An Investigation into the Randomness and Modeling Potential of Various Cellular Automata

for(int ctr2 = 1; ctr2 < 999; ctr2++)

temp $=100 * a[0][$ ctr2 2 - $]+10 *$ a[0][ctr2] + a[0]
if feemp $==0| |$ temp $==10| |$ temp $==11| |$ temp $==101)$ ${ }^{2[1][\text { ctr2 }]}$
else
a[1][ctr2] $=0$;
file_out <<a[1]I500
for(int ctr2 $=0$; ctr2 $<1000 ;$ ctr2++)
$a[0][c r r 2]=a[1][c t r 2] ;$

Rule 30

Fig 4 - -values with wrapping

Introduction

Cellular automata are groups of cells in which each cell's life depends on its surrounding cells. he cell knows what it stould be in the next cycle by following simple rules. systems can be made with only these simple rules.
The cellular automata used to generate random numbers was one dimensional. Each cell only looked at itself and two neighbors - the cells directly to the
of cells is shown underneath the generation that spawned it.
Cellular automata do not have to be one dimensional, as hodgepodge shows. This is an example of cellular automata in which there are many different states, not just alive or dead. The cell can have varying degrees of sickness. A cell is determined to be at a certain state by the states of its neighbors. In this two dimensional example,

Method

To generate the random numbers, we decided to start with an initial condition of one cell alive in the middle of row of dead cells, because that would simplify the initialization process. We then created a program that would generate each new row and store the middle cell's value, either a one or a zero, in a file to be analyzed later (fig. 3). because the middle value was guaranteed to be more random than other values towards the edges, which, as can be seen in fig. 1 and 2 , are less random than the inner cells.

To analyze the numbers, we ran the output through two programs. One program converted the numbers we had
 program Diehard, which runs fifteen tests for randomness. After running that program, we had the p-values necessary
to determine the randomness of our numbers.

Results

The results of the randomness tests ran on our data for both rule 30 and rule 45 show that the random numbers generated d apssed twelve outs of the fifteen tests. Only the Bitstream test, overlappining pairs sparse
occupancy (OPSO) test, and count the one's test returned p-values of one. Overall, the graphs of the p-values occupancy (OPSO) test, and count the one's test returned
show that our random numbers were nominally random.
The Bitstream test considers twenty-letter words made from only two letters -0 and 1 . The words overlap the first word is letters 1 through 20 , the second 2 through 21 and so on. The test counts the number of missing
words (out of a possible $2 \wedge 20$ in a string of $2 \wedge 21$ overlapping words. It should be very close to 141,909 The OPSO test is similar. It counts the number of missing two-letter words. Each letter is determined by ten bits which means there are $2 \wedge 10$ or 1024 possible letters. This should also be close to 141,909 .
The count the one's test looks at a series of eight numbers. If there are 0,1 , or 2 ones, it is an " A " if there
are 3 , it is a " $" \mathrm{~B}$ " 4 makes a " C ", 5 makes a " D ", and 6,7 , or 8 is an " E ". The test counts the frequency of fiveletter words (a possible $5 \wedge 5$ different words).
P-values should be uniform from 0 to 1 . However, the tests used said not to be worried with p-values close to
0 or 1 such as .0012 or .9983 . If a test really fails, the p-values will be 0 or 1 to more than six decimal places.

The uses of 2 dimensional cellular automata can be even more extensive than the one dimensional ones we looked at first. The example we looked at, often called the hodgepodge machine, simulates disease and infection rates. It uses a special set of rules that determine, from generation to generation, how sick the cell becomes: the formula $\left\{\frac{A}{n} \frac{A}{n}\left|\frac{B}{n}\right|\right.$ is used to determine what state n a healthy cell will become, where A and B are the numbers of infected the sum of the infected neighbors and A is the number of infected cells. When a cell reaches state n, it becomes healthy in the next generation. We studied generally how the parameters $1, \mathrm{k} 2$, and g affect the infection rates and fluctuations in the number of infected, sick, and healthy cells.

To do this, we used a C program called hodge that would allow us to change the parameter values. From this, we were able to determine that the k values mostly determined whether the cells would become sick or not. At high k values, such as $\mathrm{k} 1=\mathrm{k} 2=5$, every
eventually become healthy. At very low k -values, such as $\mathrm{k} 1=\mathrm{k} 2=1$, the cells would become sick fast enough that their behavior triggered a cyclical pattern of a very high period of about 8000. From this program, we were also able to determine that the g value mostly determined the frequency of the waves of illness that are seen. High g values, such as $\mathrm{g}=10$, reate fast, tight waves, while a medium value of 5 creates slower waves, while a low value what occurred when low k values were used.

Conclusion
From the charts of the p -values, we determined that both rules returned nominally random data. To see more decisively determine how random our numbers were, we compared our p-values to those generated by a truly random set of data. Thus, we used data from the site random.org, which uses atmospheric noise to generate random numbers. We graphed the resulting p-values and found that our p-values were not as evenly spread as random.org's p-values, nor were our p-values in the desired range of .05 to .95 as often as random.org's p-values. Thus, we have determined hat these two rules are not true sources of randomness. We then went on to determine if these two rules were any better than standard pseudo-random number generator. Both rules are
shown by our graphs of the C++ rand() function's p-values.

We have also found that rule 30 is somewhat better at making random numbers than rule 45 . While the difference is slight when looking at the spread of p-values on a graph, rule 45 has 20 percent more p-values outside of the acceptable range than does rule 30 .
Finally, <<PUT WRAPPING CONCLUSION HERE>>

K1-1 K2-1G-10
5. $10-$-PValue for $\mathrm{C}+\mathrm{t}$ rand f fuction

