# include # include # include # include # include # include # include # include using namespace std; # include "lcvt.hpp" //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80 bool ch_eqi ( char c1, char c2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, char C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 double cluster_energy ( int dim_num, int n, double cell_generator[], int sample_num_cvt, int sample_function_cvt, int *seed ) //****************************************************************************80 // // Purpose: // // CLUSTER_ENERGY returns the energy of a dataset. // // Discussion: // // The energy is the integral of the square of the distance from each point // in the region to its nearest generator. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of generators. // // Input, double CELL_GENERATOR[DIM_NUM*N], the coordinates of the points. // // Input, int SAMPLE_NUM_CVT, the number of sample points to use. // // Input, int SAMPLE_FUNCTION_CVT, specifies how the sampling is done. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double CLUSTER_ENERGY, the estimated energy. // { double energy; int i; int j; int nearest; bool reset; double *x; x = new double [dim_num]; energy = 0.0; reset = true; for ( j = 0; j < sample_num_cvt; j++ ) { // // Generate a sampling point X. // region_sampler ( dim_num, 1, sample_num_cvt, x, sample_function_cvt, reset, seed ); reset = false; // // Find the nearest cell generator. // nearest = find_closest ( dim_num, n, x, cell_generator ); for ( i = 0; i < dim_num; i++ ) { energy = energy + pow ( x[i] - cell_generator[i+nearest*dim_num], 2 ); } } // // Add the contribution to the energy. // energy = energy / ( double ) ( sample_num_cvt ); delete [] x; return energy; } //****************************************************************************80 void cvt ( int m, int n, int sample_function_init, int sample_function_cvt, int sample_num_cvt, int maxit, int *seed, double generator[] ) //****************************************************************************80 // // Purpose: // // CVT computes a Centroidal Voronoi Tessellation. // // Discussion: // // The routine is given a set of points, called "generators", which // define a tessellation of the region into Voronoi cells. Each point // defines a cell. Each cell, in turn, has a centroid, but it is // unlikely that the centroid and the generator coincide. // // Each time this CVT iteration is carried out, an attempt is made // to modify the generators in such a way that they are closer and // closer to being the centroids of the Voronoi cells they generate. // // A large number of sample points are generated, and the nearest generator // is determined. A count is kept of how many points were nearest to each // generator. Once the sampling is completed, the location of all the // generators is adjusted. This step should decrease the discrepancy // between the generators and the centroids. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input, int SAMPLE_FUNCTION_INIT, generator initialization function: // -1, initializing function is RANDOM (C++ STDLIB library function); // 0, initializing function is UNIFORM; // 1, initializing function is HALTON; // 2, initializing function is GRID; // 3, initial values are set by the user. // // Input, int SAMPLE_FUNCTION_CVT, region sampling function: // -1, sampling function is RANDOM (C++ STDLIB library function); // 0, sampling function is UNIFORM; // 1, sampling function is HALTON; // 2, sampling function is GRID; // // Input, int SAMPLE_NUM_CVT, the number of sample points. // // Input, int MAXIT, the maximum number of correction iterations // used in the Voronoi calculation. // // Input/output, int *SEED, the random number seed. // // Input/output, double GENERATOR[M*N], the Voronoi cell generators. // On input, if SAMPLE_FUNCTION_INIT = 3, the user has initialized these. // On output, the values have been through the CVT iteration. // { double change_l2; int it; bool reset; bool verbose = true; // // If we are using the C++ random number generator, then initialize using the current seed. // if ( sample_function_init == -1 ) { srandom ( *seed ); } // // Initialize the generators. // if ( sample_function_init != 3 ) { reset = true; region_sampler ( m, n, n, generator, sample_function_init, reset, seed ); } // // Carry out the iteration. // if ( verbose ) { cout << "\n"; cout << " STEP L2 Change\n"; cout << "\n"; } for ( it = 1; it <= maxit; it++ ) { cvt_iteration ( m, n, generator, sample_num_cvt, sample_function_cvt, seed, &change_l2 ); if ( verbose ) { cout << setw(4) << it << " " << setw(10) << change_l2 << "\n"; } } return; } //****************************************************************************80 void cvt_iteration ( int m, int n, double generator[], int sample_num_cvt, int sample_function_cvt, int *seed, double *change_l2 ) //****************************************************************************80 // // Purpose: // // CVT_ITERATION takes one step of the CVT iteration. // // Discussion: // // The routine is given a set of points, called "generators", which // define a tessellation of the region into Voronoi cells. Each point // defines a cell. Each cell, in turn, has a centroid, but it is // unlikely that the centroid and the generator coincide. // // Each time this CVT iteration is carried out, an attempt is made // to modify the generators in such a way that they are closer and // closer to being the centroids of the Voronoi cells they generate. // // A large number of sample points are generated, and the nearest generator // is determined. A count is kept of how many points were nearest to each // generator. Once the sampling is completed, the location of all the // generators is adjusted. This step should decrease the discrepancy // between the generators and the centroids. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input/output, double GENERATOR[M*N], the Voronoi // cell generators. On output, these have been modified // // Input, int SAMPLE_NUM_CVT, the number of sample points. // // Input, int SAMPLE_FUNCTION_CVT, region sampling function: // -1, sampling function is RANDOM (C++ STDLIB library function); // 0, sampling function is UNIFORM; // 1, sampling function is HALTON; // 2, sampling function is GRID; // // Input/output, int *SEED, the random number seed. // // Output, double *CHANGE_L2, the L2 norm of the difference between // the input and output data. // { double *generator2; int *count; int i; int j; int k; int nearest; bool reset; double *x; // generator2 = new double[m*n]; for ( k = 0; k < m*n; k++ ) { generator2[k] = 0.0; } count = new int[n]; for ( i = 0; i < n; i++ ) { count[i] = 0; } x = new double[m]; reset = true; // // If we are using the C++ random number generator, then initialize using the current seed. // (Currently, if we are using RANDOM for both the initializing and sampling, we make this // call twice, which is inefficient and possibly misleading.) // if ( sample_function_cvt == -1 ) { srandom ( *seed ); } for ( j = 0; j < sample_num_cvt; j++ ) { // // Generate a sampling point X. // region_sampler ( m, 1, sample_num_cvt, x, sample_function_cvt, reset, seed ); reset = false; // // Find the nearest cell generator. // nearest = find_closest ( m, n, x, generator ); // // Add X to the averaging data for GENERATOR(*,NEAREST). // for ( i = 0; i < m; i++ ) { generator2[nearest*m+i] = generator2[nearest*m+i] + x[i]; } count[nearest] = count[nearest] + 1; } // // Compute the new generators. // for ( j = 0; j < n; j++ ) { if ( count[j] != 0 ) { for ( i = 0; i < m; i++ ) { generator2[j*m+i] = generator2[j*m+i] / ( ( double ) count[j] ); } } } // // Determine the change. // *change_l2 = 0.0; for ( k = 0; k < m*n; k++ ) { *change_l2 = *change_l2 + pow ( ( generator2[k] - generator[k] ), 2 ); } *change_l2 = sqrt ( *change_l2 ); // // Update. // for ( k = 0; k < m*n; k++ ) { generator[k] = generator2[k]; } delete [] count; delete [] generator2; delete [] x; return; } //****************************************************************************80 void cvt_write ( int dim_num, int n, int batch, int seed_init, int seed, char *init_string, int it_max, int it_fixed, int it_num, double it_diff, double energy, char *sample_string, int sample_num, double r[], char *file_out_name, bool comment ) //****************************************************************************80 // // Purpose: // // CVT_WRITE writes a CVT dataset to a file. // // Discussion: // // The initial lines of the file are comments, which begin with a // "#" character. // // Thereafter, each line of the file contains the M-dimensional // components of the next entry of the dataset. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points. // // Input, int BATCH, sets the maximum number of sample points // generated at one time. It is inefficient to generate the sample // points 1 at a time, but memory intensive to generate them all // at once. You might set BATCH to min ( SAMPLE_NUM, 10000 ), for instance. // // Input, int SEED_INIT, the initial random number seed. // // Input, int SEED, the current random number seed. // // Input, char *INIT_STRING, specifies how the initial // generators are chosen: // filename, by reading data from a file; // 'GRID', picking points from a grid; // 'HALTON', from a Halton sequence; // 'RANDOM', using the C++ RANDOM function; // 'UNIFORM', using a simple uniform RNG; // 'USER', call "user" routine. // // Input, int IT_MAX, the maximum number of iterations allowed. // // Input, int IT_FIXED, the number of iterations to take with a // fixed set of sample points. // // Input, int IT_NUM, the actual number of iterations taken. // // Input, double IT_DIFF, the L2 norm of the change // in the CVT coordinates on the last iteration. // // Input, double *ENERGY, the discrete "energy", divided // by the number of sample points. // // Input, char *SAMPLE_STRING, specifies how the region is sampled: // 'GRID', picking points from a grid; // 'HALTON', from a Halton sequence; // 'RANDOM', using the C++ RANDOM function; // 'UNIFORM', using a simple uniform RNG; // 'USER', call "user" routine. // // Input, int SAMPLE_NUM, the number of sampling points used on // each iteration. // // Input, double R(DIM_NUM,N), the points. // // Input, char *FILE_OUT_NAME, the name of the output file. // // Input, bool COMMENT, is true if comments may be included in the file. // { ofstream file_out; int i; int j; char *s; file_out.open ( file_out_name ); if ( !file_out ) { cout << "\n"; cout << "CVT_WRITE - Fatal error!\n"; cout << " Could not open the output file.\n"; exit ( 1 ); } s = timestring ( ); if ( comment ) { file_out << "# " << file_out_name << "\n"; file_out << "# created by routine CVT_WRITE.C" << "\n"; file_out << "# at " << s << "\n"; file_out << "#\n"; file_out << "# Dimension DIM_NUM = " << dim_num << "\n"; file_out << "# Number of points N = " << n << "\n"; file_out << "# Initial SEED_INIT = " << seed_init << "\n"; file_out << "# Current SEED = " << seed << "\n"; file_out << "# INIT = \"" << init_string << "\".\n"; file_out << "# Max iterations IT_MAX = " << it_max << "\n"; file_out << "# IT_FIXED (fixed samples) = " << it_fixed << "\n"; file_out << "# Iterations IT_NUM = " << it_num << "\n"; file_out << "# Difference IT_DIFF = " << it_diff << "\n"; file_out << "# CVT ENERGY = " << energy << "\n"; file_out << "# SAMPLE = \"" << sample_string << "\".\n"; file_out << "# Samples SAMPLE_NUM = " << sample_num << "\n"; file_out << "# Sampling BATCH size = " << batch << "\n"; file_out << "# EPSILON (unit roundoff) = " << DBL_EPSILON << "\n"; file_out << "#\n"; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { file_out << setw(10) << r[i+j*dim_num] << " "; } file_out << "\n"; } file_out.close ( ); delete [] s; return; } //****************************************************************************80 int file_column_count ( char *input_file_name ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the number of columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, separated // by spaces. There may also be some blank lines, and some comment lines, // which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILE_NAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; char line[256]; // // Open the file. // input.open ( input_file_name ); if ( !input ) { column_num = -1; cout << "\n"; cout << "FILE_COLUMN_COUNT - Fatal error!\n"; cout << " Could not open the file:\n"; cout << " \"" << input_file_name << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( input_file_name ); for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cout << "\n"; cout << "FILE_COLUMN_COUNT - Warning!\n"; cout << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( line ); return column_num; } //****************************************************************************80 int file_row_count ( char *input_file_name ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILE_NAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; char line[100]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_file_name ); if ( !input ) { cout << "\n"; cout << "FILE_ROW_COUNT - Fatal error!\n"; cout << " Could not open the input file: \"" << input_file_name << "\"\n"; exit ( 1 ); } for ( ; ; ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int find_closest ( int m, int n, double x[], double generator[] ) //****************************************************************************80 // // Purpose: // // FIND_CLOSEST finds the Voronoi cell generator closest to a point X. // // Discussion: // // This routine finds the closest Voronoi cell generator by checking every // one. For problems with many cells, this process can take the bulk // of the CPU time. Other approaches, which group the cell generators into // bins, can run faster by a large factor. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of cell generators. // // Input, double X[M], the point to be checked. // // Input, double GENERATOR[M*N], the cell generators. // // Output, int FIND_CLOSEST, the index of the nearest cell generators. // { double dist_min; double dist; int i; int j; int nearest; nearest = 0; dist_min = 0.0; for ( j = 0; j < n; j++ ) { dist = 0.0; for ( i = 0; i < m; i++ ) { dist = dist + pow ( x[i] - generator[i+j*m], 2 ); } if ( j == 0 || dist < dist_min ) { dist_min = dist; nearest = j; } } return nearest; } //****************************************************************************80 int get_seed ( void ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, int GET_SEED, a random seed value. // { # define I_MAX 2147483647 time_t clock; int ihour; int imin; int isec; int seed; struct tm *lt; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // clock = time ( &tloc ); lt = localtime ( &clock ); // // Hours is 1, 2, ..., 12. // ihour = lt->tm_hour; if ( 12 < ihour ) { ihour = ihour - 12; } // // Move Hours to 0, 1, ..., 11 // ihour = ihour - 1; imin = lt->tm_min; isec = lt->tm_sec; seed = isec + 60 * ( imin + 60 * ihour ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap ISEED from [1,43200] to [1,IMAX]. // seed = ( int ) ( ( ( double ) seed ) * ( ( double ) I_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; # undef I_MAX } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two integers. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 September 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1 and I2, two integers to be compared. // // Output, int I4_MIN, the smaller of i1 and i2. // { if ( i1 < i2 ) { return i1; } else { return i2; } } //****************************************************************************80 void i4_to_halton ( int seed, int base[], int ndim, double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HALTON computes an element of a Halton sequence. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 February 2003 // // Author: // // John Burkardt // // Reference: // // John Halton, // On the efficiency of certain quasi-random sequences of points // in evaluating multi-dimensional integrals, // Numerische Mathematik, // Volume 2, pages 84-90, 1960. // // Parameters: // // Input, int SEED, the index of the desired element. // SEED = 0 is allowed, and returns R = 0. // // Input, int BASE[NDIM], the Halton bases, which are usually // distinct prime numbers. Each base must be greater than 1. // // Input, int NDIM, the dimension of the elements of the sequence. // // Output, double R[NDIM], the SEED-th element of the Halton sequence // for the given bases. // { double base_inv; int digit; int i; int seed2; for ( i = 0; i < ndim; i++ ) { if ( base[i] <= 1 ) { cout << "\n"; cout << "I4_TO_HALTON - Fatal error!\n"; cout << " An input base is less than or equal to 1.\n"; cout << " BASE[" << i << "] = " << base[i] << "\n"; exit ( 1 ); } } for ( i = 0; i < ndim; i++ ) { seed2 = seed; base_inv = 1.0 / ( ( double ) base[i] ); r[i] = 0.0; while ( seed2 != 0 ) { digit = seed2 % base[i]; r[i] = r[i] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2 = seed2 / base[i]; } } return; } //****************************************************************************80 void lcvt_write ( int dim_num, int n, int seed_start, int sample_function_init, char* file_in_name, int sample_function_cvt, int sample_num_cvt, int cvt_it, double cvt_energy, int latin_it, double latin_energy, double cell_generator[], char *file_out_name ) //****************************************************************************80 // // Purpose: // // LCVT_WRITE writes a Latinized CVT dataset to a file. // // Discussion: // // The initial lines of the file are comments, which begin with a // "#" character. // // Thereafter, each line of the file contains the M-dimensional // components of the next entry of the dataset. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 09 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points. // // Input, int SEED_START, the initial random number seed. // // Input, int SAMPLE_FUNCTION_INIT, specifies how the initial // generators are chosen: // -1, the initialization function is RANDOM (C++ intrinsic), // 0, the initialization function is UNIFORM, // 1, the initialization function is HALTON, // 2, the initialization function is GRID, // 3, the initial values are read in from a file. // // Input, char *FILE_IN_NAME, the name of the file // from which initialization values were read for the generators, // if SAMPLE_FUNCTION_INIT = 3. // // Input, int SAMPLE_FUNCTION_CVT, specifies how the region is sampled: // -1, the sampling function is RANDOM (C++ intrinsic), // 0, the sampling function is UNIFORM, // 1, the sampling function is HALTON, // 2, the sampling function is GRID. // // Input, int SAMPLE_NUM_CVT, the number of sampling points used on // each CVT iteration. // // Input, int CVT_IT, the number of CVT iterations. // // Input, double CVT_ENERGY, the energy of the final CVT dataset. // // Input, int LATIN_IT, the number of Latin iterations. // // Input, double LATIN_ENERGY, the energy of the Latinized // CVT dataset. // // Input, double CELL_GENERATOR[DIM_NUM*N], the points. // // Input, char *FILE_OUT_NAME, the name of // the output file. // { bool comment = true; ofstream file_out; int i; int j; char *s; file_out.open ( file_out_name ); if ( !file_out ) { cout << "\n"; cout << "LCVT_WRITE - Fatal error!\n"; cout << " Could not open the output file.\n"; exit ( 1 ); } s = timestring ( ); if ( comment ) { file_out << "# " << file_out_name << "\n"; file_out << "# created by routine LCVT_WRITE.C" << "\n"; file_out << "# at " << s << "\n"; file_out << "#\n"; file_out << "# Dimension DIM_NUM = " << dim_num << "\n"; file_out << "# Number of points N = " << n << "\n"; file_out << "# EPSILON (unit roundoff) = " << DBL_EPSILON << "\n"; if ( sample_function_init == 0 || sample_function_init == 1 || sample_function_cvt == 0 || sample_function_cvt == 0 ) { file_out << "#\n"; file_out << "# Initial SEED = " << seed_start << "\n"; } file_out << "#\n"; if ( sample_function_init == -1 ) { file_out << "# Initialization by RANDOM (C++ STDLIB intrinsic).\n"; } else if ( sample_function_init == 0 ) { file_out << "# Initialization by UNIFORM.\n"; } else if ( sample_function_init == 1 ) { file_out << "# Initialization by HALTON.\n"; } else if ( sample_function_init == 2 ) { file_out << "# Initialization by GRID.\n"; } else if ( sample_function_init == 3 ) { file_out << "# Initialization from file \"" << file_in_name << "\".\n"; } if ( sample_function_cvt == -1 ) { file_out << "# Sampling by RANDOM (C++ STDLIB intrinsic).\n"; } else if ( sample_function_cvt == 0 ) { file_out << "# Sampling by UNIFORM.\n"; } else if ( sample_function_cvt == 1 ) { file_out << "# Sampling by HALTON.\n"; } else if ( sample_function_cvt == 2 ) { file_out << "# Sampling by GRID.\n"; } file_out << "# Number of sample points " << sample_num_cvt << "\n"; file_out << "# Number of CVT iterations " << cvt_it << "\n"; file_out << "# Energy of CVT dataset " << cvt_energy << "\n"; file_out << "# Number of Latin iterations " << latin_it << "\n"; file_out << "# Energy of Latin dataset " << latin_energy << "\n"; file_out << "#\n"; } for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { file_out << setw(10) << cell_generator[i+j*dim_num] << " "; } file_out << "\n"; } file_out.close ( ); delete [] s; return; } //****************************************************************************80 void param_print ( int dim_num, int n, int cvt_it, int latin_it, int seed, int seed_start, int sample_function_cvt, int sample_function_init, int sample_num_cvt ) //****************************************************************************80 // // Purpose: // // PARAM_PRINT prints the program parameters. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input, int CVT_IT, the number of CVT iterations. // // Input, int LATIN_IT, the number of Latin iterations. // // Input, int SEED, the current random number seed. // // Input, int SEED_START, the initial random number seed. // // Input, int SAMPLE_FUNCTION_CVT, specifies how the region is sampled: // -1, the sampling function is RANDOM (C++ STDLIB intrinsic), // 0, the sampling function is UNIFORM, // 1, the sampling function is HALTON, // 2, the sampling function is GRID. // // Input, int SAMPLE_FUNCTION_INIT, specifies how the initial // generators are chosen: // 0, the initialization function is UNIFORM, // 1, the initialization function is HALTON, // 2, the initialization function is GRID, // 3, the initial values are read in from a file. // // Input, int SAMPLE_NUM_CVT, the number of sample points for the // CVT iteration. // { cout << "\n"; cout << "\n"; cout << "Geometry parameters:\n"; cout << "-------------------\n"; cout << "\n"; cout << " The spatial dimension is DIM_NUM = " << dim_num << "\n"; cout << "\n"; cout << " The data lies in the unit hypercube [0,1]^DIM_NUM\n"; cout << "\n"; cout << "Latin hypercube parameters:\n"; cout << "-------------------------\n"; cout << "\n"; cout << " Number of Latin iterations: " << latin_it << "\n"; cout << "\n"; cout << "CVT Algorithm parameters:\n"; cout << "-------------------------\n"; cout << "\n"; cout << " The number of Voronoi cells to generate: " << n << "\n"; cout << " Number of CVT iterations: " << cvt_it << "\n"; cout << " Number of sampling points for CVT iteration: " << sample_num_cvt << "\n"; if ( sample_function_init == -1 ) { cout << " The generators are initialized by RANDOM (C++ STDLIB intrinsic).\n"; } else if ( sample_function_init == 0 ) { cout << " The generators are initialized by UNIFORM.\n"; } else if ( sample_function_init == 1 ) { cout << " The generators are initialized by HALTON.\n"; } else if ( sample_function_init == 2 ) { cout << " The generators are initialized by GRID.\n"; } else if ( sample_function_init == 3 ) { cout << " The generators are initialized from a file.\n"; } if ( sample_function_cvt == -1 ) { cout << " The region is sampled by RANDOM (C++ STDLIB intrinsic).\n"; } else if ( sample_function_cvt == 0 ) { cout << " The region is sampled by UNIFORM.\n"; } else if ( sample_function_cvt == 1 ) { cout << " The region is sampled by HALTON.\n"; } else if ( sample_function_cvt == 2 ) { cout << " The region is sampled by GRID.\n"; } cout << "\n"; cout << "\n"; cout << "Miscellaneous parameters:\n"; cout << "------------------------\n"; cout << "\n"; cout << " The initial random number seed was " << seed_start << "\n"; cout << " The current random number seed is " << seed << "\n"; cout << "\n"; return; } //****************************************************************************80 int prime ( int n ) //****************************************************************************80 // // Purpose: // // PRIME returns any of the first PRIME_MAX prime numbers. // // Discussion: // // PRIME_MAX is 1600, and the largest prime stored is 13499. // // Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 18 February 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964, pages 870-873. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 95-98. // // Parameters: // // Input, int N, the index of the desired prime number. // In general, is should be true that 0 <= N <= PRIME_MAX. // N = -1 returns PRIME_MAX, the index of the largest prime available. // N = 0 is legal, returning PRIME = 1. // // Output, int PRIME, the N-th prime. If N is out of range, PRIME // is returned as -1. // { # define PRIME_MAX 1600 int npvec[PRIME_MAX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 }; if ( n == -1 ) { return PRIME_MAX; } else if ( n == 0 ) { return 1; } else if ( n <= PRIME_MAX ) { return npvec[n-1]; } else { cout << "\n"; cout << "PRIME - Fatal error!\n"; cout << " Unexpected input value of n = " << n << "\n"; exit ( 1 ); } return 0; # undef PRIME_MAX } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { int k; double r; k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number! // r = ( double ) ( *seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8mat_latinize ( int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_LATINIZE "Latinizes" an R8MAT. // // Discussion: // // It is assumed, though not necessary, that the input dataset // has points that lie in the unit hypercube. // // In any case, the output dataset will have this property. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 December 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of cells. // // Input/output, double TABLE[M*N]. On input, the dataset to // be "Latinized". On output, the Latinized dataset. // { double *column; int i; int *indx; int j; column = new double[n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { column[j] = table[i+j*m]; } indx = r8vec_sort_heap_index_a ( n, column ); for ( j = 0; j < n; j++ ) { table[i+indx[j]*m] = ( double ) ( 2 * j + 1 ) / ( double ) ( 2 * n ); } delete [] indx; } delete [] column; return; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, string TITLE, a title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 April 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int i2lo_hi; int i2lo_lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } if ( ilo < 1 ) { i2lo_lo = 1; } else { i2lo_lo = ilo; } if ( ihi < m ) { i2lo_hi = m; } else { i2lo_hi = ihi; } for ( i2lo = i2lo_lo; i2lo <= i2lo_hi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; if ( m < i2hi ) { i2hi = m; } if ( ihi < i2hi ) { i2hi = ihi; } inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; if ( jlo < 1 ) { j2lo = 1; } else { j2lo = jlo; } if ( n < jhi ) { j2hi = n; } else { j2hi = jhi; } for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j - 1 << ":"; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8table_data_read ( char *input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8TABLE_DATA_READ reads the data from an R8TABLE file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with the '#' character are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, char *INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double DTABLE_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; char line[255]; double *table; double *x; input.open ( input_filename ); if ( !input ) { cout << "\n"; cout << "R8TABLE_DATA_READ - Fatal error!\n"; cout << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { input.getline ( line, sizeof ( line ) ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 int *r8vec_sort_heap_index_a ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an R8VEC. // // Discussion: // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // A(INDX(I)), I = 1 to N is sorted, // // after which A(I), I = 1 to N is sorted. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 30 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], an array to be index-sorted. // // Output, int R8VEC_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { double aval; int i; int *indx; int indxt; int ir; int j; int l; indx = new int[n]; for ( i = 1; i <= n; i++ ) { indx[i-1] = i; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt-1]; } else { indxt = indx[ir-1]; aval = a[indxt-1]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; for ( i = 0; i < n; i++ ) { indx[i] = indx[i] - 1; } return indx; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]-1] < a[indx[j]-1] ) { j = j + 1; } } if ( aval < a[indx[j-1]-1] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } } //****************************************************************************80 void region_sampler ( int m, int n, int n_total, double x[], int sample_function, bool reset, int *seed ) //****************************************************************************80 // // Purpose: // // REGION_SAMPLER returns a sample point in the physical region. // // Discussion: // // This routine original interfaced with a lower routine called // TEST_REGION, which tested whether the points generated in the // bounding box were actually inside a possibly smaller physical // region of interest. It's been a long time since that option // was actually used, so it's been dropped. // // A point is chosen in the bounding box, either by a uniform random // number generator, or from a vector Halton sequence. // // The entries of the local vector HALTON_BASE should be distinct primes. // Right now, we're assuming M is no greater than 3. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of points to generate now. // // Input, int N_TOTAL, the total number of points to generate. // // Output, double X[M*N], the sample points. // // Input, int SAMPLE_FUNCTION, region sampling function: // -1, sampling function is RANDOM (C++ STDLIB library function); // 0, sampling function is UNIFORM; // 1, sampling function is HALTON; // 2, sampling function is GRID; // 3, sample points are generated elsewhere, and this routine is skipped. // // Input, bool RESET, if true, then this is the first call for a particular // calculation, and initialization should be taken care of. // // Input/output, int *SEED, the random number seed. // { double exponent; static int *halton_base = NULL; static int halton_seed = 1; int i; int j; int k; static int ngrid; static int rank; static int *tuple = NULL; // if ( sample_function == -1 ) { for ( k = 0; k < m*n; k++ ) { x[k] = ( double ) random ( ) / ( double ) RAND_MAX; } } else if ( sample_function == 0 ) { for ( k = 0; k < m*n; k++ ) { x[k] = r8_uniform_01 ( seed ); } } else if ( sample_function == 1 ) { if ( reset ) { halton_seed = 1; reset = false; if ( halton_base ) { delete [] halton_base; } halton_base = new int[m]; for ( i = 0; i < m; i++ ) { halton_base[i] = prime ( i+1 ); } } // // The unusual syntax X+J*M essentially means pass the address of the beginning // of the J-th vector of length M in X. // for ( j = 0; j < n; j++ ) { i4_to_halton ( halton_seed, halton_base, m, x+j*m ); halton_seed = halton_seed + 1; } } else if ( sample_function == 2 ) { if ( reset ) { rank = 0; exponent = 1.0 / ( ( double ) ( m ) ); ngrid = ( int ) pow ( ( double ) n_total, exponent ); if ( pow ( ( double ) ngrid, m ) < n_total ) { ngrid = ngrid + 1; } if ( tuple != NULL ) { delete [] tuple; } tuple = new int[m]; reset = false; } for ( j = 0; j < n; j++ ) { tuple_next_fast ( ngrid, m, rank, tuple ); rank = rank + 1; for ( i = 0; i < m; i++ ) { x[j*m+i] = ( ( double ) ( 2 * tuple[i] - 1 ) ) / ( ( double ) ( 2 * ngrid ) ); } } } else if ( sample_function == 3 ) { } else { cout << "\n"; cout << "REGION_SAMPLER - Fatal error!\n"; cout << " Illegal SAMPLE_FUNCTION = " << sample_function << "\n"; exit ( 1 ); } return; } //****************************************************************************80 bool s_eqi ( char *s1, char *s2 ) //****************************************************************************80 // // Purpose: // // S_EQI reports whether two strings are equal, ignoring case. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S1, char *S2, pointers to two strings. // // Output, bool S_EQI, is true if the strings are equal. // { int i; int nchar; int nchar1; int nchar2; nchar1 = strlen ( s1 ); nchar2 = strlen ( s2 ); nchar = i4_min ( nchar1, nchar2 ); // // The strings are not equal if they differ over their common length. // for ( i = 0; i < nchar; i++ ) { if ( ch_cap ( s1[i] ) != ch_cap ( s2[i] ) ) { return false; } } // // The strings are not equal if the longer one includes nonblanks // in the tail. // if ( nchar < nchar1 ) { for ( i = nchar; i < nchar1; i++ ) { if ( s1[i] != ' ' ) { return false; } } } else if ( nchar < nchar2 ) { for ( i = nchar; i < nchar2; i++ ) { if ( s2[i] != ' ' ) { return false; } } } return true; } //****************************************************************************80 int s_len_trim ( char* s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char* t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double s_to_r8 ( char *s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 07 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_D, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( char *s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 February 2001 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { bool error; int i; int lchar; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } //****************************************************************************80 int s_word_count ( char *s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int nword; nword = 0; blank = true; while ( *s ) { if ( *s == ' ' ) { blank = true; } else if ( blank ) { nword = nword + 1; blank = false; } (*s)++; } return nword; } //****************************************************************************80 int test_region ( double x[], int dim_num ) //****************************************************************************80 // // Purpose: // // TEST_REGION determines if a point is within the physical region. // // Discussion: // // Using a simple routine like this is only appropriate for a simple // region that can be easily defined by user formulas. // // Computation of the "on-the-boundary" case is not considered important. // Only "inside" or "outside" is essential. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double X[DIM_NUM], the point to be checked. // // Input, int DIM_NUM, the dimension of the space. // // Output, int TEST_REGION, indicates the status of the point: // -1: the point is on the boundary of the region. // 0: the point is outside the region. // +1: the point is inside the region. // { int value; value = 1; return value; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 char *timestring ( void ) //****************************************************************************80 // // Purpose: // // TIMESTRING returns the current YMDHMS date as a string. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, char *TIMESTRING, a string containing the current YMDHMS date. // { # define TIME_SIZE 40 const struct tm *tm; time_t now; char *s; now = time ( NULL ); tm = localtime ( &now ); s = new char[TIME_SIZE]; strftime ( s, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); return s; # undef TIME_SIZE } //****************************************************************************80 void tuple_next_fast ( int m, int n, int rank, int x[] ) //****************************************************************************80 // // Purpose: // // TUPLE_NEXT_FAST computes the next element of a tuple space, "fast". // // Discussion: // // The elements are N vectors. Each entry is constrained to lie // between 1 and M. The elements are produced one at a time. // The first element is // (1,1,...,1) // and the last element is // (M,M,...,M) // Intermediate elements are produced in lexicographic order. // // Example: // // N = 2, // M = 3 // // INPUT OUTPUT // ------- ------- // Rank X X // ---- --- --- // 0 * * 1 1 // 1 1 1 1 2 // 2 1 2 1 3 // 3 1 3 2 1 // 4 2 1 2 2 // 5 2 2 2 3 // 6 2 3 3 1 // 7 3 1 3 2 // 8 3 2 3 3 // 9 3 3 1 1 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 28 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the maximum entry. // // Input, int N, the number of components. // // Input, int RANK, indicates the rank of the tuples. // On the very first call only, it is necessary that // the user set RANK = 0. // // Input/output, int X[N], on input the previous tuple. // On output, the next tuple. // { static int *base = NULL; int i; if ( rank == 0 ) { if ( base ) { delete [] base; } base = new int[n]; base[n-1] = 1; for ( i = n-2; 0 <= i; i-- ) { base[i] = base[i+1] * m; } } for ( i = 0; i < n; i++ ) { x[i] = ( ( rank / base[i] ) % m ) + 1; } return; }