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1. INTRODUCTION 
 
 The end product of drug development is the use of the drug in clinical therapy. 
When a drug has a narrow margin of therapeutic safety, we must steer its dosage between 
one that is too low, and likely to be ineffective on the one hand, or too high, and likely to 
be toxic, on the other. We must carefully plan and individualize the dosage for each 
patient, to achieve some desired target goal such as a serum concentration, or its profile 
over time. We must then observe the patient, and if needed, monitor serum concentrations 
at appropriate intervals. These intervals should be frequent enough so we can evaluate the 
patient when there are relatively small changes in the total amount of drug in the body 
between observations, so that if toxicity develops, we detect it in an early stage of its 
development so we can make the appropriate adjustment in dosage early, rather than 
later, after toxicity has become more severe and dangerous.  
 

It is not useful to talk about dosage individualization without saying with respect 
to what. It is commonly said that one should individualize dosage to body weight and 
renal function, for example. But again, to what specific end, toward what specific goal? 
This is usually not explicitly stated. We usually do this, however, to control either the 
total amount of drug in the patient’s body, or the serum concentration, for example, at a 
desired specific target value, usually within some general target “therapeutic range” of 
serum concentrations where most patients (but not all) do well, and where the incidence 
of toxicity is acceptably low. 

 
However, this is approach is appropriate only for the initial regimen, and it still 

ignores the opportunity to be gentle, moderate, or aggressive in the approach to the 
patient, according to each individual patient’s need for the drug. 
 

The expected incidence of toxicity should be no greater that that which is 
appropriate for the patient’s need for the drug. In many cases, if the need for the drug is 
not great, or is not acute, the target goal should first be one that is associated with a low
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Incidence (risk) of toxicity, leading to a gentle dosage regimen. Based on the patient’s 
response, the target goal can then be revised upward and a higher dosage given to achieve 
it. This, for example, is behind the “start low, go up slow” dosage policy so well 
advocated by Cohen [1]. 
 
 On the other hand, a firmer approach may be clinically indicated. If the patient 
has an acute and significant need for the drug, the “start low, go slow” approach is not 
warranted, and is not safe. Here a higher target goal must be selected, one which is more 
likely to be effective, and a greater risk of toxicity will have to be accepted in order to 
achieve such a higher goal.  
 

The target goal must therefore be selected individually for each patient, 
according to that patient’s individual need for the drug at that time. In this way, one can 
then develop a gentle approach to one patient, but a more firm or aggressive approach to 
another, as each patient’s need dictates. Clearly, things are not the same at the bottom of 
the therapeutic range as at the top, or even further, if it is necessary to go to a still higher 
target if the patient’s need dictates. Examples of this approach are the acceptance of a 
certain risk of toxicity with cancer chemotherapy, therapy for AIDS, and with the risk of 
toxicity with digoxin, aminoglycosides, vancomycin, and transplant chemotherapy, for 
example. 
 
2.  SET INDIVIDUALIZED TARGET GOALS FOR EACH PATIENT 

The concept of a general “therapeutic range” of serum drug concentrations is 
therefore only a generalization.  It is an overall range in which most patients, but 
certainly not all, do well.  One must always check each individual patient to see if he or 
she is doing not only well, but optimally, on clinical grounds, regardless of whatever the 
serum concentration is actually found to be. This approach is quite different from much 
clinical teaching, but still is similar to what many clinicians give lip service to – “look at 
the patient, not just the serum concentration”. 

 
2.1. Problems with “Therapeutic Ranges” 

 
Figure 1 shows the usual means by which therapeutic ranges appear to have 

been obtained. It is interesting that these ranges have never, to the authors’ knowledge, 
been defined in a specific, quantitative, and explicitly described manner, but instead have 
simply been described as regions below which therapy is generally “ineffective”, and 
above which “significant” toxicity has been observed. It is usually stated that first, there 
is a “significant” incidence of therapeutic effects with increasing serum drug 
concentrations. This defines the beginning of the therapeutic range. Later on the 
incidence of toxic effects also becomes “significant”, and the “toxic range” has been 
entered..  For example, Evans [2] presents a definition of therapeutic range as ”a range of 
drug concentrations within which the probability of the desired clinical response is 
relatively high and the probability of unacceptable toxicity is relatively low” However, 
the therapeutic range has never, to our knowledge, been defined quantitatively. The eye is 
drawn to the bends in each line in Figure 1, and the classification of the apparent 
“therapeutic range” has been developed, published, and accepted without apparent 
criticism or further thought. However, this procedure does not consider the need to 
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develop a gentle dosage regimen for a patient who needs only a gentle touch, or a more 
aggressive one for a patient who really needs the dosage “pushed”. Another problem has 
been that special populations of patients have not had their special needs recognized. For 
example, it is well known that patients with atrial fibrillation need higher serum 
concentrations, usually averaging 2.0 ng/ml, for full control of their ventricular rate, and 
yet this has not been followed up by setting a special therapeutic range for them. Special 
types of patients, the elderly, for example, may need special target serum concentrations 
selected for them.   

 

20100
0

50

100

THERAP EFFECTS
TOXIC EFFECTS

SERUM CONC (ARBITRARY UNITS)

PE
R

C
EN

T 
R

ES
PO

N
SE

, O
R

EX
PE

C
TA

TI
O

N
 O

F 
EF

FE
C

T

"THERAPEUTIC
      RANGE"

 
 
Figure 1.  General relationships usually found between serum drug concentrations and the incidence of 
therapeutic and toxic effects. The eye is drawn to the bends in the curves, and the therapeutic range is classified 
in relation to these bends. This qualitative procedure of classification discards the important quantitative 
relationship of the incidence of toxic effects versus serum concentration. 

 
In addition, the risks and benefits of using a therapeutic range or window are 

quite complex. One could, for example, develop a dosage regimen to maximize the 
probability of having the patient’s serum concentration be within some desirable 
therapeutic window. This sounds good at first, but the decision-making process rapidly 
becomes quite complex. One must also weigh the benefit and the probability of a 
desirable response against the risks, and their probabilities, of being outside that window, 
either below or above it.  

 
Those risks associated with being below the window are usually associated with 

lack of therapeutic effect. Those associated with being above the window are usually 
associated with toxicity. Each of these outcomes - subtherapeutic, therapeutic, or toxic- 
thus has not only its associated probability but also its own positive or negative 
quantitative utility function of goodness or badness. Optimizing such a complex set of 
probabilities and utilities becomes a most complex process, and is poorly amenable to 
rigorous clinical decision analysis, especially at the bedside. 
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2.2  Setting specific target goals based on need. 
 

A more intuitive and individualized approach is one in which the clinician 
evaluates the magnitude of  each patient's individual clinical need for the drug in 
question, and selects an estimated risk of toxicity which is felt on clinical grounds to be 
justified by the patient’s need. In this approach, there is no window of neutrality about a 
target, as in a “therapeutic range.  Based on the relationship between serum concentration 
and incidence of toxicity shown in Figure 1, for example, one selects a specific target 
serum concentration goal to be achieved for a specific patient.  One does not want the 
patient to run any greater risk of toxicity than is justified by the patient’s clinical need for 
the drug.  Within that constraint, however, one wants to give the patient as much drug as 
possible, to get the maximum benefit. This approach provides the rationale for selecting a 
specific target serum concentration goal, rather than some wider window, and then to 
attempt to achieve that target goal with the greatest possible precision, just as if one were 
shooting at any other target.  

 
In this approach, the risks of being just slightly above the desired target goal are 

only minimally different from those associated with being just slightly below it, in the 
sense of an infinitesimal difference in calculus. Because of this, it appears easier, and also 
more intuitive for a clinician, to choose a desired target goal rather than some wider 
window, and then to attempt to achieve or hit that selected target goal with the greatest 
precision (least error) possible.  

 
Without selecting such a specific target goal, there can be no truly 

individualized precise drug therapy. Individualized drug therapy therefore begins by 
setting a specific individualized target goal for each patient. The task of the clinician is to 
select, and then to hit, the desired target goal as precisely as possible. As soon as the 
initial regimen is given, the clinician’s task is then to observe the patient’s clinical 
response at appropriately frequent intervals, and to reevaluate whether the target goal was 
hit precisely enough or not, whether the target goal was correctly chosen or not, or if it 
should be changed and a new dosage regimen developed to hit the new target goal. This 
is the basis of the “target - oriented, model - based, approach to individualized drug 
dosage for each individual patient [3]. 

3.  THE NEED FOR MODELS 
 
Pharmacokinetic models, like other mathematical models, condense huge 

collections of experience into a form that can be easily grasped and understood. Newton’s 
equations condensed wide ranges of experience and extensive data into his superb models 
of celestial mechanics. He did not make hypotheses. He simply discovered and then 
described with models these widely scattered relationships and events. These models are 
very scientific, in the deepest sense of the word.  

 
In exactly the same way, pharmacokinetic models, like all models, can be 

extremely useful. No pharmacokinetic model is an exact description of reality, which is 
always more complex. Nevertheless, these models describe in useful, quantitative terms, 
the behavior of drugs when they are given to patients – their absorption, serum 
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concentrations, pathways and exchange rates to and from other compartments, and their 
various therapeutic and toxic effects. Often these processes and pathways may have 
important relationships to other clinical descriptors or covariates such as body weight, 
age, renal function, smoking status, gender, and genetic CYP450 makeup, for example.  

 
 Pharmacokinetic and pharmacodynamic (PK/PD) models also provide the tool 
to apply that recorded past experience to the care of new patients. Past experience with 
drug behavior is now usually stored in the form of a population PK/PD model which is 
then used to design the initial dosage regimen for the next patient who appears to belong 
to that particular population.  
 

The dosage regimen to achieve the therapeutic target goal is computed and 
given. The patient is then monitored both clinically and by measuring serum 
concentrations. The serum concentrations are used not only to note if they are within  
some  general “therapeutic range”, but most importantly to make a specific model of the 
behavior of the drug in that individual patient, based on information from the population 
PK/PD model,  and using Bayes’ theorem to develop an individualized model that best 
describes the behavior of the drug in that individual patient, using both the patient’s 
individual data of serum concentrations, and balancing the patient’s individual data 
against the more general information from the population model.  

 
In striking this balance, the relative credibility of both kinds of information must 

be weighed. Since individual data is often sparse, especially at the beginning of an 
experience with a patient, it never explains the entire picture, and it is usefully 
supplemented with the general population information. The more individual data is 
obtained, the more it dominates the picture.  In this manner, using Bayes’ theorem, an 
individual model can be made, which has the property of being able to predict future 
serum concentrations at least somewhat better that models made without considering 
population information, using weighted nonlinear least squares, for example, which 
consider only the individual patient data.  

 
One can then see what the patient’s probable serum concentrations were at all 

other times when they where not measured, even when he or she was not at all in a steady 
state, even during highly unstable clinical situations in very acutely ill patients with great 
changes in their clinical status and in their renal function over time.  One can also 
reconstruct and see graphically the computed concentrations of drugs in a peripheral 
nonserum compartment or in various effect compartments. The patient's individualized 
model permits one also to make dosage adjustments without having to wait for a steady 
state before sampling serum concentrations, to take into consideration practical clinical 
situations, such as handling data of different dosage regimens (with unequal doses and 
unequal dosing intervals), and totally arbitrary time intervals between drug doses and 
blood sampling. 

 
These important physiological, pharmacological, pharmacokinetic and 

pharmacodynamic relationships cannot be seen or inferred at all without such models. In 
addition, the use of models gets around the need to wait for a steady state before 
monitoring serum concentrations.. By comparing the clinical behavior of the patient with 
the behavior of the patient’s model, one can evaluate the patient’s clinical sensitivity to 
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the drug, and can adjust the target goal appropriately. For digoxin, for example, the 
inotropic effect of the drug correlates best with the computed concentrations of the drug 
in the peripheral compartment (ug/kg of body weight, for example) rather than with the 
serum concentrations.  The excellent model made by Reuning and colleagues for digoxin 
[4] has been highly useful clinically [5]. 

4.  CURRENT BAYESIAN INDIVIDUALIZATION OF DRUG DOSAGE 
REGIMENS 
 

The Reverend Thomas Bayes, who died in 1761, was a mathematically inclined 
minister, and it is said that he was interested in “seeing through” the operations of 
chance, to better understand God’s design for the world. He described how we learn from 
life, by revising our expectations based upon our experience. His theorem describes in 
quantitative terms the important sequential relationship between: 

 
1.  the estimated probabilities of certain events (for example, in PK/PD 

terms, a patient’s apparent volume of distribution, and the clearance or rate constant for 
elimination of a drug), that are present in a patient before we have had any chance to 
know anything about the patient’s response to the drug (or the serum concentrations), 
because we have not given him/her the drug yet, and then  

 
2. the measured serum concentrations that are found in that patient, and 

their precision, and then  
 
3. the revised (Bayesian conditional posterior) probabilities of these 

PK/PD parameter values after the new information is obtained and evaluated (posterior to 
the new information).  

 
 In the beginning, before the drug is given, all we have is our past experience 

about the behavior of the drug in similar patients. This is why one of our most important 
tasks as clinicians is to store our experiences with patients in a form that can be used in 
the future to apply that experience optimally, usually using Bayes’ theorem above, to the 
care of the next similar patient. This is why it is important to make population PK/PD 
models of the behavior of the drug in the actual patients we treat, not just in research 
clinical trials, to obtain and store that important clinical past experience optimally.  

 
All this decision making must be done before (prior to) giving the drug and 

before (prior to) being able to  observe anything about the patient’s own individual 
clinical response and serum concentrations. Furthermore, since fitting a pharmacokinetic 
model only to the patient’s data is not optimal without supplementing it with information 
of general past experience as well, the Bayesian approach describes quantitatively the 
sequential relationship between prior probabilities (those present before obtaining any 
new information), the new information (serum concentrations, for example, and their 
precision), and the revised (posterior) probabilities after that information is taken into 
account.  
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Bayes’ theorem can be used to describe this sequence of pharmacokinetic and 
pharmacodynamic events. It is widely used throughout the scientific and the military 
communities. The great majority of flight control, fire control, and missile guidance 
systems are Bayesian adaptive controllers. We use the same approach here to control the 
behavior of the patient as we treat him or her. We do this by selecting desired target 
therapeutic goals, by using the population model to compute the initial regimen to best hit 
the desired target, by monitoring the patient with serum concentrations, using that data to 
make an individual Bayesian posterior model, then by re-evaluating on clinical grounds 
whether or not the correct target goal was chosen (and changing it if needed), and finally 
by computing the new and adjusted dosage regimen to best hit the selected target once 
again. This cycle can then repeat as often as clinically indicated.. This therapeutic process  
is called Bayesian adaptive individualization and control of drug dosage regimens. 
 

The Maximum Aposteriori Probability (MAP) Bayesian approach to 
individualization of drug dosage regimens was introduced to the pharmacokinetic 
community by Sheiner et al. [6]. In this approach, parametric population models are used 
as the Bayesian priors. In these models, the parameters in the structural model (the 
apparent volume of distribution, clearances, rate constants, and their variances, are 
described by other parameters of their means, standard deviations (SD’s), and the 
correlations between them. The credibility of these population models (their parameter 
SD’s) is then evaluated in relationship to the SD’s of the measured serum concentrations 
as they are obtained. The contribution of these two types of data and their SD’s to the 
MAP Bayesian posterior individualized patient model is shown in  the MAP Bayesian 
objective function below,   
 

 

∑ (Cobs - C mod)
2
   +   ∑(Ppop - Pmod)

2  (1) 

                                   SD2 (Cobs)                 SD2 (Ppop)

 

where Cobs is the collection of observed serum concentrations, SD(Cobs) is the collection of 
their respective SD’s, and Cmod is the model estimate of each serum concentration at the 
time it was obtained. Similarly, Ppop is the collection of the various population model 
parameter values, SD2

(Ppop) is the collection of their respective SD’s, and Pmod is the 
collection of the Bayesian posterior model parameter values. Each data point ccan be  
given a weight according to its Fisher information, the reciprocal of its variance (the 
square of the SD), and so is each population parameter value, according to its variance. 
Population models in which there is greater diversity, and therefore greater variance, 
contribute less to the individualized model than do population models having smaller 
variances.  Similarly, a precise assay will draw the fitting procedure more closely to the 
observed concentrations, and a less precise assay will do the opposite. The more serum 
data are obtained, the more that information dominates the determination of the MAP 
Bayesian posterior parameter values (Pmod) in the patient's individualized 
pharmacokinetic model.  
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 In contrast with older methods of fitting of PK/PD data, the MAP Bayesian 
method can fit using only a single serum concentration data point if needed. This is 
because the MAP Bayesian procedure already has one data point for each parameter. 
Those data points are the collection of the population parameter values themselves. 
Because of this, the MAP Bayesian procedure can start to fit with only a single serum 
concentration. This feature of the MAP Bayesian method allows one to handle the often 
very poor and sparse data usually present in clinical strategies of therapeutic drug 
monitoring and dosage adjustment.  
 

Having made the patient's individualized model, one then uses it to reconstruct 
the past behavior of the drug in the patient during his therapy to date. One can examine a 
graphical plot of the behavior of this model over the duration of the past therapy. One can 
thus evaluate the clinical sensitivity of the patient to the drug, by looking at the patient 
clinically and comparing the patient's clinical behavior with that of the patient’s 
individualized pharmacokinetic model. In that way, one can evaluate whether the initial 
target goal was well chosen or not. One can choose a different goal if needed, and once 
again one can compute the dosage regimen to achieve it. In this way, the model can be 
individualized and dosage can continue to be adjusted to the patient’s body weight, renal 
function, and available serum concentrations, for example, to achieve the desired target 
goal, usually with increasing precision during the course of the patient’s therapy.  

 
5.  COMPARISON WITH OTHER METHODS OF FITTING DATA 

 
 The MAP Bayesian fitting procedure has been shown to be generally better in 
predicting future serum concentrations than the method of weighted nonlinear least 
squares. MAP Bayesian fitting is also significantly better than the earlier traditional but 
now obsolete method of linear regression on the logarithms of the concentrations (see 
below). 
 
5.1  Weighted Nonlinear least Squares Regression 
 
 The conventional weighted least squares regressin procedure is not quite so 
smart as the MAP Bayesian one, because its objective function is less complete, and has 
only the left hand side of the MAP Bayesian objective function, as shown below.  

 

  ∑  (Cobs - C mod)2       (2)    

             SD2 (Cobs)  

 
 Because of this, only the patient's serum data are considered in the fitting 
procedure, and this information is not supplemented by the additional information from 
the population parameter values. Because of this, fitted models made using weighted 
nonlinear least squares have been shown to predict future serum concentrations slightly 
less well than those made using MAP Bayesian fitting [7].  
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 Like the MAP Bayesian procedure, this method can fit the model to data of 
doses and serum concentrations acquired over many dose intervals, usually the patient’s 
entire dosage history.  There is no longer any reason to do the traditional "single dose" 
pharmacokinetic study. Further, there is no need for the patient to be in a steady state or 
for the serum data to be only post-distributional. Studies and population pharmacokinetic 
/ pharmacodynamic modeling can be done on the actual patients being treated, as they are 
receiving their therapy. This is a second, and very important, function of therapeutic drug 
monitoring. The algorithm of Nelder and Mead [8] is a good one for fitting the data in 
both the least squares and the MAP Bayesian fitting procedures. A very useful 
nonmathematical description of this method has been given in BYTE magazine [9]. 
 
 Secondly, like the MAP Bayesian method, weighted nonlinear least squares can 
provide correct weighting of serum concentration data according to its credibility or 
Fisher information [10]. It thus has the potential for obtaining good estimates of the 
pharmacokinetic parameter values. 
 
 However, this method cannot take into account population information that is 
generally known about how that drug usually behaves in patients like the individual 
patient under consideration. As the procedure moves from the starting population 
parameter values to others which fit the data better, it discards all the general information 
used to begin the fitting procedure, instead of supplementing it with the individual 
patient's data. Since no fitting procedure ever explains the entire relationship between 
doses given and concentrations found, discarding the general population information is a 
suboptimal feature.  It may well be because of this feature that the nonlinear least-squares 
method, while "fitting" serum concentration data "best", has been shown to be a slightly 
poorer predictor of subsequent serum concentrations than the MAP Bayesian method [7].  
In contrast to the MAP Bayesian procedure, this method, like linear least squares 
regression (see below), requires at least one serum concentration for each parameter to be 
fitted, or at least two serum concentrations in the models considered here, as will be 
discussed further below. The MAP Bayesian method, in contrast, can begin to fit using 
only a single serum concentration data point if needed. This is because the MAP 
Bayesian procedure already has one data point for each parameter. Those data points are 
the collection of the population parameter values themselves. Because of this, the MAP 
Bayesian procedure can start to fit with only a single additional data point, the very first 
serum concentration. This is an important feature that is extremely helpful in the 
“practical” aspects of therapeutic drug monitoring for patient care. 
 
5.2  Linear Least Squares Regression 
 
 Another method used to fit serum concentrations to make individual patient 
models has been the old traditional but now obsolete method of linear regression on the 
logarithms of the serum concentrations (see below). This method was the traditional one 
in which a pharmacokinetic model (restricted to only a single compartment) was fitted to 
data obtained during only a single dose interval, specifically to the logarithms of the 
serum concentrations. No weighting of the serum data was used. The method  was 
simple, and it has been widely implemented on hand calculators. It was generally the 
community standard for monitoring serum gentamicin concentrations ever since Sawchuk 
and Zaske showed its utility to individualize aminoglycoside dosage regimens [11].  
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 The method requires at least 2 serum concentrations. It cannot handle anything 
more than a 1-compartment pharmacokinetic model. Distribution of the drug after a dose 
must be complete before a “meaningful” serum sample can be obtained, where the ratio 
between the serum concentration and that in any other compartment is constant.  The 
method takes advantage of the fact that one can linearize the solution of a first-order 
linear differential equation for such a model if one transforms the serum concentration 
values to their logarithms. However, the method has three important weaknesses. 
 
 First, the method can only fit serum concentration data acquired during a single 
dose interval. It discards all previous serum data (and all previous information about the 
patient) whenever a new set of serum concentrations is obtained. There is therefore a loss 
of continuity each time new serum data are analyzed. This method is the most wasteful of 
any in its use of serum concentration data, as the useful life span of a serum sample is 
shorter here than with any of the other methods which do not have to discard old data, but 
can integrate it with more recent data from other dose intervals, as the nonlinear least 
squares and MAP Bayesian procedures can do. 
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Figure 2.   Error pattern assumed using fitting by linear regression on logarithms of serum concentrations. Note 
the much greater weighting given to the lower concentrations. 
 
 Second, linear regression contains the assumption that the assay error is a 
constant percent of the measured concentrations. The lower the concentration, the more 
accurately it is assumed to be known. Because of this, if the assay has any other error 
pattern over its working range (and it almost always does), this method greatly 
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overestimates the credibility of low serum concentrations over high ones.  This can be 
seen if one considers two serum samples, one of 8.0 ug/ml for example, and one of 1.5 
ug/ml, as shown in Figure 2. One usually wishes to attach approximately equal credibility 
(weight) to these data points. One might thus assume that their laboratory error is 
approximately equal. Since the Fisher information (an index of credibility) of a data point 
having a normally distributed error is proportional to the reciprocal of the variance of that 
data point, the relative  weights given by linear regression to serum concentrations of 8.0 
and 1.5 ug/ml would be proportional to the reciprocal of their squares [7,10]. Because of 
this, the method of linear least squares, which assumes that the error bars are equal on the 
logarithmic scale, arbitrarily gives the value of 1.5 ug/ml a weight of 8

2
/1.5

2
 = 64/2.25 = 

28.4 times the weight of the concentration of 8.0 ug/ml. A concentration of 0.1 has 100 
times the weight of a concentration of 1.0, and 10,000 times the weight of a concentration 
of 10.0 units! Because of this assumption, this method often obtains model parameter 
values that are significantly different from those obtained by other methods [7]. Third, 
this method ignores all population data, and therefore all past general experience, 
concerning the behavior of the drug. 
 
5.3  Conclusions 
 
 The MAP Bayesian method [6] appears to be the best of these three [7].  As with 
nonlinear least squares, it can provide correct weighting of serum concentration data 
according to the known laboratory assay error, and it can analyze such data over many 
dose intervals. In addition, it supplements population data (general knowledge) with 
specific information about each patient, instead of discarding it. Because of this, the 
method has been a slightly better predictor of future serum concentrations [7]. Lastly, the 
method requires only a single serum concentration to begin the analysis, no matter how 
many parameters are present in the population pharmacokinetic model. As more serum 
concentrations are obtained, the fitted model gradually becomes less of a population 
model and more of a patient-specific model. Both general and patient-specific data are 
combined intelligently in the M.A.P. Bayesian procedure to provide the most probable 
single-point estimates of the parameter values given both types of data and their 
respective standard deviations. 
 
 Finally, one other fitting procedure, now coming on the scene, holds promise of 
doing still better than the MAP Bayesian method. This is the "Multiple Model" method of 
fitting data and designing drug dosage regimens [12]. It is a stochastic rather than a 
deterministic method, and is based on nonparametric population models [13,14] and their 
individualized Bayesian posterior pharmacokinetic models. This method of dosage design 
will be discussed more fully later on in this chapter. 
 
6. EXAMPLES OF MAP BAYESIAN TARGET-ORIENTED, MODEL – BASED, 
APPROACHES TO PATIENT CARE 
 
6.1  Gentamicin Therapy 
 
 With a 1-compartment pharmacokinetic model in which the elimination rate 
constant (Kel) was composed of a nonrenal component (Knr) and a renal component 
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having a slope (Kslope) relationship to creatinine clearance (CCr) so that Kel = Knr + 
Kslope x CCr, the MAP Bayesian procedure resulted in significantly better prediction of 
future serum concentrations (see Figure 3) than predictions made using linear regression 
(see Figure 4).  In contrast to most patients in the literature, who may have either normal 
or reduced renal function but whose renal function is stable, many patients in the above 
study were highly unstable and had changing renal function, to a quite significant degree, 
during their therapy [7]. 
 
 Because the software used in that study [7,15] was specifically designed to 
operate in the presence of significant changes in renal function from dose to dose, it has 
also been useful in the analysis and management of aminoglycoside therapy for patients 
who must undergo periodic hemodialysis. 
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Figure 3. - Predicted versus measured serum Gentamicin concentrations found with M.A.P. Bayesian fitting 
and the Kslope model.  r = correlation coefficient, ME = mean error, MSE = mean squared error. WME = 
mean weighted error. WMSE = weighted mean squared error. See text for discussion. 
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Figure 4. - Predicted versus measured serum concentrations found with linear regression on the logarithms of 
the serum concentrations. Other symbols as in Figure 3. 
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 Managing aminoglycoside therapy can also be done quite well in patients who 
must be on periodic hemodialysis. The key is to get serum samples of  both the drug and 
of serum creatinine concentrations both before and after dialysis. For current dialysis 
equipment, and for the aminoglycoside antibiotics, the apparent increase in creatinine 
clearance during dialysis is about 50 ml/min above the patient’s baseline value. 
 
 The baseline value of CCr can be estimated by examining the most recent rising 
pair of serum creatinine values, after one dialysis for example, and just before the next 
one. This is why the pair of serum creatinine samples pre- and post- dialysis is useful. In 
addition, when a patient goes on dialysis, one can record this as giving a dose of the drug, 
where the amount of the dose is 0.0 mg. With this dose of zero, the infusion time can be 
stated as very short, 0.1 hr, for example, and the creatinine clearance can be directly 
entered as being 50 ml/min above that of the patient’s baseline. Finally, when the patient 
goes off the dialysis, another dose of zero is entered at that time, and the patient’s 
creatinine clearance is set back to the baseline value [18]. 
 
6.2  Timing the Aminoglycoside Dose and the Dialysis 
 
 Another corollary for dialysis patients is that while most of them are given their 
dose of drug soon after the dialysis, this can cause a problem. The serum aminoglycoside 
concentrations in such patients have extremely long half-times, and these patients are 
often the ones who have the greatest incidence of renal toxicity and otoxoxicity, because 
their serum concentrations stay so high for so long after each  dose, even though the 
doses themselves are adjusted to keep the total area under the serum concentration curve 
at an appropriate value constrained by the desirable target peak and trough goals.  
 
 Instead of this, it may be more prudent and useful to give the dose before 
dialysis, about 2 or 3 hours before dialysis. In this case, one gets the desired peak value. 
Then the dialysis helps to mimic the renal function of a patient with more normal (or less 
abnormal) renal function, reducing the serum concentration more rapidly, and helps to 
achieve a serum concentration profile somewhat more like that of a patent with better 
renal function.  
 
7.  CLINICAL STUDIES OF OUTCOME AND COST 
 
7.1.  Gentamicin Therapy 
 
 Probably the best examination to date of the utility of the MAP Bayesian 
approach to individualize drug dosage regimens for patients has been the work of van 
Lent-Evers et al [3]. They compared the model-based, target goal approach to 
aminoglycoside therapy with a more conventional therapeutic drug monitoring strategy. 
The mean peak and trough concentrations in the study group were 10.6  ± 2.9 ug/ml and 
0.7 ± 0.6 ug/ml respectively versus 7.6 ± 2.2 and 1.4 ± 1.3 ug/ml respectively, both 
significant differences. The peaks were significantly higher and the troughs significantly 
lower in the study group. Overall mortality was 9 of 105 (9%) in the study group versus 
18 of 127 (14%) in the control group, not a significant difference (P = 0.26). However, in 
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those patients who had obvious infections present on admission, mortality was only 1 of 
48 in the study group versus 9 of 62 in the control group, a significant difference (p = 
0.023). In addition, nephrotoxicity was only 2.9% in the study group versus 13.4% in the 
control group. 
 
 While the clinical outcome was significantly improved (more effective, less 
toxic) with the use of this model-based, target-oriented approach to monitoring and 
dosage individualization, it was interesting to see that the hospital stay was also 
significantly reduced, from 26.3 ± 2.9 days overall in the control group to 20.0 ± 1.4 days 
in the study group (p = 0.045). For patients with infections present on admission, the stay 
was similarly reduced, from 18.0 ±  1.4 days in the control group to 12.6 ± 0.8 days in the 
study group. Thus in both patient groups, those with and also without clearcut infections 
on admission, hospital stay was reduced by about 6 days with the use of this approach to 
serum concentration monitoring and model–based dosage individualization.  
 
 Further, despite the added effort and cost to implement this therapeutic 
approach, the overall cost per patient was reduced from 16,882 ± 17,721 Dutch florins in 
the control group to 13,125 ± 9,267, a significant difference (p < 0.05). In the patients 
with infections on admission, the cost was reduced from 11,743 ± 7,437 Dutch florins to 
8,883 ± 3,778 florins, an even more significant difference (p < 0.001). Thus in a sizeable 
group of patents, the model based, target oriented method of monitoring and 
individualizing aminoglycoside dosage regimens not only resulted in better outcomes, but 
also in shorter hospital stays, at a net cost savings of about $1000 per patient [3]. 
 
7.2.  Amikacin Therapy 
 
 MAP Bayesian target-oriented, model-based adaptive control has been used to 
manage amikacin therapy in geriatric patients, often for extended periods, by Maire et al 
[16].  In their patients, whose renal function was often quite reduced but who were 
generally clinically stable, visibly better prediction (and therefore control) of serum 
concentrations was seen with MAP Bayesian analysis than with their unfitted population 
model].   
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Figure 5 – Left: Predicted versus measured serum Amikacin concentrations found with M.A.P. Bayesian fitting, 
1 compartment Kslope model (B1). Right: Predicted versus measured serum Amikacin concentrations found 
with A Priori population 1 compartment Kslope model (AP1). 
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 The results of Maire et al. [16] in these clinically more stable patients are shown 
in Figure 5, left. They are better than those found in the gentamicin patients with unstable 
renal function [7] shown in Figure 3 above.  Further, Figure 5, right, shows the much 
poorer predictions based simply on the population model for Amikacin, without any 
fitting to the serum data. 
 
7.3.  Vancomycin Therapy 
 
 Vancomycin therapy was evaluated by Hurst et al [17] using a two - 
compartment (central plus peripheral compartment) model. Using traditional linear 
regression, extremely poor prediction was found, as shown in Figure 6, left. In contrast, 
the 2 compartment model, coupled with MAP Bayesian fitting, led to significantly better 
prediction of future serum concentrations than did the linear regression method, as shown 
in Figure 6, right.  
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Figure 6.-  Left:  Predicted versus measured serum Vancomycin concentrations found with Linear regression. 
Right: - Predicted versus measured serum Vancomycin concentrations found with a 2 compartment Kslope 
model and MAP Bayesian fitting). 
 
7.4.  Digoxin Therapy 
 
 The digoxin population model used in the USC*PACK MAP Bayesian software 
[18] is based on that described by Reuning, Sams, and Notari [4]. That two - 
compartment model uses both a central (serum) and a peripheral (nonserum) 
compartment. Computed concentrations of drug in the peripheral compartment correlate 
much better with inotropic effect than do serum concentrations [4,19]. The USC*PACK 
digoxin software [18] not only uses this model, but also develops dosage regimens to 
achieve desired target goals in either the central (serum concentration) compartment or in 
the peripheral (tissue or effect) compartment.  
  
 The following example is illustrative.  A 58 year old man developed rapid atrial 
fibrillation at another center, after missing his usual daily dose of 0.25 mg.  He was 
clinically titrated with several intravenous doses of digoxin, and converted to sinus 
rhythm. The problem then was to select a successful dosage regimen for the patient.  He 
was placed back on his original oral maintenance dosage. After a day, atrial fibrillation 
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recurred, showing that his digoxin requirements had changed.  He again was titrated with 
several doses of intravenous digoxin and again converted to sinus rhythm.  Again, the 
problem was to select a successful dosage regimen for the patient.  Once again, he was 
placed on his original oral maintenance dosage, and once again, after about two days, 
atrial fibrillation recurred. For a third time he was titrated with several intravenous doses 
of digoxin, and for a third time he converted to sinus rhythm.  A week of hospital time 
had been consumed during this phase of his care. The same question remained – now that 
sinus rhythm had been restored, what digoxin dosage regimen should this patient receive? 
 

AUR FIB
SINUS RHYTHM

    

    

    DIGOXIN THERAPY AND ATRIAL FIB

             

ATRIAL FIB

   

                             

      

        

 
 
Figure 7. Screen plot of patient with atrial fibrillation who was successfully converted to sinus rhythm with IV 
digoxin three separate times, but who relapsed into atrial fibrillation twice when put back on his previous 
maintenance dose. Sinus rhythm was consistently present when peripheral body glycoside concentrations were 
10-13 ug/kg (right hand scale, and not mg/kg as labeled). Selection of a therapeutic goal of 11.5 ug/kg in the 
peripheral compartment led to a dosage regimen of 0.5 and 0.625 mg/day. On that regimen, the patient could be 
discharged home in sinus rhythm and was still in sinus rhythm when seen in clinic 2 weeks later. 
 
 At this point the USC*PACK MAP Bayesian digoxin software [18] was used, in 
a telephone consultation, to analyze the patient’s situation. The raw data of three serum 
concentrations, all taken during the post-distributional phase after a dose, showed almost 
no correlation with the patient's clinical behavior. As shown in Figure 7, he was back in 
atrial fibrillation when the first serum concentration of 1.0 ng/ml was obtained (the first 
black rectangle) and had converted again to sinus rhythm when the second and third 
serum concentrations of 1.0 and 1.2 ng/ml were obtained (the 2nd and 3rd black 
rectangles) with a lapse back into atrial fibrillation in between them. An important 
question is: how can it be that the patient was in atrial fibrillation at one time with a 
serum concentration of 1.0 ng/ml, and in sinus rhythm at another time, with exactly the 
same serum concentration? It is experiences of this type that have made many 
cardiologists feel that serum monitoring of digoxin is not useful. 
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 Two questions need to be asked here. 1) Was the patient in a steady state at the 
time the serum samples were drawn? The answer clearly in no – the patient was not in a 
steady state at all when either of the two samples was drawn. 2) Were the serum samples 
obtained at the same time after the dose? Again, the answer is no. Because of this, there is 
no justification for using the conventional interpretation of serum concentrations which is 
based on these premises. Without the use of a model, the raw data of the serum 
concentrations is of little use. 
 
 However, when the 2 - compartment digoxin population model was fitted to the 
data of his various doses and these serum concentrations, the resulting fitted model was 
very informative, and quite good correlation was seen between the computed peripheral 
tissue concentrations and the patient’s clinical status. 
 
 As shown in Figure 7, sinus rhythm was present in this patient whenever his 
peripheral compartment tissue concentrations were between 10.0 to 13.0 ug/kg. Based on 
this correlation, a therapeutic goal of 11.5 ug/kg was chosen for the desired peripheral 
compartment peak body concentration. The resulting regimen to achieve the target goal 
was 0.25 mg for the first day, and then averaged 0.57 mg/day.   
 
 Following this consultation, he was given 0.25 mg the first day, and then placed 
on a maintenance regimen of 0.5 and 0.625 mg on alternating days. On this regimen he 
remained in sinus rhythm. He was able to leave the hospital in sinus rhythm, and was still 
in sinus rhythm without evidence of toxicity when seen in the clinic 2 weeks later. 
 
 When one considers that an entire week had elapsed before the above 
consultation, with three successful conversions to sinus rhythm but two failures to arrive 
at a useful regimen to maintain that conversion,, all involving the patients, the 
physicians’, and the ward personnel’s time, effort, and money, one can see that the above 
pharmacokinetic consultation and recommendation was extremely cost effective. 
  
7.5.  Lidocaine Therapy 
 
 A target-oriented, model-based approach was used to manage lidocaine therapy 
[20]. Patients with myocardial infarcts who had arrhythmias requiring Lidocaine were 
retrospectively evaluated. Seventy eight patients received conventional 
nonpharmacokinetically oriented therapy, and an equal number of patients received 
pharmacokinetically designed, target-oriented, model-based infusion regimens. Of the 
conventional therapy patients, eight developed ventricular fibrillation, one became toxic, 
and 33 required additional lidocaine to control their arrhythmias. In contrast, only two 
patients receiving the target and model based regimens developed ventricular fibrillation, 
a suggestive though not significant difference (P=0.12), one patient  became toxic, and 
the two who developed ventricular fibrillation were the only patients who required more 
lidocaine to control their arrhythmias (p<0.001). The pharmacokinetically designed 
regimens not only achieved more effective serum concentrations [19] but also 
suggestively reduced the incidence of ventricular fibrillation, and significantly reduced 
the incidence of breakthrough arrhythmias [20].  
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7.6.  Busulfan Therapy 
 
 In a comparison with an equal number of historical control subjects by Bleyzac 
et el. [21],  children who underwent bone marrow transplantation for various hematologic 
problems and malignancies had their  Busulfan therapy given as a standard regimen 
during the process of transplantation versus having it given using MAP Bayesian 
adaptive control.  Twenty nine patients composed each group. The patients having 
Bufulfan given by MAP Bayesian adaptive control had an incidence of veno-occlusive 
disease reduced from 24.1 to 3.4 percent (p<0.05). In addition, graft failure was reduced 
from 12.0 percent to zero percent.  Furthermore, survival was increased from 65.5 to 82.8 
percent.  Because of this, MAP Bayesian adaptive control of the Busulfan dosage 
regimens in this study made visible and significant improvements in the care of these 
patients [21]. 
 
8.  WHY WE REALLY MONITOR SERUM CONCENTRATIONS: FOR 
MODEL-BASED, TARGET-ORIENTED INDIVIDUALIZED DRUG THERAPY 
 
  Traditional approaches to therapeutic drug monitoring were originally 
designed for use only in steady state situations, and usually employed only 1 - 
compartment models. They developed dosage regimens only for such steady state situ-
ations, and were oriented to keeping serum concentrations within a general therapeutic 
range rather than to achieving a specific target goal for a specific individual patient. 
Such approaches made it impossible to deal with patients in some of their most 
important clinical moments, as, for example, during changing renal function or 
dialysis, or when certain “golden clinical moments” must be captured, and a dosage 
regimen developed to achieve and maintain a desired target goal immediately, without 
waiting for a steady state, as in the case of the above patient receiving digoxin.  
 
 The above patient on digoxin shows how truly individualized drug therapy 
begins with clinical selection of a specific therapeutic goal for each patient, based on 
that individual patient’s need for the drug. One then should achieve that goal with the 
greatest possible precision, without any zone of indifference about it. The approach to 
that patient was highly cost-effective, when compared to the fact that an entire week of 
hospital time was spent in the previous attempts at dosage adjustment without the aid 
of a model - based, target - oriented method. 
 
 That  patient’s case also emphasizes the fact that one does not use serum 
concentrations simply to see whether or not they are in some general "therapeutic 
range", nor even to correlate them with the patient’s clinical behavior, although that is 
often possible, but significantly not so in this patient. This patient clearly shows that 
the real reason for monitoring serum concentrations is rather to find out how each 
patient actually handles the drug, how the drug (and its model) really behaves in each 
individual patient, especially in non-steady-state situations, and to correlate the 
behavior of each patient’s fitted model with his/her own clinical behavior. Only then 
can one optimally evaluate each patient's clinical sensitivity to, and specific need for, a 
drug. MAP Bayesian adaptive control, in the context of model based, target-oriented 
individualized drug therapy, brings a precision and capability to drug dosage which is 
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not possible with older obsolete approaches based on linear regression or simply on 
raw data of the serum concentrations alone.  
 
8.1 Optimal monitoring strategies 
 
 The issue of what are the best times to obtain serum concentrations is also 
important.  Often samples are obtained at the trough, just before the next dose, after 
distribution is complete, and the errors in recording the time at which the previous dose 
was given and the time at which the sample was drawn make the least difference in the 
value of the measured serum concentration. It is not generally realized that because of 
this, one has deliberately selected the time containing the least information concerning 
the actual behavior of the drug. There is minimal information about the processes of 
absorption, distribution, elimination, and their relationship to the actual time course 
and profile of the serum concentrations, and to the time course of the drug effects. 
 
 It is often much better to obtain serum samples when they contain the most 
information about the various processes described above. One can use a model, and can 
make small variations in the model parameter values, and note their effect upon the 
profile of the serum concentrations. At what time do changes in the model parameter 
values cause the greatest changes in the serum concentration profile? These are the 
times when the serum concentrations are maximally sensitive to changes in the various 
parameter values. These are the times when getting the serum samples lets one best 
:see through” the many clinical uncertainties, and best understand the behavior of the 
drug, by permitting the most precise parameter estimates to be made for the chosen 
model. These times can be calculated using the well-known D-optimal sampling 
strategies, based on the work of D’Argenio, for example [37]. 
 
 These strategies can easily be employed in routine clinical care. For the 
aminoglycosides, for example, one can start by getting a peak sample, out of the 
opposite arm at the end of the intravenous infusion. It is then useful to wait, whatever 
the dose interval is, until about 21 hours into the regimen, when the patient’s creatinine 
clearance at least 40 ml.min/1.73 M2. Because of this, it is easy to center the patient’s 
aminoglycoside doses about three hours after routine morning blood drawing time. In 
that way it is east to make the routine blood sample at that time be quite close to a D-
optimal sample. In general, considerations of D-optimal sampling strategies also 
suggest that it is useful to obtain at least one sample for each parameter to be fitted in 
the patient’ model when doing therapeutic drug monitoring. 
 
8.2 More general comments 
 
 Further, we need to monitor drug therapy better in general. It is distressing to 
see patients with multidrug resistant TB, for example, dosed without such monitoring. 
Since many patients with multidrug resistant TB absorb the drugs poorly, it wastes the 
patient’s lives by treating them with an unmonitored regimen and waiting to see if their 
sputum smears and cultures eventually become negative. It is much more useful to 
know early in the course of therapy whether the serum concentrations achieved on a 
given regimen are likely to be effective. 
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 We spend a great deal of money of expensive treatments for patients with 
cancer and AIDS, and we follow the viral load, and the measures of hematological 
toxicity. But we are not yet optimizing this process, and we should. We treat cancer 
patients with methotrexate to a desired area under the serum curve (AUC), but we 
usually do not ask if that AUC is really optimal for each individual patient. Monitoring 
serum concentrations and determining their relationship to the hematocrit, leukocyte 
count, and platelet count, for example, would permit therapy to be optimized within the 
constraints of tolerable measures of toxicity. There is a great deal to be done in this 
area! 
 
9.  SPECIAL CASES: ENTERING INITIAL CONDITIONS - CHANGING 
POPULATION MODELS DURING THE FITTING PROCEDURE.  
 
 Most pharmacokinetic analyses deal with patients (and their pharmacokinetic 
models), who have had stable values for their various parameters such as volume of 
distribution, rate constants, clearances, etc.. However, this is not always so, even though 
one can express a rate constant as an intercept plus a slope times a descriptor of 
elimination such as creatinine clearance or cardiac index [34], so that renal function or 
cardiac index can change from dose to dose during therapy, and the patient's drug model 
can keep up with these changes as they take place.  
 
 Probably the most serious problem in analyzing pharmacokinetic data in patients 
is caused by sudden significant changes in a patient's volume of distribution (Vd) of the 
central (serum concentration) compartment, without any change in any currently known 
clinical descriptor.. It is generally known, for example, that patients in an ICU setting 
have larger values for the Vd of gentamicin and other aminoglycosides than do general 
medical patients. Indeed, young very healthy people who suddenly require an 
aminoglycoside for a perforated or gangrenous appendix often have even smaller values 
for Vd [18].  
 
9.1.  An Aminoglycoside Patient with a sudden Change in Clinical Status and 
Volume of Distribution 
 
 An interesting 54 year old woman in Christchurch, New Zealand, was seen 
through the courtesy of Dr. Evan Begg in the fall of 1991. She was 69 in tall, weighed 80 
kg, and her serum creatinine on admission was 0.7 mg/dL. She had a pyelonephritis, and 
was receiving tobramycin 80 mg approximately every 8 hours. She had a measured peak 
serum concentration of 4.6 and a trough of 0.4 ug/ml respectively, and had been felt by 
all to be having a satisfactory clinical response. During this time, her Vd was 0.18 l/kg, 
based on those two serum samples. However, on about the 6th day, she suddenly and 
most unexpectedly relapsed and went into clear-cut septic shock.  
 
 Following her surprising relapse on therapy, she was aggressively treated with 
much larger doses,  300 mg every 12 hours during this time. Her serum concentrations 
rose to peaks of 10.1 ug/ml. During this period of sudden septic shock, her serum 
creatinine also rose, from 0.7 to 3.7, and her estimated CCr fell to 18 ml/min/1.73m

2
. 

After about another 10 days she improved. At that time, her serum tobramycin 
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concentrations rose to a peak of 16, and it was necessary to sharply reduce the dose to 
140 mg about every 12 to 24 hours. Her serum creatinine fell to 1.1 to 1.3 mg/dL, and her 
CCr rose to 57 ml/min/1.73m

2
. 

 
 It was simply not possible to get a good MAP Bayesian fit to all the serum data 
over the entire time period. Most samples were obtained during her second, sickest phase, 
and they dominated the fit. The ones at the beginning, prior to the sepsis, and at the end, 
after her improvement, were not at all well fitted. 
 
 Because of this, the data was divided into three parts - an initial one before her 
relapse into sepsis, a second one when she was septic, and a third one following 
improvement, but before it was felt safe to discontinue therapy. Each data set was fitted 
separately, using the USC*PACK programs [18].  
 
 During the first data set, the first 6 days, when her clinical behavior was that of a 
general medical patient, not gravely ill, her Vd was 0.18 L/kg as described above. The 
problem then was to pass on the ending values of the serum and peripheral compartment 
concentrations as initial conditions for the fitting process for the second data set. This 
was done, using that feature of the USC*PACK clinical software [18], which was 
developed specifically for this purpose. 
 
 A major change in her Vd was then seen when fitting the data obtained during 
the second, septic, phase. The Vd rose from 0.18L/kg in the previous phase to 0.51 L/kg, 
and the Kslope, the increment of elimination rate constant per unit of CCr, fell to zero. 
However, the Kcp, the rate constant from serum to peripheral compartment, rose to 0.255 
hr

-1
, suggesting that she was "third-spacing" the tobramycin somewhere. The ending 

concentrations in the central (serum) compartment for this data set were 2.09 ug/ml, and 
for the peripheral compartment were a very high 44.1 ug/kg. 
 
 These ending values were then passed on to the third part of her data set, that of 
recovery. During this time the serum peaks were 16 and 12 ug/ml, and the dose was 
reduced to 140 mg every 12-24 hours. Her Vd during this third phase, that of recovery, 
when she was no longer seriously ill, had fallen greatly to 0.15 L/kg, close to her 
previous initial value as a general medical patient. 
 
 The ability to enter stated initial conditions permitted changing population 
models during the overall fitting procedure, and allowed intelligent analysis of this 
patient's data, especially as quite significant concentrations were present not only in the 
central (serum) compartment, but also in the peripheral compartment, during the 
transition from the patient’s  second to the third, recovery, phase. 
 
 At the Cleveland Clinic, Drs Marcus Haug and Peter Slugg [22] have spoken of 
"Vd collapse", when the Vd would drop from a larger to a smaller value. They showed 
that this change was a clinical  indicator of incipient recovery of the patient. The present 
patient not only demonstrated such Vd collapse later on, as she got better, but also its 
opposite, Vd expansion, as she made the earlier transition from being a general medical  
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patient with a pyelonephritis to a seriously ill ICU patient with life-threatening septic 
shock.  
 

We see, therefore, that not only do different populations of aminoglycoside 
patients have different values of Vd, but that each individual patient goes through these 
transitions, as demonstrated by this patient. The analysis of this patient's data was greatly 
facilitated, and indeed was only possible, using the MAP Bayesian approach, by breaking 
the dosage history up into several parts. Each part was then analyzed, and the ending 
concentrations from one part were passed on to the next data set as initial conditions or 
concentrations of drug present prior to the first dose given in the next data set, with the 
appropriate population model, if needed, as well.  
 
9.2.  A Patient on Digoxin when Quinidine was Added. 
 
 Another example of the utility of using initial conditions,  provided through the 
courtesy of Dr. Marcus Haug, is that of a 72 year old woman, 4 ft 10 in tall, who weighed 
only 75 pounds. She was admitted to another hospital with congestive heart failure and 
atrial fibrillation. Her estimated creatinine clearance on admission was 38 
ml/min/1.73m

2
, falling to 23 after admission. She had been receiving 0.25 mg of digoxin 

daily. This was continued after admission to the hospital.  
 
 A serum digoxin concentration was 1.8 ng/ml on admission. Following this, her 
serum creatinine rose to 1.8 mg/dL, and her digoxin concentration after 5 days rose to 2.5 
ng/ml. Her digoxin was stopped, though she had no clinical manifestations of toxicity. 
The next day her serum concentration had fallen to 2.0, and the next day it was down to 
1.4 ng/ml, as shown in Figure 8. 
 
 At this point her ventricular rate with her atrial fibrillation had become rapid 
again, and she was restarted on her digoxin, again at 0.25 mg/day, to control the rate. 
However, quinidine was also added to her regimen at the same time. Her creatinine 
clearance at that time was 22 ml/min/1.73m

2
.  

 
Five days later her serum digoxin concentration was measured and found to be 

7.6 ng/ml for a trough, and 10.0 ng/ml two hours after the next dose was given. 
 
 What was going on here? She again had no clinical evidence of toxicity. Was all 
of this due to the digoxin - quinidine reaction? Was it a problem of digoxin - like material 
appearing in the assay as a result of her poor renal function?  Was there something else in 
addition? 
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Figure 8. Plot of serum and peripheral compartment digoxin concentrations of patient admitted receiving 
digoxin. She was receiving 0.25 mg of digoxin daily, ands weighed only 75 lb. Solid rectangles - measured 
serum concentrations. Solid line and left hand scale - digoxin serum concentrations. Dashed line and right hand 
scale - digoxin peripheral (nonserum) compartment concentrations. Using the MAP Bayesian approach, the 
population model for digoxin was fitted to the patient's data of doses and serum concentrations. Serum 
concentrations rose as her renal function worsened. Digoxin was stopped after the serum concentration of 2.5 
ng/ml was obtained, after which her serum concentrations fell to 1.4, and, in the fitted model, finally to 
1.19ng/ml at the end of this plot, when digoxin was begun again, but along with quinidine. 
 
 The clinical problem was analyzed as follows. First, her original dosage history 
on digoxin alone was fitted to her serum concentrations, using the 2-compartment 
population model for digoxin made from the work of Reuning, Sams, and Notari [4,18]. 
This included the three measured serum concentrations. At the end of that part of her 
history, just before her first dose of quinidine was added, her fitted and predicted central 
compartment (serum) concentration was 1.19 ng/ml, and her peripheral (nonserum) 
compartment concentration was 7.58 ug/kg.  
 
 These two ending values from this first phase of her analysis were passed on as 
initial concentrations of drug already present in those compartments of her 
pharmacokinetic model at the time her digoxin was restarted, but now with quinidine as 
well. A population model for digoxin with quinidine [18] was now used. This model was 
not fitted to her subsequent serum concentrations, but merely used to supply predictions 
of those high measured concentrations. If the prediction was good, the interpretation 
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would be that the interaction would quantitatively account for the measured 
concentrations found. If not, then another explanation would have to be considered. 
 
 

 
Figure 9. Plot of serum and peripheral compartment digoxin concentrations of patient admitted receiving 
digoxin. In this plot, digoxin was restarted at 0.25 mg/day, but along with quinidine. Solid rectangles - 
measured serum concentrations. Solid line and left hand scale - digoxin serum concentrations predicted using 
the population model for digoxin with quinidine [18]. Dashed line and right hand scale - predicted digoxin 
peripheral (nonserum) compartment concentrations. This plot begins with initial conditions equal to the final 
concentrations found at the end of the plot in Figure 10. 
 
 As shown in Figure 9, the predicted concentration of 7.2 ng/ml closely 
corresponded to the measured one of 7.6 ng/ml. In addition, the measured 
concentration of 10.0 ng/ml was predicted as 9.9 ng/ml. Because of these good 
predictions, it was felt that the digoxin-quinidine interaction adequately explained the 
measured concentrations found, and that no other alternative explanation was needed. 
This is a good example of how pharmacokinetic analyses can be used to evaluate 
clinical experiences with drugs, and can provide strong evidence for or against a 
particular clinical question or issue, much more than a clinical opinion made only 
judgmentally, unsupported by the quantitative evidence which can be obtained from 
such a model. The use of initial conditions was the key to being able to change from 
one population model to another in the middle of this patient's clinical history. In the 
same way, one can make the transition from regular theophylline to a long-acting 
preparation, or from conventional carbamazepine and valproate to their sustained-
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release formulations, for example. With the use of initial conditions, one can thus 
follow the patient as he or she goes from one clinical situation to another, passing on 
the information from one data set to another. 
 
 
10.  LINKED PHARMACODYNAMIC MODELS: DIFFUSION OF DRUGS INTO 
ENDOCARDIAL VEGETATIONS, AND MODELS OF POSTANTIBIOTIC 
EFFECT AND BACTERIAL GROWTH AND KILL 
 

In this section we will describe the linkage of nonlinear pharmacodynamic 
models to the basic linear pharmacokinetic model, and show some applications in clinical 
software describing drug diffusion into endocardial vegetations, the simulation of a 
postantibiotic effect, and the modeling of bacterial growth in the absence of a drug and its 
kill by an antibiotic. 
 
10.1  MODELING DRUG DIFFUSION 
 
 A problem in the treatment of patients with infectious endocarditis is that it is 
difficult to estimate whether or not the drug is able to kill the organisms all the way into 
the center of a vegetation. Because of this, a diffusion model was made of this process. 
 

                         
Figure 10. Diagram of the concentric layers of the spherical model of the endocardial vegetation. 

 

 A spherical shape was assumed for the vegetation, as shown in Figure 10, and it 
was modeled having several concentric layers, with diffusion taking place from layer to 
layer, delta r, as shown in Figure 10. The sphere was assumed to be homogeneous, with 
equal diffusion in all directions, and as having a constant coefficient of diffusion 
throughout. The diffusion was assumed to be dependent on the concentration of drug in 
the surrounding medium, such as the serum concentration, and its time course. The 
diameter of endocardial vegetations can be measured by transesophageal 
echocardiography.  
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 The following equation was used to model the diffusion: 
 
 ∂C = 1  x  ∂   [D x  r2 x  ∂C]   (3) 
  ∂t     r

2
     ∂r                    ∂r  

 
where C represents the concentration in the sphere at time t, at a distance r from the 
center of the sphere, and D represents the coefficient of diffusion in the sphere, and x 
indicates multiplication. 
 
 When D is assumed constant, the equation becomes 
 

 ∂C  =  D x [ ∂
2
C + 2 x  ∂C ]   (4) 

 ∂t                 ∂r
2
      r      ∂r 

 
 The vegetation is assumed to be continuously immersed in the surrounding 
medium, and the drug concentration in that medium is assumed to attain a value which 
results in equilibrium with the very outer layer of the sphere. The medium then undergoes 
the changes in concentration with time that constitute the serum level time course. This 
time course is thus presented as the input to the spherical model [23]. 
 
 The diffusion coefficient found by Bayer, Crowell, et al. for aminoglycosides in 
experimental endocarditis [24,25] was used. The model has become part of the 
USC*PACK clinical programs for individualizing drug dosage regimens [18]. The model 
can also be used to simulate behavior inside an abscess, and, by appropriate choice of 
sphere diameter and diffusion coefficient, to simulate the post-antibiotic effect of a 
certain desired duration. 
 
10.1.1  Examples: Simulated Endocardial Vegetations of Various Diameters 
 
 Suppose one were to develop an amikacin dosage regimen for a hypothetical 65 
year old man, 70 in tall, weighing 70 kg, with a serum creatinine of 1.0 mg/dL. Let us 
assume that he has a vegetation seen by echocardiography on his aortic valve that might 
be either 0.5, 1.0, or 2.0 cm in diameter. We wish to examine the ability of an amikacin 
regimen designed to achieve serum peaks of 45 ug/ml and troughs of approximately 5.0 
ug/ml to reach effective concentrations within the vegetation in these three cases. Let us 
apply the findings of Bayer et el [24,25] to compute the time course of probable amikacin 
concentrations in the center of these three vegetations of different diameters, to examine 
their possible ability to kill an organism having an estimated minimum inhibitory 
concentration (MIC)  of 8.0 ug/ml, for example. 
 
 Using the Amikacin program in the USC*PACK collection [18], let us estimate, 
from the patient's age, gender, height, weight, and serum creatinine concentration, that his 
creatinine clearance (CCr) is about 69 ml/min/1.73M

2
. This method of estimating CCr is 

described elsewhere [15]. We enter the target goal for the peak serum concentration of 45 
ug/ml and an initial trough concentration of about 5.0 ug/ml. The ideal dose interval to 
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achieve that peak and trough exactly, adjusted for the patient's renal function, employing 
a planned duration of the IV infusion of 0.5 hr, turns out to be 10.231 hrs. Let us 
approximate this in a practical manner by choosing a dose interval of 12 hrs. The dosage 
regimen to achieve the peak goal with such a dose interval is, when revised to practical 
amounts, 850 mg for the first dose, followed by 750 mg every 12 hrs thereafter. 
 
 On this regimen, predicted serum concentrations are 43 ug/ml for the peak and 
3.2 ug/ml for the trough. The peak is 542 % of the stated MIC, and serum concentrations 
are predicted to be at least the MIC for 66 % of each dose interval. The AUC/MIC ratio 
for the first 24 hours is 48.8. The plot of these predicted serum concentrations is shown in 
Figure 11. 
 

 
Figure 11. Predicted time course (the first 6 days) of serum Amikacin concentrations for the patient described. 
Upper horizontal dotted line - initial stated target peak serum concentration of 45 ug/ml. Lower horizontal 
dashed line - the estimated organism MIC of 8.0 ug/ml. 
 
 The important question now is whether or not this predicted serum concentration 
profile will result in adequate penetration of the vegetation in each of the three cases, and 
whether or not the regimen will kill effectively there, as well as in the central (serum 
level) compartment. 
 
 Figure 12 now shows the predicted amikacin concentrations in the center of the 
simulated vegetation having a diameter of 0.5 cm. As shown, concentrations rise rapidly 
above the MIC and stay there, suggesting that the above regimen should probably be able 
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to kill organisms having an MIC of about 8.0 ug/ml fairly promptly in the center of the 
vegetation. The time lag of concentrations in the center of the sphere is modest, about 3-4 
hrs, behind the serum concentrations. 

 
Figure 12. Predicted time course (the first 6 days) of Amikacin concentrations (dashed line) in the center of a 
simulated endocardial vegetation of 0.5 cm. Solid line - Predicted serum concentrations, and other lines and 
symbols as in Figure 11. The predicted endocardial concentrations rise promptly, and are consistently above the 
estimated MIC of 8.0 ug/ml. 
 
 On the other hand, if the vegetation were 1.0 cm in diameter instead, the drug 
would take about 12 hours to diffuse to the center and reach the MIC, and the rise and fall 
of drug concentrations would be much more damped, as shown in Figure 13. 

 
Figure 13. Predicted time course (the first 6 days) of Amikacin concentrations (dashed line) in the center of a 
simulated endocardial vegetation of 1.0 cm. Solid line - Predicted serum concentrations, and other lines and 
symbols as in Figure 11. Predicted endocardial concentrations rise more slowly, are more damped, with smaller 
oscillations from peak to trough, but once the estimated MIC is reached, are consistently above 8.0 ug/ml. 
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 Further, if the diameter of the vegetation were 2.0 cm, all this would take still 
longer, and the time course of the computed concentrations in the center would be as 
shown in Figure 14. The drug would take considerably longer, about 48 hours, to reach 
the MIC in the center of the vegetation, and significant growth of organisms might well 
take place before that. For every doubling of the diameter of the sphere, the equations 
show that it will take 4 times as long (the square of the ratio of the diameters) to reach an 
equal concentration in the center of the sphere. 
 

 
Figure 14. Predicted time course (the first 6 days) of Amikacin concentrations (dashed line) in the center of a 
simulated endocardial vegetation of 2.0 cm. Solid line - Predicted serum concentrations, and other lines and 
symbols as in Figure 11. The predicted endocardial concentrations rise much more slowly and are much more 
damped, with essentially no oscillations from peak to trough. Once the estimated MIC is reached, the 
concentrations are consistently above 8.0 ug/ml, but two full days are required before the MIC is reached. 
 
10.1.2  Another Example: Simulating an Abscess or a Post-Antibiotic Effect. 
 
 Another use for such a spherical model might, of course, be an abscess. If we 
could know the diffusion coefficient into abscesses of different sizes, we could similarly 
begin to model and compute the concentrations of drug diffusing into the abscess. There 
might well be different diffusion coefficients through the wall, into the bulk of the 
abscess, and into the center. All this is theoretically capable of being modeled. Effects of 
oxygen tension and pH upon bacterial growth and response to drugs can also be 
determined by careful needle aspiration done at carefully documented times just prior to 
incision and drainage of them, with careful cultures and determination of pH, pO2, 
numbers of viable organisms, and rates of growth and kill from different parts of the 
abscesses. In this way, useful models of events taking place within an abscess can be 
made.One can see visually, in Figure 14, for example, why abscesses much over 1 cm in 
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diameter usually need to be incised and drained, as the diffusion into abscesses is very 
likely to be poorer that that seen here for endocardial vegetations. 
 
 Figure 15 shows computed drug concentrations in the center of a small sphere 
simulating a microorganism having a diameter of 0.1 micron, 3 simulated layers of 
diffusion, and a diffusion coefficient of 1.5 x 10-14. This particular sphere has the 
property that in its center, the concentrations of drug fall below the MIC about 6 hrs after 
the serum levels do, thus simulating (without making any suggestions or conclusions 
about mechanism of action) a post-antibiotic effect of about 6.0 hrs, as the organisms will 
not begin to grow again for about 6 hrs after the serum concentrations fall below the 
MIC.  
 

 
Figure 15. Plot of computed amikacin  concentrations (the first 6 days) in the center of a simulated 
microorganism. Diffusioon coefficients in the very small sphere diffusion model are adjusted so that 
concentrations in the center of the organism lag behind the serum concentrations and, if they fall below the 
MIC, would do so approximately 6 hrs after the serum concentrations do, thus simulating a post-antibiotic effect 
of about 6 hrs. 
 
 The effects of these computed concentrations in the center of these spheres will 
be discussed below in the section on modeling bacterial growth and kill. We see here that 
the process of diffusion into and out of spherical porous objects such as endocardial 
vegetations and small microorganisms can be described with reasonably simple models. 
The equations describing this process are the same as those for release of drug from a 
sustained-release preparation formulation. 
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11.  MODELING BACTERIAL GROWTH AND KILL: CLINICAL 
APPLICATIONS 
 
11.1  General Considerations 
 
 Let us assume that an organism is in its logarithmic phase of growth in the 
absence of any antibiotic. It will have a rate constant for this growth, and a doubling time. 
The killing effect of the antibiotic can be modeled as a Michaelis-Menten or Hill model. 
The model generates a  rate constant for this effect. The rate of growth or kill of an 
organism depends upon the difference between these two rate constants. The killing 
effect will be determined by the Emax, representing the maximum possible rate constant 
for kill, the EC50, the concentration at which the effect is half maximal, and the time 
course of the serum concentrations achieved with the dosage regimen the patient is given. 
Both the growth rate constant and the Emax can be found from available data in the 
literature for various organisms. The general growth versus kill equation is 
 
 dB     
 ---    = (Kg -  Kk) x B      (5) 
 dt    
and 
 
                       
 Kk     =   (Emax  x  Ct

n)    (6) 
  (EC50

n
 + Ct

n
) 

where B is the number of organisms (set to 1 relative unit at the start of therapy), Kg is 
the rate constant for growth, Kk is the rate constant for killing, Emax is the maximum 
possible effect (rate of killing), EC50 is the concentration at which the killing rate is half 
maximal, n is the Hill or sigmoidicity coefficient, and Ct is the concentration at the site of 
the effect (serum, peripheral compartment, effect compartment, or in the center of a 
spherical model of diffusion), at any time t, and x indicates multiplication.. 
 
 The EC50 can be found from the measured (or clinically estimated) minimum 
inhibitory concentration (MIC) of the organism. This relationship was developed by Zhi 
et al. [26], and also independently by Schumitzky [27]. The MIC is modeled as a rate of 
kill that is equal to but opposite in direction to the rate constant for growth. The MIC thus 
offsets growth, and at the MIC there is neither net growth nor decrease in the number of 
organisms. At the MIC, 
 
 dB 
 ---  =  0,     and Kk  =  -  Kg   (7) 
 dt  
 
and                              
 MIC  =  ( Kg x EC50

n
 )1/n     (8) 

   Emax – Kg
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 In this way, the EC50 can be found from the MIC, and vice versa. 
 
 
 The input to this effect model can be from either the central or the peripheral 
compartment concentrations of a pharmacokinetic model, or from the center (or any other 
layer) of one of the spherical models of diffusion. The sphere may represent an 
endocardial vegetation, an abscess, or even a small microorganism. In the latter case, one 
can adjust the sphere diameter and the diffusion coefficient so that the concentrations in 
the center of the small sphere lag behind the serum concentrations and cross below the 
MIC about 6 hours after the serum concentrations do, to simulate a post-antibiotic effect 
of about 6 hours, for example. The effect relationship was modeled by Bouvier D’Ivoire 
and Maire [28], from data obtained from Craig and Ebert [29], for pseudomonas and an 
aminoglycoside. 
 
 Let us first examine these effect models with relationship to the dosage regimen 
of amikacin developed in the previous section on analyzing concentrations in sperical 
diffusion models.  In that section we had considered a hypothetical 65 year old man, 70 in 
tall, weighing 70 kg, having a serum creatinine of 1.0 mg/dL.  We also assumed that he 
had a vegetation on his aortic valve, seen by echocardiography, that might be either 0.5, 
1.0, or 2.0 cm in diameter, and we wanted to examine the ability of an amikacin regimen 
designed to achieve serum peaks of 45 and troughs of about 5 ug/ml to reach effective 
concentrations within the vegetation in these three cases.  We applied the findings of 
Bayer et al [24,25] to predict the time course of amikacin concentrations in the center of 
the above three different vegetations.  Let us now examine the results of these analyses. 
 
 The patient's dosage regimen consisted of an initial dose of 850 mg of amikacin 
followed by 750 mg every 12 hours thereafter. On that regimen, predicted serum 
concentrations were 43 ug/ml for the peak and 3.2 for the trough, possibly a bit low, as 
the MIC of the organism was stated to be 8.0 ug/ml. Figure 16 is a plot not only of the 
predicted time course (the first six days) of serum amikacin concentrations for the patient 
described here, but also of its ability to kill microorganisms using the model made by 
Bouvier D’Ivoire and Maire [28], based on the data of Craig and Ebert [29].  In Figure 16 
there is no assumption of any post-antibiotic effect.  The serum concentration profile 
alone is presented as the input to the bactericidal effect model.   
 
 The model always assumes an initial inoculum of one relative unit of organisms. 
The scale of the relative number of organisms is shown on the right side of Figure 16, 
while the scale of the serum concentrations is on the left.  As shown in the figure, the 
serum concentration profile resulting from that regimen appears to be able to kill such an 
organism well in this particular patient.  As the serum concentrations fall below the MIC 
with the first dose, however, the organisms begin to grow again, but the second dose kills 
them again, with slight regrowth once again toward the end of that dose interval. The 
third dose reduces the number of organisms essentially to zero.  Use of this effect model  
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suggests that such a serum concentration profile should be effective in killing an 
organism having an MIC of 8.0 ug/ml, even though the serum concentrations are below 
the MIC about one third of the time, as the high peaks are effective in the killing. 
 

 
Figure 16. Predicted Killing effect of the regimen. Input from the central (serum) compartment profile of serum 
concentrations. The regimen is likely to kill well for a bloodstream infection (sepsis). Solid line and left hand 
scale - serum concentrations. Dashed line and right hand scale - relative numbers of organisms, with 1.0 relative 
unit present at the start of therapy. Upper horizontal dotted and dashed line - original peak serum goal of 
therapy. Lower horizontal dashed line: the patient's MIC of 8.0 ug/ml.  
 
 Figure 17 now shows the computed results in the center of the simulated 
endocardial vegetation having a diameter of 0.5 cm. The solid line shows the computed 
time course of amikacin which has diffused into the center of the vegetation. The dotted 
line again represents the computed relative number of organisms. Here the organisms 
grow almost 4-fold, to almost four relative units, before the concentrations in the center 
of the vegetation reach the MIC, after which killing begins. The organisms are reduced 
essentially to zero by 24 hours, suggesting that such a regimen would probably kill well 
in the center of an endocardial vegetation of approximately 0.5 cm diameter. 
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Figure 17. Killing effect as predicted in the center of the 0.5 cm diameter vegetation. Good and fairly prompt 
killing is seen. Solid line and left hand scale - drug concentrations in the center of the vegetation. Dashed line 
and right hand scale - relative numbers of organisms, with 1.0 relative unit present at the start of therapy. Upper 
horizontal dotted and dashed line - original peak serum goal of therapy. Lower horizontal dashed line: the 
patient's MIC of 8.0 ug/ml.  
 
 
 Figure 18 is a similar plot, but for the simulated vegetation having a diameter of 
1.0 cm. Things here are not quite so good.  There is a significant lag time of about 3 to 4 
hours before any visible concentrations are reached in the center of the vegetation.  The 
MIC is not reached until approximately 10 hours.  During that time, the number of 
organisms has increased from one to approximately 150 relative units.  However, after 
the MIC is reached, killing begins, although not quite so rapidly as with the smaller 
vegetation, due to the slower rate of rise of drug concentration in the center of the larger 
vegetation. However, killing appears to be essentially complete after approximately 40 
hours.  This suggests that the above regimen may be adequate to kill in the center of a 1.0 
cm vegetation, but probably does so with less confidence of success than with the 
vegetation of 0.5 cm diameter.  The doubt about this is suggested by the slower rate of 
killing and by the longer time required to reduce the number of organisms essentially to 
zero. 
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Figure 18. Killing effect computed for the center of a simulated vegetation with 1.0 cm diameter. The effect is 
delayed due to the slower diffusion into the center, but finally became adequate. Solid line and left hand scale - 
drug concentrations in the center of the vegetation. Dashed line and right hand scale - relative numbers of 
organisms, with 1.0 relative unit present at the start of therapy. Upper horizontal dotted and dashed line - 
original peak serum goal of therapy. Lower horizontal dashed line: the patient's MIC of 8.0 ug/ml.  
 
 
 As shown in Figure 19, things are much worse for the simulated endocardial 
vegetation of 2.0 cm.  Diffusion into the center is a great deal (4 times) slower. Visible 
concentrations are not achieved until after approximately 12 hours, and about 48 hours 
are required before they reach the MIC.  During this time, the number of organisms has 
increased astronomically, from 1 relative unit to over 1 million such units.  However, 
after about five days, due to the continued presence of drug concentrations in the center 
of the vegetation approaching 12 to 15 ug/ml, killing in fact does seem to take place, and 
after about six days the number of organisms appears to be close to zero.  However the 
behavior of this model strongly suggests that such a dosage regimen might very likely be 
inadequate in the center of a 2.0 cm simulated vegetation and might, at a minimum, 
require much more aggressive therapy with higher doses and serum concentrations, 
surgery, much more prolonged therapy, or all of these.  
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Figure 19. Killing effect computed for the center of a 2.0 cm simulated vegetation. Diffusion to the center is 
much prolonged while bacterial growth continues. Killing is delayed very significantly. Solid line and left hand 
scale - drug concentrations in the center of the vegetation. Dashed line and right hand scale - relative numbers 
of organisms, with 1.0 relative unit present at the start of therapy. Upper horizontal dotted and dashed line - 
original peak serum goal of therapy. Lower horizontal dashed line: the patient's MIC of 8.0 ug/ml.  
 
 
 Figure 20 shows the computed concentrations in the small hypothetical 
microorganism used in the previous paper to simulate the time course of the post-
antibiotic effect (PAE).  There is a lag of about 6 hours between the fall of the serum 
concentrations and that of the concentrations in the center of this hypothetical 
microorganism.  Because of this, if the dosage interval were to be greater so that the 
concentrations in the hypothetical microorganism would fall below the MIC, one would 
see that they would do so approximately six hours after the serum concentrations fall 
below the MIC, thus simulating a post-antibiotic effect of approximately six hours. 
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Figure 20. Computed amikacin concentrations in the center of a hypothetical microorganism in which 
concentrations fall below the MIC about 6 hr after the serum concentrations do, thus simulating (regardless of 
mechanism) a post-antibiotic effect of about 6 hrs. Solid line and left hand scale - serum drug concentrations. 
Dashed line and right hand scale - computed concentrations in the center of the microorganism simulating the 
post-antibiotic effect. Upper horizontal dotted and dashed line - original peak serum goal of therapy. Lower 
horizontal dashed line: the patient's MIC of 8.0 ug/ml..  
 
 
 What would be the contribution (if any) of such a PAE to overall therapy? As 
shown in Figure 21, the outcome is not very different from that shown in Figure 16.  In 
both cases, killing is rapid and prompt.  One can see that due to the diffusion model, there 
may be a delay of approximately six hours before the concentrations in the hypothetical 
microorganism reach the MIC.  During that time, the number of organisms has grown 
from 1 to about 5.4 relative units.  However, after that time, the concentrations are always 
above the MIC, and killing at a significant rate begins and continues, with the organisms 
being reduced essentially to zero by about 36 hours.  
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Figure 21. Killing effect predicted for the simulated post-antibiotic effect of 6 hrs, using the computed 
concentrations in the center of the simulated microorganism as input to the effect model. Solid line and left 
hand scale - drug concentrations in the center of the microorganism simulating the post-antibiotic effect. Dashed 
line and right hand scale - relative numbers of organisms, with 1.0 relative unit present at the start of therapy. 
Upper horizontal dotted and dashed line - original peak serum goal of therapy. Lower horizontal dashed line: 
the patient's MIC of 8.0 ug/ml.  
 
11.2  An Interesting Case   
 
 These diffusion and effect models were of interest when they were used to 
analyze retrospectively the data obtained much earlier, back in 1991, from the patient 
described earlier, in section 9.1, from Christchurch, New Zealand, seen through the 
courtesy of Dr. Evan Begg. She had a pyelonephritis and received tobramycin, 80 mg 
approximately every 8-12 hours. She was having a satisfactory clinical response to 
therapy when, on about the 6th day of therapy, she suddenly and unexpectedly relapsed 
and went into septic shock. She then received much more aggressive tobramycin, and 
eventually recovered. The MIC of her organism was 2.0 ug/ml. The analysis of bacterial 
growth and kill described below was not done until several years later, after the models of 
diffusion and growth and kill had been developed.  
 
 Figure 22 shows the computed concentrations of drug in the center of the 0.1 
micron sphere representing a hypothetical organism having a PAE of 6 hours, in the 
patient's first phase, when she appeared to be a general medical patient (not an ICU 
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patient) having a satisfactory clinical response to her tobramycin therapy. However, at the 
end of this time (from 120-148 hours into therapy) she unexpectedly relapsed on about 
day 6 of therapy, went into septic shock, and clearly became an ICU patient. 
 

 
Figure 22. Patient receiving Tobramycin. This figure shows the measured serum concentrations (small 
rectangles), and the Bayesian fitted model. Small solid rectangles - measured serum concentrations. Solid line 
and left hand scale - fitted serum drug concentrations. Dashed line and right hand scale - concentrations in the 
small organism simulating the post-antibiotic effect. Horizontal dashed line: the patient's MIC of 2.0 ug/ml.  
 
 
 Note the damped response in the center of the small sphere to the sharp peaks 
and troughs of the serum concentrations. While one may have many different views as to 
what the mechanism of the PAE is, this diffusion model appears to do a reasonable job of 
describing the effect itself. As data accumulate about diffusion into endocardial 
vegetations and abscesses, this diffusion model will permit modeling of these events 
during a patient's clinical care in a way that is now becoming possible, as illustrated in 
the present case. 
 
 Now, consider the computed rate of growth and kill of her organisms during her 
treatment. We have a hint in that her peak serum concentrations were low, only about 5.0 
ug/ml. Her measured serum peak was 4.5 ug/ml, and her trough was 0.4 ug/ml. Figure 23 
describes the growth and kill of the organisms in response to events in her serum 
concentration compartment, while Figure 24 shows the same events as viewed with the 
sphere model simulating the PAE. 
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Figure 23. Patient receiving Tobramycin. This figure shows the measured serum concentrations (small solid 
rectangles), and her individualized Bayesian fitted model. Solid line and left hand scale: fitted serum drug 
concentrations. Dashed line and right hand scale: relative numbers of organisms. The plot always begins with 
1.0 relative units of organism. Horizontal dashed line: the patient's MIC of 2.0 ug/ml.  
 

    
Figure 24. Graph of effects found with the model simulating the PAE of about 6 hours. Solid line and left hand 
scale: drug concentrations in the microorganism simulating the post-antibiotic effect.  Dashed line and right 
hand scale: relative numbers of organisms. The plot always begins with 1.0 relative units of organism, as shown 
on the right hand scale. Horizontal dashed line: the patient's MIC of 2.0 ug/ml. 
  
 Note in both figures that there appear to be few organisms present at the outset 
of therapy. Growth becomes visible in Figure 23 after the first hiatus between doses, and 
then becomes exponential during day 6 of therapy, after the last dose on that plot, which 
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ends just before the next dose which was given during his next period, that of septic 
shock. Figure 24 extends this examination to the possible contribution of the PAE, where 
the concentrations in the center of the small sphere are evaluated with respect to their 
ability to kill the organisms. Note that the regimen also appeared to be effective at first, 
but that the organisms grew out exponentially when the concentrations fell below the 
MIC for a significant time, but slightly later than in Figure 23, showing events without 
any PAE. The exponential growth of organisms escaping from control as shown in 
Figures 23 and 24 correlated well with the patient's clinical relapse at just that time, with 
development of septic shock. 
 
 Figure 25 shows the subsequent course of this patient in her next phase of acute 
urosepsis. There was essentially no carry-over of drug from the last dose shown in 
Figures 22 to 24 to the patient's next dose, which was given at time zero in Figure 25. 
Figure 25 shows the many serum concentrations measured during this second phase of 
her hospital course. It also shows the results of Bayesian fitting based on the population 
model of tobramycin for ICU patients [18], with its much larger central volume of 
distribution (now that she had become a seriously ill ICU patient) in both her central 
(serum) and peripheral (nonserum) compartments. During this time, the patient's serum 
creatinine also rose from 0.7 to 3.7 mg/dL. One can see that it took about two days, as 
new serum concentrations were obtained, for ward personnel to react to her suddenly 
much increased volume of distribution (from 0.18 to 0.51 L/kg), and to her much 
decreased renal function, and to give her the much larger doses required to achieve 
effective peak serum concentrations, despite her rising serum creatinine. Note also that 
her trough concentrations rose from about 0.3 up to 2.0 ug/ml during this time, so that the 
time that serum concentrations were below the MIC was greatly reduced. 

 
Figure 25. Plot of serum and peripheral compartment concentrations during the time of the patient's sepsis and 
his recovery. Small solid rectangles - measured serum concentrations. Solid line and left hand scale - fitted 
serum concentrations. Dashed line and right hand scale - peripheral compartment concentrations, also fitted 
from the serum data. Horizontal dashed line: the patient's MIC of 2.0 ug/ml.  
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 Figure 26 shows the plot of the computed bacterial growth and kill based on the 
input from the serum concentration profile during this time, without any aid from the 
simulated PAE. The organisms grow out of control in the first two days (again correlating 
with the patient's relapse into sepsis the day before, and the time required for ward 
personnel to perceive the problem and to adjust her dosage sharply upward to achieve 
serum peaks in the range of 7 to 9 ug/ml). As these higher and more effective 
concentrations were achieved, however, bacterial killing could finally be seen at about 
the sixth day in this figure, and appeared to be effective after that, thus correlating with 
the patient's subsequent clinical recovery.  
 

 
Figure 26. Plot of the effect on growth and kill using input from the serum concentration profile. The organisms 
grow out of control when serum concentrations are lower, but kill again when they are higher. These events 
correlated well with the patient's relapse at the beginning of the plot, and his recovery about one week later. 
Small solid rectangles - measured serum concentrations. Solid line and left hand scale - serum concentrations. 
Dashed line and right hand scale - relative numbers of organisms, with 1.0 relative unit present at the start of 
therapy. Horizontal dashed line: the patient's MIC of 2.0 ug/ml.  
 
 Figure 27 below shows the same events, but now using the diffusion model of 
the small microorganism and its simulated PAE. Using this model, the concentrations in 
the center of the small simulated microorganism do not exceed the MIC until almost 72 
hours. Significant killing can be seen to begin slightly earlier in this figure, at about 110 
hours in the figure, compared to about 130 hours (about 1 day later) in Figure 26, and 
appeared to be effective after that. 
 
 In general, models of bacterial growth and kill permit one to incorporate known 
in vitro data of the logarithmic growth rate of the organism and the maximum kill rate 
achieved with the antibiotic, to integrate it with data of the MIC of each individual 
patient's organism, and to model the growth and decline of the relative numbers of 
organisms. These Zhi models have correlated well, in this patient, with her unexpected 
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relapse from having an apparently satisfactory response to therapy to becoming a 
seriously ill patient with septic shock, and with her subsequent recovery later on, as 
effective serum concentrations were achieved and maintained.  
 

 
Figure 27. Plot of the effect on growth and kill using input from the center of the organism, using its computed 
concentrations as input to the effect model. The post-antibiotic effect helps somewhat to delay the relapse and to 
augment the kill. Solid line and left hand scale - computed concentrations in center of microorganism 
simulating the post-antibiotic effect. Dashed line and right hand scale - relative numbers of organisms, with 1.0 
relative unit present at the start of therapy. Horizontal dashed line: the patient's MIC of 2.0 ug/ml.  
 
 The Zhi model does not describe the decline of bacterial growth rate seen over 
time, reaching a maximum number of organisms, as found by Mouton, Vinks, and Punt 
[30]. The organisms are always assumed to be in their logarithmic growth phase, the 
maximum possible. In addition, the model does not account for the increase in bacterial 
resistance found over time, and the emergence of resistant organisms. However, one can 
use the maximum possible MIC which the emerging resistant organism is expected to 
reach, and examine the behavior of the model. In this case, the Zhi model becomes a 
useful example of the "worst case" scenario, with the resistant organisms being so from 
the very beginning of therapy, and with the logarithmic growth rate always being in 
effect, never slackening. If a given dosage regimen, generating a certain serum 
concentration profile, can kill well using the Zhi model, one might expect it probably to 
do at least as well in clinical circumstances, where the growth rate may (or may not) 
slacken with time and may (but may not) reach a maximum number of organisms, and the 
resistant organisms emerge more slowly with time.  
 
 Clearly, further work in this area is needed, but models of this type are 
beginning to provide a useful new way to perceive, analyze, and evaluate the efficacy of 
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antibiotic therapy. Similar approaches may also be useful in analyzing therapy of patients 
with AIDS, using the PCR assays, and with cancer. 
 
12. LIMITATIONS OF CURRENT MAP BAYESIAN ADAPTIVE 
CONTROL 
 
 The maximum aposteriori probability (MAP) Bayesian approach to adaptive 
control and dosage individualization is straightforward and robust. However, it does not 
represent an optimal approach to dosage individualization. It has two significant 
limitations. 
 
 The first one is that the pharmacokinetic model parameter values used to 
describe the behavior of the drug are assumed to be either normally or log-normally 
distributed. This is often not so. Many drugs, for example, have clusters of both rapid and 
slow metabolizers within the population, and therefore may well have multimodal 
population parameter distributions for the elimination rate constant. Furthermore, the 
volume of distribution for drugs such as the aminoglycosides is affected by the patient's 
clinical state as a general medical patient or a patient in an intensive care unit, for 
example. Because of this, parameter distributions are often asymmetrical, neither 
normally or lognormally distributed, and are therefore not optimally described by mean, 
median, or mode values. This point reflects the significant problems associated with 
making parametric population models, and with using mean or median parameter values 
to develop dosage regimens. The problem is largely overcome by making nonparametric 
population models which describe the entire joint parameter distribution within the 
population, with up to one support point (set of parameter values, and its estimated 
probability) for each subject studied in the population [13,14]. 
 
 The second limitation is that there is no tool in the MAP Bayesian strategy to 
estimate and predict the precision with which a desired dosage regimen developed to hit a 
desired target goal actually is likely to do so. The method lacks a vital performance 
criterion. 
 
 The separation, or heuristic certainty equivalence, principle is well known 
among the stochastic control community, but less so among the pharmacokinetic 
community. It states [31] that when the task of controlling the behavior of a system is 
separated into the steps of: 
 
1. Obtaining the best single point parameter values in the model describing the 

behavior of the system, and then, 
 
2. Using these single point values to design the inputs to control the system,  
 
that, the task of hitting the target goal is usually performed suboptimally. Yet this is 
exactly what the MAP Bayesian, and all methods which estimate single values for each  
model parameter, do.  
 
 There is no performance criterion to optimize in the MAP Bayesian dosage 
strategy (such as the estimated precision with which the desired target will be hit, for 
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example) as there is only one set of parameter values, and the target is simply assumed to 
be hit exactly.  
 
13. OVERCOMING THE LIMITATIONS: “MULTIPLE MODEL” DESIGN 
OF MAXIMALLY PRECISE DRUG DOSAGE REGIMENS 
 

The two limitations above are overcome by the combination of nonparametric 
population models [13,14] and the "multiple model" design of dosage regimens [32].  
Nonparametric population models have been discussed in another chapter. Their strength 
is that they are consistent, statistically efficient, and have good properties of statistical 
convergence [35]. They are not limited by the assumption that the parameter distributions 
must be Gaussian or lognormal, as in parametric methods. Instead of simply estimating 
parameter means, variances, and correlations between them, as point estimates of a 
distribution, the nonparametric methods estimate the entire parameter distributions 
themselves. These distributions are discrete, not continuous. They consist of discrete sets 
of parameter estimates, along with an estimate of the probability of each set [13,14]. Up 
to one set (support point of the distribution) is obtained for each subject studied in the 
population. This closely approaches the ideal population model (which can never be 
attained), which would consist of the correct structural model of the drug system, along 
with the exact value of each parameter in each subject if it would somehow be possible to 
know those values. 

 
 When a parametric population model is used as the Bayesian prior to design an 
initial dosage regimen for the next patient one encounters, one usually has only a single 
estimated value for each parameter. Because of this, only one prediction of future 
concentrations can be made. The action taken is therefore based only on the estimates of 
the central  

 
 
Figure 28. Using lidocaine population mean parameter values, an infusion regimen designed to achieve and 
maintain a target goal of 3 ug/ml does so exactly when the patient, as here, has exactly the mean population 
parameter values. 
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tendencies of the parameter distributions, and not on the entire parameter distributions, 
which may well be multimodal, due to genetic polymorphism in the distribution and 
metabolism of drugs. The dosage regimen is simply assumed to achieve the target goal  
exactly, as shown in Figure 28. Figure 28 shows the results of an infusion regimen of 
lidocaine, based on the mean population parameter values for that drug, which was 
designed to achieve and maintain a target serum concentration of 3 ug/ml. As shown, this 
regimen, based on the single mean population parameter values, hits the target exactly, 
but only when the patient has parameter values which are exactly the population mean 
values. However, as shown in Figure 29, when the regimen used in Figure 28 was given 
to the combination of the actual 81 diverse nonparametric population support points from 
which these mean parameter values were obtained, an extremely wide distribution of 
predicted serum concentrations was seen, due to the diversity in the nonparametric 
population support points from which the mean parameter values were obtained, 
representing the diversity in the parameter values in the patient population. The predicted 
serum concentrations actually covered much more than the usual therapeutic range of 2 to 
6 ug/ml.  

 
In contrast, if one has a nonparametric population model [13,14], with its 

multiple sets of model parameter values (81 in this case), one can make multiple 
predictions, instead of only one, forward into the future from any candidate dosage 
regimen which is “given” to all the models in the population discrete joint density. The 
richer and more likely population parameter joint density reflects much better the actual 
diversity among the subjects studied in the past population.  Based on these multiple 
models in the population (the discrete joint density),  one can compute 
 

 
 
Figure 29. Result when the above lidocaine infusion based on population mean parameter values is given to the 
81 diverse support points from which the population mean values were obtained. Great diversity in the 
predicted responses is seen. 
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the weighted squared error with which any candidate regimen is predicted to fail to 
achieve the desired target goal at a target time. Other regimens can then be considered, 
and the optimal regimen can be found which is specifically designed to achieve the 
desired target goal with the least weighted squared error [32].   
  

This approach, using the multiple models of the patient provided by the 
nonparametric population model, avoids much of  the limitations of the separation 
principle. This is the real strength of the combination of nonparametric population 
models coupled with "multiple model" dosage design [32]. 

 

 
 

Figure 30. Predicted response of the 81 support points (models) when the regimen obtained by multiple model 
dosage design is given. The target is achieved with visibly greater, and optimal, precision. 
 

As shown in Figure 30, the multiple model (MM) dosage regimen, based on the 
same nonparametric population model with its 81 support points, obtained a much more 
precise achievement of the target goal, because it was specially designed to do so.  The 
error in the achievement of the therapeutic target goal is much less, and the dispersion of 
predicted serum concentrations about the target goal is much less.  

13.1 Obtaining “Multiple Model” Bayesian Posterior Joint Parameter Distributions  
 
 With the MAP Bayesian approach to posterior parameter values, the single most 
likely value for each parameter is obtained when they altogether minimize the objective 
function shown in equation (1). In contrast, the MM Bayesian approach, using the 
nonparametric joint densities, preserves the multiple sets of population parameter values, 
but specifically recomputes their Bayesian posterior probability, based upon the serum 
concentrations obtained. Those combinations of parameter values that predict the 
measured concentrations well become more probable.  Those that predict them less well 
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become less so. In this way, the probabilities of all the nonparametric population model 
support points become revised, using Bayes’ theorem [33]. A smaller number of 
significant points, or perhaps even only one, is usually obtained. When the regimen for 
the next cycle is developed, these revised models, containing their revised MM Bayesian 
posterior probabilities, are used to develop it. The regimen is again specifically designed 
to achieve the desired target goal with maximum precision (minimum weighted squared 
error). 

13.2 Other Bayesian Approaches  
 Three sequential Bayesian approaches have also been used by us to incorporate 
feedback from measured serum concentration data. The first is the sequential MAP 
Bayesian approach, in which the MAP posterior parameter values are sequentially 
updated after each serum concentration data point is obtained. This procedure improves 
the tracking of the behavior of the drug through each data set. However, at the end of 
each full feedback cycle, (after each new full cluster of data points), at the time the next 
regimen is to be developed, this method has learned no more with respect to developing 
the next new dosage regimen, than if it had fitted all the data together at once, even 
though it  estimates changing MAP Bayesian parameter values sequentially. This is 
because the method only estimates a single set of parameter values that fit the objective 
function best, over all the data points. 
 
 The second approach is the sequential MM Bayesian one [33]. Here the MM 
Bayesian posterior joint density is also sequentially updated after each data point. Still, at 
the end of each feedback cycle, this procedure similarly has learned no more with respect 
to developing the next dosage regimen than if all the data in that cluster were fitted 
simultaneously. The procedure is still looking for a hypothetical single model (support 
point, set of parameter values) which best describes all the data. When this fails to be the 
case, combinations of support points are found which fit best. Still, the procedure 
estimates a fixed and unchanging single model, or combination of models (support 
points), which best fit the data, even though the posteriors are fitted sequentially. 
 
 A third approach is the interacting multiple model (IMM) approach [36]. This 
method permits the true patient being sought for actually to jump from one model or 
support point to another during the sequential Bayesian analysis. Because of this, the 
IMM method, originally designed to track missiles and aircraft taking evasive action, 
permits detection of changing pharmacokinetic parameter densities during the sequential 
analysis procedure. It thus provides an improved method to track the changing parameter 
densities and the behavior of a patient during the evolution of his/her clinical therapy. For 
example, it permits an improved ability to detect and to quantify changes in the volume 
of distribution of aminoglycoside drugs during changes in a patient's clinical status which 
are not captured by the use of conventional clinical descriptors.  
 
 Using carefully simulated models in which the true parameter values changed 
during the data collection, the integrated total error in tracking a simulated patient was 
very similar with the sequential MAP and sequential MM Bayesian procedures. 
However, the integrated total error of the sequential IMM procedure was only about one 
half that of the other two [36]. 
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13.3 Clinical Applications 
 
 Nonparametric population parameter joint densities, MM dosage design and 
IMM Bayesian posterior joint densities appear to offer significant improvements in the 
ability to track the behavior of drugs in patients throughout  their care, especially when 
the patients are unstable and have changing parameter values. These approaches also 
develop dosage regimens which are specifically designed to achieve target goals with 
maximum precision. These methods make optimal use of all information contained in the 
past population data, coupled with whatever current data of feedback may be available up 
to that point, to develop that patient's most precise dosage regimen.  
 
13.4 Analyzing the Tobramycin Patient with MM and IMM Sequential Bayesian 
Methods. Implementation into Clinical Software 
 
 The above tools have now been implemented in clinical software, the MM-
USCPACK package [33]. Figure 31 shows the plot of the fit to the data from the patient 
described in sections 9.1 and 11.2, and in Figure 22, when analyzed using the sequential 
MM Bayesian approach. The data was very poorly fitted, due to the changing parameter 
values in this highly unstable patient, as she changed from being a general medical 
patient with a pyelonephritis before 150 hours to an acutely ill and highly unstable patient 
with severe septic shock after that time.  
 

 
 
Figure 31: Fit to data of patient described in section 9.1, 11.2, and Figure 22, analyzed with the MM Bayesian 
approach. Note the very poor fit to the data, due to the patent’s changing parameter values as her clinical status 
changed significantly, going from someone with a pyelonephritis before 150 hours, to someone with clearcut 
septic shock afterward, becoming an acutely and severely ill intensive care patient. 
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 On the other hand, Figure 32 shows the result when the IMM algorithm was 
used to analyze the patient’s data. The fit was greatly improved, and the IMM algorithm 
was able to track the changing behavior of tobramycin in this acutely and severely ill, 
highly unstable patient. 
 

 
 
Figure 32: Fit to data of patient described in section 9.1, 11.2, and Figure 22, analyzed with the IMM Bayesian 
approach. Note the very much improved fit to the data, as the IMM approach tracks the changing parameter 
values taking place in this acutely ill and highly unstable patient. 
 
14. THE FUTURE OF INDIVIDUALIZED DRUG THERAPY 
 
 The clinical software above incorporates all the strengths of the nonparametric 
population models and the multiple model dosage design, and the MM and IMM 
Bayesian analysis of individual patient data. Work is now under way to develop similar 
MM dosage designers for the large and often nonlinear models of drugs having that 
behavior, such as Phenytoin, Carbamezapine, and many drugs used in the treatment of 
patients with AIDS, transplants, and cancer, for example. Nonparametric population 
models can be made now of large, nonlinear, interacting and multiple drug systems such 
as those found in the combination chemotherapy of many of the above patients, where the 
concentrations of one drug may either compete with a metabolite, or may increase or 
decrease the rate of metabolism of another drug. As MM dosage design is developed for 
such large multidrug systems, it will be possible, for the first time, to develop truly 
coordinated, maximally precise combination chemotherapy for patients with such 
problems, maximizing effectiveness while constraining toxicity within specifically 
selected quantifiable limits. 
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