// File recommented by recomment.cpp // on Jul 8 2014 at 08:42:51. // # include # include # include using namespace std; # include "ellipsoid_monte_carlo.hpp" int main ( ); void test01 ( ); void test02 ( ); void test03 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for ELLIPSOID_MONTE_CARLO_TEST. // // Discussion: // // ELLIPSOID_MONTE_CARLO_TEST tests the ELLIPSOID_MONTE_CARLO library. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2014 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "ELLIPSOID_MONTE_CARLO_TEST\n"; cout << " C++ version\n"; cout << " Test the ELLIPSOID_MONTE_CARLO library.\n"; test01 ( ); test02 ( ); test03 ( ); // // Terminate. // cout << "\n"; cout << "ELLIPSOID_MONTE_CARLO_TEST\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 uses ELLIPSOID_SAMPLE on a 2D ellipse centered at (0,0). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2014 // // Author: // // John Burkardt // { # define M 2 double a[M*M] = { 9.0, 1.0, 1.0, 4.0 }; int e[M]; int e_test[M*7] = { 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 0, 2, 3, 0 }; int i; int j; int m = M; int n; double r = 2.0; double result; int seed; double v[M] = { 0.0, 0.0 }; double *value; double volume; double *x; cout << "\n"; cout << "TEST01\n"; cout << " Use ELLIPSOID_SAMPLE to estimate integrals\n"; cout << " in a 2D ellipse x' * A * x <= r^2.\n"; cout << "\n"; r8_print ( r, " Ellipsoid radius R:" ); r8vec_print ( m, v, " Ellipsoid center V:" ); r8mat_print ( m, m, a, " Ellipsoid matrix A:" ); volume = ellipsoid_volume ( m, a, v, r ); cout << "\n"; r8_print ( volume, " Ellipsoid volume:" ); seed = 123456789; cout << "\n"; cout << " N 1 X Y "; cout << " X^2 XY Y^2 X^3\n"; cout << "\n"; n = 1; while ( n <= 65536 ) { x = ellipsoid_sample ( m, n, a, v, r, seed ); cout << setw(10) << n << " "; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } value = monomial_value ( m, n, e, x ); result = volume * r8vec_sum ( n, value ) / ( double ) ( n ); cout << setw(14) << result << " "; delete [] value; } cout << "\n"; delete [] x; n = 2 * n; } return; # undef M } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 uses ELLIPSOID_SAMPLE on a 2D ellipse centered at (2,3). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2014 // // Author: // // John Burkardt // { # define M 2 double a[M*M] = { 9.0, 1.0, 1.0, 4.0 }; int e[M]; int e_test[M*7] = { 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 0, 2, 3, 0 }; int i; int j; int m = M; int n; double r = 0.5; double result; int seed; double v[M] = { 2.0, 3.0 }; double *value; double volume; double *x; cout << "\n"; cout << "TEST02\n"; cout << " Use ELLIPSOID_SAMPLE to estimate integrals\n"; cout << " in a 2D ellipse (x-v)' * A * (x-v) <= r^2.\n"; cout << "\n"; r8_print ( r, " Ellipsoid radius R:" ); r8vec_print ( m, v, " Ellipsoid center V:" ); r8mat_print ( m, m, a, " Ellipsoid matrix A:" ); volume = ellipsoid_volume ( m, a, v, r ); cout << "\n"; r8_print ( volume, " Ellipsoid volume:" ); seed = 123456789; cout << "\n"; cout << " N 1 X Y "; cout << " X^2 XY Y^2 X^3\n"; cout << "\n"; n = 1; while ( n <= 65536 ) { x = ellipsoid_sample ( m, n, a, v, r, seed ); cout << setw(10) << n << " "; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } value = monomial_value ( m, n, e, x ); result = volume * r8vec_sum ( n, value ) / ( double ) ( n ); cout << setw(14) << result << " "; delete [] value; } cout << "\n"; delete [] x; n = 2 * n; } return; # undef M } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 uses ELLIPSOID_SAMPLE on a 3D ellipse centered at (1,2,3). // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 14 August 2014 // // Author: // // John Burkardt // { # define M 3 double a[M*M] = { 9.0, 6.0, 3.0, 6.0, 5.0, 4.0, 3.0, 4.0, 9.0 }; int e[M]; int e_test[M*7] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 0, 0, 3 }; int i; int j; int m = M; int n; double r = 0.5; double result; int seed; double v[M] = { 1.0, 2.0, 3.0 }; double *value; double volume; double *x; cout << "\n"; cout << "TEST03\n"; cout << " Use ELLIPSOID_SAMPLE to estimate integrals\n"; cout << " in a 3D ellipse (x-v)' * A * (x-v) <= r^2.\n"; cout << "\n"; r8_print ( r, " Ellipsoid radius R:" ); r8vec_print ( m, v, " Ellipsoid center V:" ); r8mat_print ( m, m, a, " Ellipsoid matrix A:" ); volume = ellipsoid_volume ( m, a, v, r ); cout << "\n"; r8_print ( volume, " Ellipsoid volume:" ); seed = 123456789; cout << "\n"; cout << " N 1 X Y "; cout << " Z X^2 YZ Z^3\n"; cout << "\n"; n = 1; while ( n <= 65536 ) { x = ellipsoid_sample ( m, n, a, v, r, seed ); cout << setw(10) << n << " "; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } value = monomial_value ( m, n, e, x ); result = volume * r8vec_sum ( n, value ) / ( double ) ( n ); cout << setw(14) << result << " "; delete [] value; } cout << "\n"; delete [] x; n = 2 * n; } return; # undef M }