# include # include # include # include using namespace std; # include "cosine_transform.hpp" //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *cosine_transform_data ( int n, double d[] ) //****************************************************************************80 // // Purpose: // // COSINE_TRANSFORM_DATA does a cosine transform on a vector of data. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input, integer N, the number of data points. // // Input, double D[N], the vector of data. // // Output, double COSINE_TRANSFORM_DATA[N], the transform coefficients. // { double angle; double *c; int i; int j; const double r8_pi = 3.141592653589793; c = new double[n]; for ( i = 0; i < n; i++ ) { c[i] = 0.0; for ( j = 0; j < n; j++ ) { angle = r8_pi * ( double ) ( i * ( 2 * j + 1 ) ) / ( double ) ( 2 * n ); c[i] = c[i] + cos ( angle ) * d[j]; } c[i] = c[i] * sqrt ( 2.0 / ( double ) ( n ) ); } return c; } //****************************************************************************80 double *cosine_transform_inverse ( int n, double c[] ) //****************************************************************************80 // // Purpose: // // COSINE_TRANSFORM_INVERSE does an inverse cosine transform. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 27 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input, integer N, the number of data points. // // Input, double C[N], the vector of transform coefficients // // Output, double COSINE_TRANSFORM_INVERSE[N], the original data. // { double angle; double *d; int i; int j; double r8_pi = 3.141592653589793; d = new double[n]; for ( i = 0; i < n; i++ ) { d[i] = c[0] / 2.0; for ( j = 1; j < n; j++ ) { angle = r8_pi * ( double ) ( ( 2 * i + 1 ) * j ) / ( double ) ( 2 * n ); d[i] = d[i] + cos ( angle ) * c[j]; } d[i] = d[i] * sqrt ( 2.0 / ( double ) ( n ) ); } return d; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }