
An Investigation into the Randomness and
Modeling Potential of Various Cellular Automata

for(unsigned int ctr = 0; ctr < num; ctr++)

 {

 for(int ctr2 = 1; ctr2 < 999; ctr2++)

 {

 temp = 100 * a[0][ctr2 - 1] + 10 * a[0][ctr2] + a[0]
[ctr2 + 1];

 if(temp == 0 || temp == 10 || temp == 11 || temp == 101)

 a[1][ctr2] = 1;

 else

 a[1][ctr2] = 0;

 }

 file_out << a[1][500];

 for(int ctr2 = 0; ctr2 < 1000; ctr2++)

 a[0][ctr2] = a[1][ctr2];

}

Fig 3 – The code that generates the random numbers

Fig. 1 – Rule 30 with one starting cell

Fig 6 – Rule 45 with one starting cell

Fig 2 – Close up of a middle section of rule 30

Fig 7 – Close up of a middle section of rule 45

Introduction
Cellular automata are groups of cells in which each cell’s life depends on its surrounding cells.

The cell knows what it should be in the next cycle by following simple rules that look at which of
its neighbors are alive and which are dead, and also if itself is alive or dead. Many intricate
systems can be made with only these simple rules.

The cellular automata used to generate random numbers was one dimensional. Each cell only
looked at itself and two neighbors – the cells directly to the left and right. Each new generation
of cells is shown underneath the generation that spawned it.

Cellular automata do not have to be one dimensional, as hodgepodge shows. This is an
example of cellular automata in which there are many different states, not just alive or dead. The
cell can have varying degrees of sickness. A cell is determined to be at a certain state by the states
of its neighbors. In this two dimensional example, the cell’s neighborhood is the eight cells
touching it.

Method
To generate the random numbers, we decided to start with an initial condition of one cell alive in the middle of a

row of dead cells, because that would simplify the initialization process. We then created a program that would
generate each new row and store the middle cell’s value, either a one or a zero, in a file to be analyzed later (fig. 3).
These middle cells’ values would be the random numbers. We chose to only take this single number from each row
because the middle value was guaranteed to be more random than other values towards the edges, which, as can be seen
in fig. 1 and 2, are less random than the inner cells.

To analyze the numbers, we ran the output through two programs. One program converted the numbers we had
generated and stored in a text file into integers stored in a binary file. This format was required by George Marsaglia’s
program Diehard, which runs fifteen tests for randomness. After running that program, we had the p-values necessary
to determine the randomness of our numbers.

Results
The results of the randomness tests ran on our data for both rule 30 and rule 45 show that the random

numbers generated passed twelve out of the fifteen tests. Only the Bitstream test, overlapping pairs sparse
occupancy (OPSO) test, and count the one’s test returned p-values of one. Overall, the graphs of the p-values
show that our random numbers were nominally random.

The Bitstream test considers twenty-letter words made from only two letters – 0 and 1. The words overlap –
the first word is letters 1 through 20, the second 2 through 21 and so on. The test counts the number of missing
words (out of a possible 2^20) in a string of 2^21 overlapping words. It should be very close to 141,909.

The OPSO test is similar. It counts the number of missing two-letter words. Each letter is determined by ten
bits which means there are 2^10 or 1024 possible letters. This should also be close to 141,909.

The count the one’s test looks at a series of eight numbers. If there are 0, 1, or 2 ones, it is an “A”, if there
are 3, it is a “B”, 4 makes a “C”, 5 makes a “D”, and 6, 7, or 8 is an “E”. The test counts the frequency of five-
letter words (a possible 5^5 different words).

P-values should be uniform from 0 to 1. However, the tests used said not to be worried with p-values close to
0 or 1 such as .0012 or .9983. If a test really fails, the p-values will be 0 or 1 to more than six decimal places.

Conclusion
From the charts of the p-values, we determined that both rules returned nominally random data. To see more decisively determine how

random our numbers were, we compared our p-values to those generated by a truly random set of data. Thus, we used data from the site
random.org, which uses atmospheric noise to generate random numbers. We graphed the resulting p-values and found that our p-values were not
as evenly spread as random.org’s p-values, nor were our p-values in the desired range of .05 to .95 as often as random.org’s p-values. Thus, we
have determined that these two rules are not true sources of randomness. We then went on to determine if these two rules were any better than a
standard pseudo-random number generator. Both rules are better, by a significant level, than the standard psuedo-random number generator, as
shown by our graphs of the C++ rand() function’s p-values.

We have also found that rule 30 is somewhat better at making random numbers than rule 45. While the difference is slight when looking at
the spread of p-values on a graph, rule 45 has 20 percent more p-values outside of the acceptable range than does rule 30.

Finally, <<PUT WRAPPING CONCLUSION HERE>>Fig 4 – P-values with wrapping

Fig. 8 – P-values with wrapping

Fig. 10 – P-values for C++ rand() function Fig. 11 – P-values for data obtained on 7/17/2003Fig 5 – P-values without wrapping

Fig 9 – P-values without wrapping

K1 – 1 K2 – 1 G – 10

K1 – 2 K2 – 2 G – 10

K1 – 5 K2 – 5 G – 10

K1 – 2 K2 – 2 G – 2

K1 – 2 K2 – 2 G - 5

The uses of 2 dimensional cellular automata can be even more extensive than the one
dimensional ones we looked at first. The example we looked at, often called the hodgepodge
machine, simulates disease and infection rates. It uses a special set of rules that determine,
from generation to generation, how sick the cell becomes: the formula is used to
determine what state n a healthy cell will become, where A and B are the numbers of infected
and sick cells. The formula is used to determine the state of an infected cell, where S is
the sum of the infected neighbors and A is the number of infected cells. When a cell reaches
state n, it becomes healthy in the next generation. We studied generally how the parameters
k1, k2, and g affect the infection rates and fluctuations in the number of infected, sick, and
healthy cells.

To do this, we used a C program called hodge that would allow us to change the
parameter values. From this, we were able to determine that the k values mostly determined
whether the cells would become sick or not. At high k values, such as k1 = k2 = 5, every cell
eventually become healthy. At very low k-values, such as k1 = k2 = 1, the cells would
become sick fast enough that their behavior triggered a cyclical pattern of a very high period
of about 8000. From this program, we were also able to determine that the g value mostly
determined the frequency of the waves of illness that are seen. High g values, such as g = 10,
create fast, tight waves, while a medium value of 5 creates slower waves, while a low value
of 2 creates waves so slow that the entire universe becomes cyclical, appearing much like
what occurred when low k values were used.



















21 k

B

k

A

g
A

S










	PowerPoint Presentation

