# include # include # include # include # include # include # include using namespace std; # include "components.hpp" //****************************************************************************80 int components_1d ( int n, int a[], int c[] ) //****************************************************************************80 // // Purpose: // // components_1d() assigns contiguous nonzero pixels to a common component. // // Discussion: // // This calculation is trivial compared to the 2D problem, and is included // primarily for comparison. // // On input, the A array contains values of 0 or 1. // // The 0 pixels are to be ignored. The 1 pixels are to be grouped // into connected components. // // The pixel A(I) is "connected" to the pixels A(I-1) and A(I+1). // // On output, COMPONENT_NUM reports the number of components of nonzero // data, and the array C contains the component assignment for // each nonzero pixel, and is 0 for zero pixels. // // Picture: // // Input A: // // 0 0 1 2 4 0 0 4 0 0 0 8 9 9 1 2 3 0 0 5 0 1 6 0 0 0 4 0 // // Output: // // COMPONENT_NUM = 6 // // C: // // 0 0 1 1 1 0 0 2 0 0 0 3 3 3 3 3 3 0 0 4 0 5 5 0 0 0 6 0 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the vector. // // Input, int A(N), the pixel array. // // Output, int C[N], the component array. // // Output, int components_1d, the number of components // of nonzero data. // { int component_num; int j; int west; // // Initialization. // for ( j = 0; j < n; j++ ) { c[j] = 0; } component_num = 0; // // "Read" the array one pixel at a time. If a (nonzero) pixel has a west // neighbor with a label, the current pixel inherits it. Otherwise, we have // begun a new component. // west = 0; for ( j = 0; j < n; j++ ) { if ( a[j] != 0 ) { if ( west == 0 ) { component_num = component_num + 1; } c[j] = component_num; } west = c[j]; } return component_num; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // file_column_count() counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; exit ( 1 ); } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // file_row_count() counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int comment_num; ifstream input; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int components_3d ( int l, int m, int n, int a[], int c[] ) //****************************************************************************80 // // Purpose: // // components_3d() assigns contiguous nonzero pixels to a common component. // // Discussion: // // On input, the A array contains values of 0 or 1. // // The 0 pixels are to be ignored. The 1 pixels are to be grouped // into connected components. // // The pixel A(I,J,K) is "connected" to the pixels: // // A(I-1,J, K ), A(I+1,J, K ), // A(I, J-1,K ), A(I, J+1,K ), // A(I, J, K-1), A(I, J, K+1), // // so most pixels have 6 neighbors. // // On output, COMPONENT_NUM reports the number of components of nonzero // data, and the array C contains the component assignment for // each nonzero pixel, and is 0 for zero pixels. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int L, M, N, the order of the array. // // Input, int A[L*M*N], the pixel array. // // Output, int C[L*M*N], the component array. // // Output, int components_3d, the number of components // of nonzero data. // { int b; int c1; int component; int component_num; int i; int j; int k; int north; int *p; int *q; int up; int west; // // Initialization. // for ( k = 0; k < n; k++ ) { for ( j = 0; j < m; j++ ) { for ( i = 0; i < l; i++ ) { c[i+j*l+k*l*m] = 0; } } } component_num = 0; // // P is simply used to store the component labels. The dimension used // here is, of course, usually an absurd overestimate. // p = new int[l*m*n+1]; for ( i = 0; i <= l * m * n; i++ ) { p[i] = i; } // // "Read" the array one pixel at a time. If a (nonzero) pixel has a north or // west neighbor with a label, the current pixel inherits it. // In case the labels disagree, we need to adjust the P array so we can // later deal with the fact that the two labels need to be merged. // for ( i = 0; i < l; i++ ) { for ( j = 0; j < m; j++ ) { for ( k = 0; k < n; k++ ) { if ( i == 0 ) { north = 0; } else { north = c[i-1+j*l+k*l*m]; } if ( j == 0 ) { west = 0; } else { west = c[i+(j-1)*l+k*l*m]; } if ( k == 0 ) { up = 0; } else { up = c[i+j*l+(k-1)*l*m]; } if ( a[i+j*l+k*l*m] != 0 ) { // // New component? // if ( north == 0 && west == 0 && up == 0 ) { component_num = component_num + 1; c[i+j*l+k*l*m] = component_num; } // // One predecessor is labeled. // else if ( north != 0 && west == 0 && up == 0 ) { c[i+j*l+k*l*m] = north; } else if ( north == 0 && west != 0 && up == 0 ) { c[i+j*l+k*l*m] = west; } else if ( north == 0 && west == 0 && up != 0 ) { c[i+j*l+k*l*m] = up; } // // Two predecessors are labeled. // else if ( north == 0 && west != 0 && up != 0 ) { c[i+j*l+k*l*m] = i4_min ( west, up ); c1 = i4_min ( p[west], p[up] ); p[west] = c1; p[up] = c1; } else if ( north != 0 && west == 0 && up != 0 ) { c[i+j*l+k*l*m] = i4_min ( north, up ); c1 = i4_min ( p[north], p[up] ); p[north] = c1; p[up] = c1; } else if ( north != 0 && west != 0 && up == 0 ) { c[i+j*l+k*l*m] = i4_min ( north, west ); c1 = i4_min ( p[north], p[west] ); p[north] = c1; p[west] = c1; } // // Three predecessors are labeled. // else if ( north != 0 && west != 0 && up != 0 ) { c[i+j*l+k*l*m] = i4_min ( north, i4_min ( west, up ) ); c1 = i4_min ( p[north], i4_min ( p[west], p[up] ) ); p[north] = c1; p[west] = c1; p[up] = c1; } } } } } // // When a component has multiple labels, have the higher labels // point to the lowest one. // for ( component = component_num; 1 <= component; component-- ) { b = component; while ( p[b] != b ) { b = p[b]; } p[component] = b; } // // Locate the minimum label for each component. // Assign these mininum labels new consecutive indices. // q = new int[component_num+1]; for ( j = 0; j <= component_num; j++ ) { q[j] = 0; } i = 0; for ( component = 1; component <= component_num; component++ ) { if ( p[component] == component ) { i = i + 1; q[component] = i; } } component_num = i; // // Replace the labels by consecutive labels. // for ( i = 0; i < l; i++ ) { for ( j = 0; j < m; j++ ) { for ( k = 0; k < n; k++ ) { c[i+j*l+k*l*m] = q [ p [ c[i+j*l+k*l*m] ] ]; } } } delete [] p; delete [] q; return component_num; } //****************************************************************************80 int components_2d ( int m, int n, int a[], int c[] ) //****************************************************************************80 // // Purpose: // // components_2d() assigns contiguous nonzero pixels to a common component. // // Discussion: // // On input, the A array contains values of 0 or 1. // // The 0 pixels are to be ignored. The 1 pixels are to be grouped // into connected components. // // The pixel A(I,J) is "connected" to the pixels A(I-1,J), A(I+1,J), // A(I,J-1) and A(I,J+1), so most pixels have 4 neighbors. // // (Another choice would be to assume that a pixel was connected // to the other 8 pixels in the 3x3 block containing it.) // // On output, COMPONENT_NUM reports the number of components of nonzero // data, and the array C contains the component assignment for // each nonzero pixel, and is 0 for zero pixels. // // Picture: // // Input A: // // 0 2 0 0 17 0 3 // 0 0 3 0 1 0 4 // 1 0 4 8 8 0 7 // 3 0 6 45 0 0 0 // 3 17 0 5 9 2 5 // // Output: // // COMPONENT_NUM = 4 // // C: // // 0 1 0 0 2 0 3 // 0 0 2 0 2 0 3 // 4 0 2 2 2 0 3 // 4 0 2 2 0 0 0 // 4 4 0 2 2 2 2 // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 01 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the array. // // Input, int A[M*N], the pixel array. // // Output, int C[M*N], the component array. // // Output, int components_2d, the number of components // of nonzero data. // { int b; int component; int component_num; int i; int j; int north; int *p; int *q; int west; // // Initialization. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { c[i+j*m] = 0; } } component_num = 0; // // P is simply used to store the component labels. The dimension used // here is, of course, usually an absurd overestimate. // p = new int[m*n+1]; for ( i = 0; i <= m * n; i++ ) { p[i] = i; } // // "Read" the array one pixel at a time. If a (nonzero) pixel has a north or // west neighbor with a label, the current pixel inherits it. // In case the labels disagree, we need to adjust the P array so we can // later deal with the fact that the two labels need to be merged. // for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { if ( i == 0 ) { north = 0; } else { north = c[i-1+j*m]; } if ( j == 0 ) { west = 0; } else { west = c[i+(j-1)*m]; } if ( a[i+j*m] != 0 ) { if ( north == 0 ) { if ( west == 0 ) { component_num = component_num + 1; c[i+j*m] = component_num; } else { c[i+j*m] = west; } } else if ( north != 0 ) { if ( west == 0 || west == north ) { c[i+j*m] = north; } else { c[i+j*m] = i4_min ( north, west ); if ( north < west ) { p[west] = north; } else { p[north] = west; } } } } } } // // When a component has multiple labels, have the higher labels // point to the lowest one. // for ( component = component_num; 1 <= component; component-- ) { b = component; while ( p[b] != b ) { b = p[b]; } p[component] = b; } // // Locate the minimum label for each component. // Assign these mininum labels new consecutive indices. // q = new int[component_num+1]; for ( j = 0; j <= component_num; j++ ) { q[j] = 0; } i = 0; for ( component = 1; component <= component_num; component++ ) { if ( p[component] == component ) { i = i + 1; q[component] = i; } } component_num = i; // // Replace the labels by consecutive labels. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { c[i+j*m] = q [ p [ c[i+j*m] ] ]; } } delete [] p; delete [] q; return component_num; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the MIT license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }