13 June 2021 07:42:54 PM glomin_test(): C++ version glomin() seeks a global minimizer of a function F(X) in an interval [A,B], given some upper bound M for the second derivative of F. Tolerances: e = 1.49012e-08 t = 1.49012e-08 h_01(x) = 2 - x M = 0 A X B F(A) F(X) F(B) 7 9 9 -5 -7 -7 Number of calls to F = 2 h_01(x) = 2 - x M = 100 A X B F(A) F(X) F(B) 7 9 9 -5 -7 -7 Number of calls to F = 15 h_02(x) = x * x M = 2 A X B F(A) F(X) F(B) -1 0 2 1 0 4 Number of calls to F = 4 h_02(x) = x * x M = 2.1 A X B F(A) F(X) F(B) -1 0 2 1 0 4 Number of calls to F = 8 h_03(x) = x^3 + x^2 M = 14 A X B F(A) F(X) F(B) -0.5 5.71127e-07 2 0.125 3.26186e-13 12 Number of calls to F = 37 h_03(x) = x^3 + x^2 M = 28 A X B F(A) F(X) F(B) -0.5 9.81033e-06 2 0.125 9.62435e-11 12 Number of calls to F = 47 h_04(x) = ( x + sin(x) ) * exp(-x*x) M = 72 A X B F(A) F(X) F(B) -10 -0.679579 10 -3.5177e-43 -0.824239 3.5177e-43 Number of calls to F = 221 h_05(x) = ( x - sin(x) ) * exp(-x*x) M = 72 A X B F(A) F(X) F(B) -10 -1.19514 10 -3.92246e-43 -0.0634905 3.92246e-43 Number of calls to F = 458 glomin_test(): Normal end of execution. 13 June 2021 07:42:54 PM