.9665029834295 12 0.9304029197736819 18.9665029834295 13 0.930402905909598 18.9665029834295 14 0.9303604132972775 18.96650299497409 15 0.9303866751759623 18.96650298511653 16 0.9303967063210115 18.96650298367665 17 0.9304005378774742 18.96650298346595 18 0.9304020014018132 18.96650298343497 19 0.9304025604183672 18.96650298343036 20 0.9304027739436906 18.96650298342965 21 0.9304028555031068 18.96650298342954 22 0.9304028866560315 18.96650298342951 23 0.9304028866560315 18.96650298342951 g_07(x) = 2x^4 - 4x^2 + x + 20 Step X F(X) 0 -2 34 0 0 20 1 -1.23606797749979 17.32121292250862 2 -0.7639320225002104 17.5828589975654 3 -1.527864045000421 20.03321475610998 4 -1.021493575456419 16.98228207741775 5 -1.033447204835348 16.97580436555869 6 -1.053349090883874 16.97065081962485 7 -1.057974473086176 16.97049527229023 8 -1.057492144903373 16.97049273131853 9 -1.057452746719148 16.97049271745847 10 -1.057453779456062 16.97049271744859 11 -1.057453763698772 16.97049271744859 12 -1.057453747941483 16.97049271744859 13 -1.057453747941483 16.97049271744859 local_min_rc_test(): Normal end of execution. 29 May 2021 10:39:36 PM