# include # include # include # include # include using namespace std; int main ( ); void assemble ( double adiag[], double aleft[], double arite[], double f[], double h[], int n, int indx[], int node[], int nu, int nl, int nquad, int nmax, double ul, double ur, double wquad[], double xn[], double xquad[] ); double ff ( double x ); void geometry ( double h[], int ibc, int indx[], int n, int nl, int nmax, int node[], int nquad, int *nu, double wquad[], double xn[], double xquad[] ); double get_alpha ( void ); double get_beta ( void ); int get_problem ( void ); void init ( int *ibc, int n, double *tol, double *ul, double *ur, double *xl, double xn[], double *xr ); void output ( double f[], int ibc, int indx[], int n, int nu, double ul, double ur, double xn[] ); void phi ( int il, double x, double *phii, double *phiix, double xleft, double xrite ); double pp ( double x ); void prsys ( double adiag[], double aleft[], double arite[], double f[], int nu ); double qq ( double x ); void solve ( double adiag[], double aleft[], double arite[], double f[], int nu ); void solvex ( double adiag[], double aleft[], double arite[], double f[], double h[], int ibc, int indx[], int kount, int n, int nl, int nmax, int node[], int nquad, int *nu, double ul, double ur, double wquad[], double xn[], double xquad[] ); void solvey ( double eta[], double f[], double h[], int n, int nu, double ul, double ur, double xn[] ); int subdiv ( double eta[], int kount, int *n, int nmax, double tol, double xn[] ); void timestamp ( ); double uexact ( double x ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM1D_ADAPTIVE. // // Discussion: // // FEM1D_ADAPTIVE solves a 1D problem using an adaptive finite element method. // // The equation to be treated is: // // -d/dx ( P(x) * dU(x)/dx ) + Q(x) * U(x) = F(x) // // by the finite-element method using piecewise linear basis // functions. // // An adaptive method is used to try to reduce the maximum // error by refining the mesh in certain places. // // Here U is an unknown scalar function of X defined on the // interval [XL,XR], and P, Q and F are given functions of X. // // The values of U at XL and XR are also specified. // // The interval [XL,XR] is "meshed" with N+1 points, // // XN(0) = XL, XN(1) = XL+H, XN(2) = XL+2*H, ..., XN(N) = XR. // // This creates N subintervals, with interval I having endpoints // XN(I-1) and XN(I). // // // The algorithm tries to guarantee a certain amount // of accuracy by examining the current solution, estimating the error // in each subinterval, and, if necessary, subdividing one or more // subintervals and repeating the calculation. // // We can think of the adaptive part of the algorithm as a refined // problem. The program re-solves the problem on the pair of // intervals J and J+1, which extend from node J-1 to node J+1. // The values of U that were just computed at nodes J-1 and J+1 // will be used as the boundary values for this refined problem. // The intervals J and J+1 will each be evenly divided into NY // smaller subintervals. This boundary value problem is solved, // and the derivatives of the original and refined solutions are // then compared to get an estimate of the error. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // double ETA(N). // ETA(I) is the error estimate for interval I. It is computed // as the sum of two quantities, one associated with the left // and one with the right node of the interval. // // double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // double FY(M). // FY is the right hand side of the linear system of the refined // problem. // // double H(N) // H(I) is the length of subinterval I. This code uses // equal spacing for all the subintervals. // // double HY(M). // HY(I) is the length of subinterval I in the refined problem. // // int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // int IBCY. // IBCY declares the boundary conditions for the refined problem // which should always be that the value of U is specified at // both the left and right endpoints. This corresponds to a // value of IBCY = 3. // // int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // int INDY(0:M). // INDY(I) records the index of the unknown associated with // node I for the refined problem. // // int JADD(N). // JADD(I) is 1 if the error estimates show that interval I // should be subdivided. // // int KOUNT, the number of adaptive steps that have been taken. // // int M. // M is the number of subintervals used in the refined problem. // M is equal to NY for computations centered at node 0 or node N, // and otherwise, M is equal to 2*NY. // // int N // The number of subintervals into which the interval // [XL,XR] is broken. // // int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // int NMAX, the maximum number of unknowns that can be handled. // // int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // int NODEY(NL,M). // NODEY performs the same function for the refined problem that // NODE performs for the full problem, recording the node numbers // associated with a particular subinterval. // // int NQUAD // The number of quadrature points used in a subinterval. // // int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // int NUY. // The number of unknowns in the refined problem. // // int NY. // NY is the number of subintervals into which a given interval // will be subdivided, before solving the refined probelm. // // int PROBLEM, chooses the problem to be solved. // The user must choose this value by setting it in routine GETPRB. // * 1, u = x, p = 1, q = 0, f = 0, ibc = 3, ul = 0, ur = 1. // The program should find the solution exactly, and the // adaptive code should find that there is no reason to // subdivide any interval. // * 2, u = x*x, p = 1, q = 0, f = -2, ibc = 3, ul = 0, ur = 1. // This problem should find the solution exactly, and // the adaptive code should again find there is nothing // to do. // *3, u = sin(pi*x/2), p = 1, q = 0, ibc = 3, f = 0.25*pi*pi*sin(pi*x/2), // ul = 0, ur = 1. // *4, u = cos(pi*x/2), p = 1, q = 0, ibc = 3, f = 0.25*pi*pi*cos(pi*x/2), // ul = 1, ur = 0. // *5: u = x**(beta+2)/((beta+2)*(beta+1)), p = 1, q = 1, ibc = 3, // f = -x**beta + (x**(beta+2))/((beta+2)*(beta+1)), // ul = 0, ur = 1/((beta+2)*(beta+1)) // (beta must be greater than -2, and not equal to -1) // *6: u = atan((x-0.5)/alpha), p = 1, q = 0, ibc = 3, // f = 2*alpha*(x-0.5) / (alpha**2 + (x-0.5)**2) **2, // ul = u(0), ur = u(1) // // int STATUS, reports status of subdivision. // 0, a new subdivision was carried out. // 1, no more subdivisions are needed. // -1, no more subdivisions can be carried out. // // double TOL. // A tolerance that is used to determine whether the estimated // error in an interval is so large that it should be subdivided // and the problem solved again. // // double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // double WQUAD(NQUAD). // WQUAD(I) is the weight associated with the I-th point // of an NQUAD point Gaussian quadrature rule. // // double XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // double XQUAD(NQUAD,NMAX), the I-th quadrature point // in interval J. // // double XQUADY(NQUAD,NMAY ), the I-th quadrature point // in subinterval J of the refined problem. // // double XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // // Workspace, double precision XT(0:NMAX), used to compute a new // set of nodes. // // double YN(0:M). // YN(I) is the location of the I-th node in the refined // problem. // { # define NL 2 # define NMAX 30 # define NQUAD 2 double alpha; double adiag[NMAX+1]; double aleft[NMAX+1]; double arite[NMAX+1]; double beta; double eta[NMAX]; double f[NMAX+1]; double h[NMAX]; int ibc; int indx[NMAX+1]; int kount; int n; int node[NL*NMAX]; int nu; int problem; int status; double tol; double ul; double ur; double wquad[NQUAD]; double xl; double xn[NMAX+1]; double xquad[NQUAD*NMAX]; double xr; timestamp ( ); cout << "\n"; cout << "FEM1D_ADAPTIVE\n"; cout << " C++ version\n"; cout << "\n"; cout << "Solve the two-point boundary value problem:\n"; cout << "\n"; cout << " -d/dx ( P(x) * dU(x)/dx ) + Q(x) * U(x) = F(x)\n"; cout << "\n"; cout << "on the interval [0,1], specifying the value\n"; cout << "of U at each endpoint.\n"; cout << "\n"; cout << " The number of basis functions per element is " << NL << "\n"; cout << "\n"; cout << " The number of quadrature points per element is " << NQUAD << "\n"; problem = get_problem ( ); cout << "\n"; cout << " Problem index = " << problem << "\n"; cout << "\n"; if ( problem == 1 ) { cout << "\n"; cout << " \"Linear\" problem:\n"; cout << " (No refinement needed)\n"; cout << "\n"; cout << " U(X) = X\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 0.0\n"; cout << " F(X) = 0.0\n"; cout << " IBC = 3\n"; cout << " UL = 0.0\n"; cout << " UR = 1.0\n"; } else if ( problem == 2 ) { cout << "\n"; cout << " \"Quadratic\" problem:\n"; cout << " (No refinement needed)\n"; cout << "\n"; cout << " U(X) = X*X\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 0.0\n"; cout << " F(X) = -2.0\n"; cout << " IBC = 3\n"; cout << " UL = 0.0\n"; cout << " UR = 1.\n"; } else if ( problem == 3 ) { cout << "\n"; cout << " \"SINE\" problem:\n"; cout << "\n"; cout << " U(X) = SIN(PI*X/2)\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 0.0\n"; cout << " F(X) = PI*PI*SIN(PI*X/2)/4\n"; cout << " IBC = 3\n"; cout << " UL = 0.0\n"; cout << " UR = 1.0\n"; } else if ( problem == 4 ) { cout << "\n"; cout << " \"COSINE\" problem:\n"; cout << "\n"; cout << " U(X) = COS(PI*X/2)\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 0.0\n"; cout << " F(X) = PI*PI*COS(PI*X/2)/4\n"; cout << " IBC = 3\n"; cout << " UL = 0.0\n"; cout << " UR = 1.0\n"; } else if ( problem == 5 ) { beta = get_beta ( ); cout << "\n"; cout << " \"RHEINBOLDT\" problem:\n"; cout << "\n"; cout << " U(X) = X**(B+2)/((B+2)*(B+1))\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 1.0\n"; cout << " F(X) = -X**B+(X**B+2))/((B+2)*(B+1))\n"; cout << " IBC = 3\n"; cout << " UL = 0.0\n"; cout << " UR = 1/((B+2)*(B+1))\n"; cout << " B = " << beta << "\n"; } else if ( problem == 6 ) { alpha = get_alpha ( ); cout << "\n"; cout << " \"ARCTAN\" problem:\n"; cout << "\n"; cout << " U(X) = ATAN((X-0.5)/A)\n"; cout << " P(X) = 1.0\n"; cout << " Q(X) = 0.0\n"; cout << " F(X) = 2*A*(X-0.5)/(A**2+(X-0.5)**2)**2\n"; cout << " IBC = 3\n"; cout << " UL = ATAN(-0.5/A)\n"; cout << " UR = ATAN( 0.5/A)\n"; cout << " A = " << alpha << "\n"; } // // Start out with just 4 subintervals. // n = 4; // // Initialize values that define the problem. // init ( &ibc, n, &tol, &ul, &ur, &xl, xn, &xr ); // // Start the iteration counter off at 0. // kount = 0; // // Begin the next iteration. // for ( ; ; ) { kount = kount + 1; cout << "\n"; cout << " Begin new iteration with " << n << " nodes.\n"; cout << "\n"; // // Solve the regular problem. // solvex ( adiag, aleft, arite, f, h, ibc, indx, kount, n, NL, NMAX, node, NQUAD, &nu, ul, ur, wquad, xn, xquad ); // // Solve N subproblems to get the error estimators. // solvey ( eta, f, h, n, nu, ul, ur, xn ); // // Examine the error estimators, and see how many intervals should // be subdivided. // status = subdiv ( eta, kount, &n, NMAX, tol, xn ); if ( status != 0 ) { break; } } // // Terminate. // cout << "\n"; cout << "FEM1D_ADAPTIVE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef NL # undef NMAX # undef NQUAD } //****************************************************************************80 void assemble ( double adiag[], double aleft[], double arite[], double f[], double h[], int n, int indx[], int node[], int nu, int nl, int nquad, int nmax, double ul, double ur, double wquad[], double xn[], double xquad[] ) //****************************************************************************80 // // Purpose: // // ASSEMBLE assembles the global matrix. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 29 April 2007 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // Output, double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Output, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Output, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // Input, double H(N) // H(I) is the length of subinterval I. This code uses // equal spacing for all the subintervals. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NQUAD // The number of quadrature points used in a subinterval. // // Input, int NMAX, the maximum number of unknowns that can be handled. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double WQUAD(NQUAD). // WQUAD(I) is the weight associated with the I-th point // of an NQUAD point Gaussian quadrature rule. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Input, double XQUAD(NQUAD,NMAX), the I-th quadrature point // in interval J. // { double aij; double he; int i; int ie; int ig; int il; int iq; int iu; int jg; int jl; int ju; double phii; double phiix; double phij; double phijx; double wquade; double x; double xleft; double xquade; double xrite; // // Zero out the entries. // for ( i = 0; i < nu; i++ ) { f[i] = 0.0; } for ( i = 0; i < nu; i++ ) { aleft[i] = 0.0; } for ( i = 0; i < nu; i++ ) { arite[i] = 0.0; } for ( i = 0; i < nu; i++ ) { adiag[i] = 0.0; } // // For each interval, // for ( ie = 0; ie < n; ie++ ) { he = h[ie]; xleft = xn[node[0+ie*2]]; xrite = xn[node[1+ie*2]]; // // For each quadrature point in the interval, // for ( iq = 0; iq < nquad; iq++ ) { xquade = xquad[iq+ie*nquad]; wquade = wquad[iq]; // // Pick a basis function which defines the equation, // for ( il = 1; il <= nl; il++ ) { ig = node[il-1+ie*nl]; iu = indx[ig]; if ( 0 < iu ) { phi ( il, xquade, &phii, &phiix, xleft, xrite ); f[iu-1] = f[iu-1] + he * wquade * ff ( xquade ) * phii; // // Take care of boundary conditions specifying the value of U'. // if ( ig == 0 ) { x = 0.0; f[iu-1] = f[iu-1] - pp ( x ) * ul; } else if ( ig == n ) { x = 1.0; f[iu-1] = f[iu-1] + pp ( x ) * ur; } // // Pick a basis function which defines the coefficient // being computed. // for ( jl = 1; jl <= nl; jl++ ) { jg = node[jl-1+ie*nl]; ju = indx[jg]; phi ( jl, xquade, &phij, &phijx, xleft, xrite ); aij = he * wquade * ( pp ( xquade ) * phiix * phijx + qq ( xquade ) * phii * phij ); // // Decide where the coefficient is to be added. // if ( ju <= 0 ) { if ( jg == 0 ) { f[iu-1] = f[iu-1] - aij * ul; } else if ( jg == n ) { f[iu-1] = f[iu-1] - aij * ur; } } else if ( iu == ju ) { adiag[iu-1] = adiag[iu-1] + aij; } else if ( ju < iu ) { aleft[iu-1] = aleft[iu-1] + aij; } else { arite[iu-1] = arite[iu-1] + aij; } } } } } } return; } //****************************************************************************80 double ff ( double x ) //****************************************************************************80 // // Purpose: // // FF evaluates the function F in the differential equation. // // Discussion: // // This is the function F(X) that appears on the right hand // side of the equation: // // -d/dx ( P(x) * dU(x)/dx ) + Q(x) * U(x) = F(x) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double FF, the value of F(X). // { double alpha; double beta; int problem; double pi = 3.141592653589793; double value; // // Find out which problem we're working on. // problem = get_problem ( ); if ( problem == 1 ) { value = 0.0; } else if ( problem == 2 ) { value = -2.0 * x; } else if ( problem == 3 ) { value = 0.25 * pi * pi * sin ( 0.5 * pi * x ); } else if ( problem == 4 ) { value = 0.25 * pi * pi * cos ( 0.5 * pi * x ); } else if ( problem == 5 ) { beta = get_beta ( ); value = - pow ( x, beta ) + ( pow ( x, beta + 2.0 ) ) / ( ( beta + 2.0 ) * ( beta + 1.0 ) ); } else if ( problem == 6 ) { alpha = get_alpha ( ); value = 2.0 * alpha * ( x - 0.5 ) / pow ( alpha * alpha + ( x - 0.5 ) * ( x - 0.5 ), 2 ); } return value; } //****************************************************************************80 void geometry ( double h[], int ibc, int indx[], int n, int nl, int nmax, int node[], int nquad, int *nu, double wquad[], double xn[], double xquad[] ) //****************************************************************************80 // // Purpose: // // GEOMETRY sets up some of the geometric information for the problem. // // Discussion: // // Note, however, that the location of the nodes // is done outside of this routine, and, in fact, before this // routine is called. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double H(N) // H(I) is the length of subinterval I. This code uses // equal spacing for all the subintervals. // // Input, int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Output, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NMAX, the maximum number of unknowns that can be handled. // // Output, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NQUAD // The number of quadrature points used in a subinterval. // // Output, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Output, double WQUAD(NQUAD). // WQUAD(I) is the weight associated with the I-th point // of an NQUAD point Gaussian quadrature rule. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Output, double XQUAD(NQUAD,NMAX), the I-th quadrature point // in interval J. // { double alfa; int i; int igl; int igr; double xl; double xr; // // Store in NODE the fact that interval I has node I-1 // as its left endpoint, and node I as its right endpoint. // for ( i = 0; i < n; i++ ) { node[0+i*2] = i; node[1+i*2] = i + 1; } // // For every node that is associated with an unknown, we // record the number of the unknown in INDX. // *nu = 0; for ( i = 0; i <= n; i++ ) { if ( i == 0 && ( ibc == 1 || ibc == 3 ) ) { indx[i] = -1; } else if ( i == n && ( ibc == 2 || ibc == 3 ) ) { indx[i] = -1; } else { *nu = *nu + 1; indx[i] = *nu; } } // // We compute the width of each interval. // for ( i = 0; i < n; i++ ) { igl = node[0+i*2]; igr = node[1+i*2]; h[i] = xn[igr] - xn[igl]; } // // We compute the location of the quadrature points in each // interval. // for ( i = 0; i < n; i++ ) { xl = xn[node[0+i*2]]; xr = xn[node[1+i*2]]; if ( nquad == 1 ) { xquad[0+i*nquad] = 0.5 * ( xl + xr ); } else if ( nquad == 2 ) { alfa = -0.577350; xquad[0+i*nquad] = ( ( 1.0 - alfa ) * xl + ( 1.0 + alfa ) * xr ) / 2.0; alfa = +0.577350; xquad[1+i*nquad] = ( ( 1.0 - alfa ) * xl + ( 1.0 + alfa ) * xr ) / 2.0; } else if ( nquad == 3 ) { alfa = -0.774597; xquad[0+i*nquad] = ( ( 1.0 - alfa ) * xl + ( 1.0 + alfa ) * xr ) / 2.0; xquad[1+i*nquad] = 0.5 * ( xl + xr ); alfa = +0.774597; xquad[2+i*nquad] = ( ( 1.0 - alfa ) * xl + ( 1.0 + alfa ) * xr ) / 2.0; } } // // Store the weights for the quadrature rule. // if ( nquad == 1 ) { wquad[0] = 1.0; } else if ( nquad == 2 ) { wquad[0] = 0.5; wquad[1] = 0.5; } else if ( nquad == 3 ) { wquad[0] = 4.0 / 9.0; wquad[1] = 5.0 / 18.0; wquad[2] = 4.0 / 9.0; } return; } //****************************************************************************80 double get_alpha ( void ) //****************************************************************************80 // // Purpose: // // GET_ALPHA returns the value of ALPHA, for use by problem 6. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double GET_ALPHA, the value of ALPHA. // { double value; value = 0.01; return value; } //****************************************************************************80 double get_beta ( void ) //****************************************************************************80 // // Purpose: // // GET_BETA returns the value of BETA, for use by problem 5. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double VALUE, the value of BETA. // { double value; value = -0.9; return value; } //****************************************************************************80 int get_problem ( void ) //****************************************************************************80 // // Purpose: // // GETPRB returns the value of the current problem number. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, int GET_PROBLEM, the index of the problem. // { int value; value = 6; return value; } //****************************************************************************80 void init ( int *ibc, int n, double *tol, double *ul, double *ur, double *xl, double xn[], double *xr ) //****************************************************************************80 // // Purpose: // // INIT initializes some parameters that define the problem. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, int *IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Output, double *TOL. // A tolerance that is used to determine whether the estimated // error in an interval is so large that it should be subdivided // and the problem solved again. // // Output, double *UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Output, double *UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Output, double *XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // Output, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Output, double *XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // { double beta; int i; int problem; *tol = 0.01; // // Find out which problem we're working on. // problem = get_problem ( ); // // Set the boundary conditions for the problem, and // print out its title. // if ( problem == 1 ) { *ibc = 3; *ul = 0.0; *ur = 1.0; *xl = 0.0; *xr = 1.0; cout << "\n"; cout << "Exact solution is U = X\n"; } else if ( problem == 2 ) { *ibc = 3; *ul = 0.0; *ur = 1.0; *xl = 0.0; *xr = 1.0; cout << "\n"; cout << "Exact solution is U = X*X\n"; } else if ( problem == 3 ) { *ibc = 3; *ul = 0.0; *ur = 1.0; *xl = 0.0; *xr = 1.0; cout << "\n"; cout << "Exact solution is U = SIN(PI*X/2)\n"; } else if ( problem == 4 ) { *ibc = 3; *ul = 1.0; *ur = 0.0; *xl = 0.0; *xr = 1.0; cout << "\n"; cout << "Exact solution is U = COS(PI*X/2)\n"; } else if ( problem == 5 ) { *ibc = 3; beta = get_beta ( ); *ul = 0.0; *ur = 1.0 / ( ( beta + 2.0 ) * ( beta + 1.0 ) ); *xl = 0.0; *xr = 1.0; cout << "\n"; cout << "Rheinboldt problem\n"; } else if ( problem == 6 ) { *ibc = 3; *xl = 0.0; *xr = 1.0; *ul = uexact ( *xl ); *ur = uexact ( *xr ); cout << "\n"; cout << "Arctangent problem\n"; } // // The nodes are defined here, and not in the geometry routine. // This is because each new iteration chooses the location // of the new nodes in a special way. // for ( i = 0; i <= n; i++ ) { xn[i] = ( ( double ) ( n - i ) * ( *xl ) + ( double ) ( i ) * ( *xr ) ) / ( double ) ( n ); } cout << "The equation is to be solved for \n"; cout << "X greater than " << *xl << "\n"; cout << " and less than " << *xr << "\n"; cout << "\n"; cout << "The boundary conditions are:\n"; cout << "\n"; if ( *ibc == 1 || *ibc == 3 ) { cout << " At X = XL, U = " << *ul << "\n"; } else { cout << " At X = XL, U' = " << *ul << "\n"; } if ( *ibc == 2 || *ibc == 3 ) { cout << " At X = XR, U= " << *ur << "\n"; } else { cout << " At X = XR, U' = " << *ur << "\n"; } return; } //****************************************************************************80 void output ( double f[], int ibc, int indx[], int n, int nu, double ul, double ur, double xn[] ) //****************************************************************************80 // // Purpose: // // OUTPUT prints out the computed solution. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // Input, int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // { double error; int i; double u; double uex; cout << "\n"; cout << "Node X(I) U(X(I)) Uexact Error\n"; cout << "\n"; for ( i = 0; i <= n; i++ ) { if ( i == 0 ) { if ( ibc == 1 || ibc == 3 ) { u = ul; } else { u = f[indx[i]-1]; } } else if ( i == n ) { if ( ibc == 2 || ibc == 3 ) { u = ur; } else { u = f[indx[i]-1]; } } else { u = f[indx[i]-1]; } uex = uexact ( xn[i] ); error = u - uex; cout << " " << setw(4) << i << " " << setw(12) << xn[i] << " " << setw(12) << u << " " << setw(12) << uex << " " << setw(12) << error << "\n"; } return; } //****************************************************************************80 void phi ( int il, double x, double *phii, double *phiix, double xleft, double xrite ) //****************************************************************************80 // // Purpose: // // PHI evaluates a linear basis function and its derivative. // // Discussion: // // The functions are evaluated at a point X in an interval. In any // interval, there are just two basis functions. The first // basis function is a line which is 1 at the left endpoint // and 0 at the right. The second basis function is 0 at // the left endpoint and 1 at the right. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int IL, the local index of the basis function. // // Input, double X, the evaluation point. // // Output, double *PHII, *PHIIX, the value of the basis function // and its derivative. // // Input, double XLEFT, XRITE, the endpoints of the interval. // { if ( xleft <= x && x <= xrite ) { if ( il == 1 ) { *phii = ( xrite - x ) / ( xrite - xleft ); *phiix = -1.0 / ( xrite - xleft ); } else { *phii = ( x - xleft ) / ( xrite - xleft ); *phiix = 1.0 / ( xrite - xleft ); } } // // If X is outside of the interval, then the basis function // is always zero. // else { *phii = 0.0; *phiix = 0.0; } return; } //****************************************************************************80 double pp ( double x ) //****************************************************************************80 // // Purpose: // // PP evaluates the function P in the differential equation. // // Discussion: // // The function P(X) occurs in the differential equation: // // -d/dx ( P(x) * dU(x)/dx ) + Q(x) * U(x) = F(x) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double PP, the value of P(X). // { int problem; double value; // // Find out which problem we're working on. // problem = get_problem ( ); if ( problem == 1 ) { value = 1.0; } else if ( problem == 2 ) { value = 1.0; } else if ( problem == 3 ) { value = 1.0; } else if ( problem == 4 ) { value = 1.0; } else if ( problem == 5 ) { value = 1.0; } else if ( problem == 6 ) { value = 1.0; } return value; } //****************************************************************************80 void prsys ( double adiag[], double aleft[], double arite[], double f[], int nu ) //****************************************************************************80 // // Purpose: // // PRSYS prints out the tridiagonal linear system. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 06 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // Input, double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Input, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Input, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // { int i; cout << "\n"; cout << "Printout of tridiagonal linear system:\n"; cout << "\n"; cout << "Equation A-Left A-Diag A-Rite RHS\n"; cout << "\n"; for ( i = 0; i < nu; i++ ) { cout << setw(4) << i+1; if ( i == 0 ) { cout << " "; } else { cout << " " << setw(12) << aleft[i]; } cout << " " << setw(12) << adiag[i]; if ( i < nu - 1 ) { cout << " " << setw(12) << arite[i]; } else { cout << " "; } cout << " " << setw(12) << f[i] << "\n"; } return; } //****************************************************************************80 double qq ( double x ) //****************************************************************************80 // // Purpose: // // QQ evaluates the function Q in the differential equation. // // Discussion: // // The function Q(X) occurs in the differential equation: // // -d/dx ( P(x) * dU(x)/dx ) + Q(x) * U(x) = F(x) // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double QQ, the value of Q(X). // { int problem; double value; // // Find out which problem we're working on. // problem = get_problem ( ); if ( problem == 1 ) { value = 0.0; } else if ( problem == 2 ) { value = 0.0; } else if ( problem == 3 ) { value = 0.0; } else if ( problem == 4 ) { value = 0.0; } else if ( problem == 5 ) { value = 1.0; } else if ( problem == 6 ) { value = 0.0; } return value; } //****************************************************************************80 void solve ( double adiag[], double aleft[], double arite[], double f[], int nu ) //****************************************************************************80 // // Purpose: // // SOLVE solves a tridiagonal matrix system of the form A*x = b. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input/output, double ADIAG(NU), ALEFT(NU), ARITE(NU). // On input, ADIAG, ALEFT, and ARITE contain the diagonal, // left and right entries of the equations. // On output, ADIAG and ARITE have been changed in order // to compute the solution. // Note that for the first equation, there is no ALEFT // coefficient, and for the last, there is no ARITE. // So there is no need to store a value in ALEFT(1), nor // in ARITE(NU). // // Input/output, double F(NU). // On input, F contains the right hand side of the linear // system to be solve // On output, F contains the solution of the linear system. // // Input, int NU, the number of equations to be solved. // { int i; // // Handle the special case of a single equation. // if ( nu == 1 ) { f[0] = f[0] / adiag[0]; } // // The general case, when NU is greater than 1. // else { arite[0] = arite[0] / adiag[0]; for ( i = 2; i <= nu - 1; i++ ) { adiag[i-1] = adiag[i-1] - aleft[i-1] * arite[i-2]; arite[i-1] = arite[i-1] / adiag[i-1]; } adiag[nu-1] = adiag[nu-1] - aleft[nu-1] * arite[nu-2]; f[0] = f[0] / adiag[0]; for ( i = 2; i <= nu; i++ ) { f[i-1] = ( f[i-1] - aleft[i-1] * f[i-2] ) / adiag[i-1]; } for ( i = nu-1; 1 <= i; i-- ) { f[i-1] = f[i-1] - arite[i-1] * f[i]; } } return; } //****************************************************************************80 void solvex ( double adiag[], double aleft[], double arite[], double f[], double h[], int ibc, int indx[], int kount, int n, int nl, int nmax, int node[], int nquad, int *nu, double ul, double ur, double wquad[], double xn[], double xquad[] ) //****************************************************************************80 // // Purpose: // // SOLVEX discretizes and solves a differential equation given the nodes. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Workspace, double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // Workspace, double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Workspace, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Output, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // Output, double H(N) // H(I) is the length of subinterval I. This code uses // equal spacing for all the subintervals. // // Input, int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Workspace, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int KOUNT, the number of adaptive steps that have been taken. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NMAX, the maximum number of unknowns that can be handled. // // Workspace, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Workspace, int NQUAD // The number of quadrature points used in a subinterval. // // Output, int *NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Workspace, double WQUAD(NQUAD). // WQUAD(I) is the weight associated with the I-th point // of an NQUAD point Gaussian quadrature rule. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Workspace, double XQUAD(NQUAD,NMAX), the I-th quadrature point // in interval J. // { // // Given a set of N nodes (where N increases on each iteration), // compute the other geometric information. // geometry ( h, ibc, indx, n, nl, nmax, node, nquad, nu, wquad, xn, xquad ); // // Assemble the linear system. // assemble ( adiag, aleft, arite, f, h, n, indx, node, *nu, nl, nquad, nmax, ul, ur, wquad, xn, xquad ); // // Print out the linear system, just once. // if ( kount == 1 ) { prsys ( adiag, aleft, arite, f, *nu ); } // // Solve the linear system. // solve ( adiag, aleft, arite, f, *nu ); // // Print out the solution. // cout << "\n"; cout << "Basic solution\n"; output ( f, ibc, indx, n, *nu, ul, ur, xn ); return; } //****************************************************************************80 void solvey ( double eta[], double f[], double h[], int n, int nu, double ul, double ur, double xn[] ) //****************************************************************************80 // // Purpose: // // SOLVEY computes error estimators for a finite element solution. // // Discussion: // // SOLVEY accepts information about the solution of a finite element // problem on a grid of nodes with coordinates XN. It then starts // at node 0, and for each node, computes two "error estimators", // one for the left, and one for the right interval associated with the // node. These estimators are found by solving a finite element problem // over the two intervals, using the known values of the original // solution as boundary data, and using a mesh that is "slightly" // refined over the original one. // // Note that the computations at the 0-th and N-th nodes only involve // a single interval. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double ETA(N). // ETA(I) is the error estimate for interval I. It is computed // as the sum of two quantities, one associated with the left // and one with the right node of the interval. // // Input, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // Input, double H(N) // H(I) is the length of subinterval I. This code uses // equal spacing for all the subintervals. // // Input, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // { # define NL 2 # define NY 2 # define NQUAD 2 # define NMAY ( 2 * NY ) double adiag[NMAY]; double aleft[NMAY]; double arite[NMAY]; double fy[NMAY]; double hy[NMAY]; int i; int ibcy; int indy[NMAY+1]; int j; int jhi; int jlo; int jmid; int k; int m; int nodey[NL*NMAY]; int nuy; double total; double uleft; double ulval; double uly; double uprime; double urite; double urval; double ury; double uval; double vlval; double vprime; double vrval; double vval; double wquad[NQUAD]; double xquady[NQUAD*NMAY]; double y; double yl; double ym; double yn[NMAY+1]; double yr; // // Initialize the error estimators to zero. // for ( j = 0; j < n; j++ ) { eta[j] = 0.0; } // // Set the boundary conditions for each subproblem to be // known values of U at the left and right. // // // For each node, subdivide its left and right hand intervals // into NY subintervals. // // Set up and solve the differential equation again on this // smaller region. // // The 0-th and N-th nodes are special cases. // ibcy = 3; for ( j = 0; j <= n; j++ ) { if ( j == 0 ) { m = NY; jlo = j; jmid = j + 1; jhi = j + 1; } else if ( j == n ) { m = NY; jlo = j - 1; jmid = j; jhi = j; } else { m = 2 * NY; jlo = j - 1; jmid = j; jhi = j + 1; } // // Set the location of the nodes in the subintervals. // yl = xn[jlo]; ym = xn[jmid]; yr = xn[jhi]; for ( i = 0; i <= NY; i++ ) { yn[i] = ( ( double ) ( NY - i ) * yl + ( double ) ( i ) * ym ) / ( double ) ( NY ); } for ( i = NY+1; i <= m; i++ ) { yn[i] = ( ( double ) ( m - i ) * ym + ( double ) ( i - NY ) * yr ) / ( double ) ( m - NY ); } // // Set up the geometry of the sub-problem. // geometry ( hy, ibcy, indy, m, NL, NMAY, nodey, NQUAD, &nuy, wquad, yn, xquady ); // // Set the boundary values for the sub-problem. // if ( j <= 1 ) { uly = ul; } else { uly = f[j-2]; } if ( n - 1 <= j ) { ury = ur; } else { ury = f[j]; } // // Assemble the matrix for the sub-problem. // assemble ( adiag, aleft, arite, fy, hy, m, indy, nodey, nuy, NL, NQUAD, NMAY, uly, ury, wquad, yn, xquady ); // // Solve the system. // solve ( adiag, aleft, arite, fy, nuy ); // // Compute the weighted sum of the squares of the differences // of the original computed slope and the refined computed slopes. // // Calculation for left interval. // if ( 1 <= j ) { if ( j <= 1 ) { uleft = ul; urite = f[0]; } else if ( j == n ) { uleft = f[j-2]; urite = ur; } else { uleft = f[j-2]; urite = f[j-1]; } uprime = ( urite - uleft ) / h[j-1]; total = 0.0; for ( i = 1; i <= NY; i++ ) { yl = yn[i-1]; yr = yn[i]; if ( i == 1 ) { vlval = uly; vrval = fy[i-1]; } else if ( i == m ) { vlval = fy[i-2]; vrval = ury; } else { vlval = fy[i-2]; vrval = fy[i-1]; } vprime = ( vrval - vlval ) / hy[i-1]; ulval = ( ( double ) ( NY - i + 1 ) * uleft + ( double ) ( i - 1 ) * urite ) / ( double ) ( NY ); urval = ( ( double ) ( NY - i ) * uleft + ( double ) ( i ) * urite ) / ( double ) ( NY ); // // Compute the integral of // // p(x)*(u'(x)-v'(x))**2 + q(x)*(u(x)-v(x))**2 // for ( k = 0; k < NQUAD; k++ ) { y = xquady[k+(i-1)*NQUAD]; uval = ( ( yl - y ) * urval + ( y - yr ) * ulval ) / ( yl - yr ); vval = ( ( yl - y ) * vrval + ( y - yr ) * vlval ) / ( yl - yr ); total = total + 0.5 * wquad[k] * hy[i-1] * ( pp ( y ) * pow ( uprime - vprime, 2 ) + qq ( y ) * pow ( uval - vval, 2 ) ); } } eta[j-1] = eta[j-1] + 0.5 * sqrt ( total ); } // // Calculation for right interval. // if ( j <= n - 1 ) { if ( j == 0 ) { uleft = ul; urite = f[j]; } else if ( n - 1 <= j ) { uleft = f[j-1]; urite = ur; } else { uleft = f[j-1]; urite = f[j]; } uprime = ( urite - uleft ) / h[j]; total = 0.0; for ( i = m+1-NY; i <= m; i++ ) { yl = yn[i-1]; yr = yn[i]; if ( i == 1 ) { vlval = uly; vrval = fy[i-1]; } else if ( i == m ) { vlval = fy[i-2]; vrval = ury; } else { vlval = fy[i-2]; vrval = fy[i-1]; } vprime = ( vrval - vlval ) / hy[i-1]; ulval = ( ( double ) ( m - i + 1 ) * uleft + ( double ) ( NY - m + i - 1 ) * urite ) / ( double ) ( NY ); urval = ( ( double ) ( m - i ) * uleft + ( double ) ( NY - m + i ) * urite ) / ( double ) ( NY ); // // Compute the integral of // // p(x)*(u'(x)-v'(x))**2 + q(x)*(u(x)-v(x))**2 // for ( k = 0; k < NQUAD; k++ ) { y = xquady[k+(i-1)*NQUAD]; uval = ( ( yl - y ) * urval + ( y - yr ) * ulval ) / ( yl - yr ); vval = ( ( yl - y ) * vrval + ( y - yr ) * vlval ) / ( yl - yr ); total = total + 0.5 * wquad[k] * hy[i-1] * ( pp ( y ) * pow ( uprime - vprime, 2 ) + qq ( y ) * pow ( uval - vval, 2 ) ); } } eta[j] = eta[j] + 0.5 * sqrt ( total ); } } // // Print out the error estimators. // cout << "\n"; cout << "ETA\n"; cout << "\n"; for ( j = 0; j < n; j++ ) { cout << setw(12) << eta[j] << "\n"; } return; # undef NL # undef NMAY # undef NQUAD # undef NY } //****************************************************************************80 int subdiv ( double eta[], int kount, int *n, int nmax, double tol, double xn[] ) //****************************************************************************80 // // Purpose: // // SUBDIV decides which intervals should be subdivided. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double ETA(N). // ETA(I) is the error estimate for interval I. It is computed // as the sum of two quantities, one associated with the left // and one with the right node of the interval. // // Input, int KOUNT, the number of adaptive steps that have been taken. // // Input/output, int N // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NMAX, the maximum number of unknowns that can be handled. // // Input, double TOL. // A tolerance that is used to determine whether the estimated // error in an interval is so large that it should be subdivided // and the problem solved again. // // Input/output, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Output, int SUBDIV, reports status of subdivision. // 0, a new subdivision was carried out. // 1, no more subdivisions are needed. // -1, no more subdivisions can be carried out. // // Local Parameters: // // Local, int JADD(N). // JADD(I) is 1 if the error estimates show that interval I // should be subdivided. // { double ave; int j; int *jadd; int k; int status; double temp; double *xt; status = 0; // // Add up the ETA's, and get their average. // ave = 0.0; for ( j = 0; j < *n; j++ ) { ave = ave + eta[j]; } ave = ave / ( double ) ( *n ); // // Look for intervals whose ETA value is relatively large, // and note in JADD that these intervals should be subdivided. // k = 0; temp = fmax ( 1.2 * ave + 0.00001, tol * tol / ( double ) ( *n ) ); cout << "\n"; cout << "Tolerance = " << temp << "\n"; cout << "\n"; jadd = new int[*n]; for ( j = 0; j < *n; j++ ) { if ( temp < eta[j] ) { k = k + 1; jadd[j] = 1; cout << "Subdivide interval " << j + 1 << "\n"; } else { jadd[j] = 0; } } // // If no subdivisions needed, we're done. // if ( k <= 0 ) { cout << "Success on step " << kount << "\n"; status = 1; return status; } // // See if we're about to go over our limit. // if ( nmax < *n + k ) { cout << "\n"; cout << "The iterations did not reach their goal.\n"; cout << "The next value of N is " << *n + k << "\n"; cout << "which exceeds NMAX = " << nmax << "\n"; status = -1; return status; } // // Insert new nodes where needed. // xt = new double[nmax+1]; k = 0; xt[0] = xn[0]; for ( j = 0; j < *n; j++ ) { if ( 0 < jadd[j] ) { xt[j+1+k] = 0.5 * ( xn[j+1] + xn[j] ); k = k + 1; } xt[j+1+k] = xn[j+1]; } // // Update the value of N, and copy the new nodes into XN. // *n = *n + k; for ( j = 0; j <= *n; j++ ) { xn[j] = xt[j]; } delete [] jadd; delete [] xt; return status; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double uexact ( double x ) //****************************************************************************80 // // Purpose: // // UEXACT returns the value of the exact solution at any point X. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 04 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double UEXACT, the value of the exact solution at X. // { double alpha; double beta; int problem; double pi = 3.141592653589793; double value; // // Find out which problem we're working on. // problem = get_problem ( ); if ( problem == 1 ) { value = x; } else if ( problem == 2 ) { value = x * x; } else if ( problem == 3 ) { value = sin ( pi * x / 2.0 ); } else if ( problem == 4 ) { value = cos ( pi * x / 2.0 ); } else if ( problem == 5 ) { beta = get_beta ( ); value = ( pow ( x, beta + 2.0 ) ) / ( ( beta + 2.0 ) * ( beta + 1.0 ) ); } else if ( problem == 6 ) { alpha = get_alpha ( ); value = atan ( ( x - 0.5 ) / alpha ); } else { value = 0.0; } return value; }