# include # include # include # include # include using namespace std; # include "dislin.h" # include "discpp.h" int main ( int argc, char *argv[] ); float r4_uniform_01 ( int *seed ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // RANDOM_SCATTER uses DISLIN to draw a scatterplot of 2D data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 21 April 2011 // // Author: // // John Burkardt // // Reference: // // Helmut Michels, // The Data Plotting Software DISLIN - version 10.4, // Shaker Media GmbH, January 2010, // ISBN13: 978-3-86858-517-9. // { # define N 500 int i; int j; int pat; float s; int seed; float xvec[N]; float yvec[N]; timestamp ( ); cout << "\n"; cout << "RANDOM_SCATTER:\n"; cout << " C++ version:\n"; cout << " Use DISLIN to make a scatter plot of random data.\n"; // // Generate the data. // We average 4 random values to get data that tends to cluster // near (0.5,0.5). // seed = 123456789; for ( i = 0; i < N; i++ ) { s = 0.0; for ( j = 0; j < 4; j++ ) { s = s + r4_uniform_01 ( &seed ); } xvec[i] = s / 4.0; } for ( i = 0; i < N; i++ ) { s = 0.0; for ( j = 0; j < 4; j++ ) { s = s + r4_uniform_01 ( &seed ); } yvec[i] = s / 4.0; } // // Specify the format of the output file. // metafl ( "png" ); // // Indicate that new data overwrites old data. // filmod ( "delete" ); // // Specify the name of the output graphics file. // setfil ( "random_scatter.png" ); // // Choose the page size and orientation. // 'USA' is 2160 plot units wide and 2790 plot units high. // 'P' requests PROFILE rather than LANDSCAPE orientation. // setpag ( "usap" ); // // For PNG output, reverse the default black background to white. // scrmod ( "reverse" ); // // Open DISLIN. // disini ( ); // // Plot a border around the page. // pagera ( ); // // Use the COMPLEX font. // complx ( ); // // Define the X and Y sizes of the axis system in plot units. // axslen ( 1800, 1800 ); // // Specify how the lower X, left Y, upper X and right Y axes are labeled. // setgrf ( "line", "line", "line", "line" ); // // Set the axis origin 180 plot units to the right, and 2610 plot units DOWN. // axspos ( 180, 2610 ); // // Relate the physical coordinates to the axes, and specify tick marks. // graf ( 0.0, 1.0, 0.0, 0.1, 0.0, 1.0, 0.0, 0.1 ); // // Add a grid, with one grid line for every tick mark in the X and Y axes. // grid ( 1, 1 ); // // Select the shading pattern. // pat = 16; shdpat ( pat ); // // Set the color to blue. // color ( "blue" ); // // At every data point, draw a circle of radius 0.01. // for ( i = 0; i < N; i++ ) { rlcirc ( xvec[i], yvec[i], 0.01 ); } // // Select character height in plot units. // height ( 50 ); // // Set the title color to black. // We say "white" because these colors were reversed. // color ( "white" ); // // Define the axis titles. // titlin ( "Scatter plot of random data", 1 ); // // Draw the title. // title ( ); // // End this plot. // endgrf ( ); // // Close DISLIN. // disfin ( ); // // Terminate. // cout << "\n"; cout << "RANDOM_SCATTER:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 float r4_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R4_UNIFORM_01 returns a unit pseudorandom R4. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2**31 - 1 ) // r4_uniform_01 = seed / ( 2**31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R4_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 16 November 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation // edited by Jerry Banks, // Wiley Interscience, page 95, 1998. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, float R4_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { int k; float value; if ( *seed == 0 ) { cerr << "\n"; cerr << "R4_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } // // Although SEED can be represented exactly as a 32 bit integer, // it generally cannot be represented exactly as a 32 bit real number. // value = ( float ) ( *seed ) * 4.656612875E-10; return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 March 2018 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }