
Top Ten Algorithms Class 13

John Burkardt
Department of Scientific Computing

Florida State University
..........

http://people.sc.fsu.edu/∼jburkardt/classes/tta 2015/class13.pdf

23 November 2015

1 / 24

Our Current Algorithm List

1 Area of a triangle

2 Back Propagation algorithm

3 Bank routing number checksum for error detection

4 Barycentric coordinates of point in triangle

5 Bernoulli number calculation

6 Bootstrap algorithm

7 Collinearity of three points

8 Computational geometry (triangle area, containment,
mapping)

9 Data stream: most common item

10 Discrete Cosine Transform

2 / 24

Our Current Algorithm List

1 Discrete Fourier Transform

2 Euclid’s greatest common factor algorithm

3 Finite Element linear triangle basis function evaluation

4 Gram-Schmidt vector orthogonalization algorithm

5 Hamming error correcting codes

6 ISBN (International Standard Book Number) checksum

7 k-means clustering algorithm

8 Luhn/IBM checksum for error detection

9 Monte Carlo Sampling

10 PageRank algorithm for ranking web pages

3 / 24

Our Current Algorithm List

1 Pancake flipping algorithm for genome relations

2 Path counting with the adjacency matrix

3 Power method for eigenvector problems

4 Probability evolution with the transition matrix

5 Prototein model of protein folding

6 Quasirandom number generation

7 QR (Quick Response) images and error correction

8 QR matrix factorization

9 QR iteration for eigenvalues

10 Reed-Solomon error correcting codes

4 / 24

Our Current Algorithm List

1 Ripple Carry algorithm

2 Search engine indexing

3 Signal detection in noisy data

4 Trees for computational biology

5 Triangle-contains-point algorithm

6 Triangulation of a polygon

7 UPC (Universal Product Code) checksum for error detection

8 Zero Knowledge Proofs

5 / 24

Student Presentation

Anna Yannakopoulos, “Recovering Solutions from Insufficient
Data”

This topic is based on two articles by Cleve Moler, “Mr Matlab”,
both of which try to solve a problem with insufficient data.

1) I’m thinking of two numbers whose average is 3. What numbers
am I thinking of? Reference:
www.mathworks.com/clevescorner/dec1990

2) A signal of millions of values was sent. But I only received a
compressed signal, containing weighted averages. Can I recover the
exact original signal? Reference:
http://www.mathworks.com/tagteam/65074 91850v00 NN10 Cleve.pdf

Under the right conditions, the answer is yes.

6 / 24

Student Presentation

Isaac Lyngaas, “Computing With Very Large Numbers”

We are familiar with the limitations of computer arithmetic,
including a biggest and smallest positive real number, and about
16 decimal digits of accuracy in arithmetic.

What do we do if we need to calculate π to a hundred ... or a
million digits?

What if we need to factor a prime number that has a hundred
digits?

reference: Brian Hayes, ”The Higher Arithmetic”, American
Scientist, September/October 2010.

7 / 24

The McNuggets Problem

At one time, McDonalds sold Chicken McNuggets in packs of 6,
9, or 20. A customer, sent to buy 43 McNuggets, realized this was
impossible. There did not exist nonnegative integers a, b, c so
that:

43 = a ∗ 6 + b ∗ 9 + c ∗ 10

This is one example of problems in which we are given objects with
a certain value, and asked to construct a new object. We might be
allowed to use each object several times, or no more than once.

8 / 24

The Balanced Partition Problem

Ten integers are about to play a game, and so it’s time to
choose up sides.

2 10 3 8 5 7 9 5 3 2

The goal of the balanced partition problem is to break the numbers
into two groups with equal sum, or as nearly equal as possible.

9 / 24

Balanced Partition Solution Cost

Given N numbers, how much work will it generally take to solve
the balanced partition problem?

No one has found a general procedure that can work much faster
than brute force - in other words, trying every possible
arrangement of the values. For N numbers, there are 2N possible
subsets. Each subset and its complement form a partition.

If we solve the problem by checking every subset, the problem is
NP-hard...as N increases, the work 2N exceeds any polynomial.

For small N or special cases, the problem may be solvable, but in
general, this is an “impossible” problem.

10 / 24

Greedy Algorithm

A simple algorithm works like two greedy team captains,
alternating turns, and always choosing the largest remaining
number for their team. For our data, this would yield the following
teams

A: #9 #1 #7 #3 #5
2 10 3 8 5 Sum = 28
2 10 3 8 5 7 9 5 3 2

5 7 9 5 3 2 Sum = 26
B: #6 #4 #2 #8#10

11 / 24

Greedy but Fair Algorithm

To reduce the advantage of the first chooser, we can do two
picks at a time after the first one.

A: #9 #1 #5 #4 #8
2 10 5 7 3 Sum = 27
2 10 3 8 5 7 9 5 3 2

3 8 9 5 2 Sum = 27
B: #7 #3 #2 #6 #10

Since we really have to sort the data to make choices, the amount
of work here is O(N log(N)).

Unfortunately, this method it not guaranteed to find the solution,
hence, it is not a general solution algorithm, so we have not beaten
the 2N work requirement.

Actually, another problem with the greedy algorithm is that it
chooses both subsets to be the same size.

12 / 24

Karmarkar-Karp Algorithm

The Karmarkar-Karp algorithm sorts the data, then replaces the
two largest numbers by their absolute difference. This is equivalent
to deciding that these two numbers must be assigned to different
subsets. This process continues until only one number is left,
which is the discrepancy between the two subsets. If it is zero, we
have found a perfect partition.

Data Difference
6 9 13 17 19 2
2 6 9 13 4
2 4 6 2
2 2 0
0 <-- Perfect solution has been found
2 | 2 0 = 2 - 2
6 | 2 4 2 = 6 - 4
6 9 | 2 13 4 = 13 - 9
6 9 17 | 13 19 2 = 19 - 17

13 / 24

The Subset Sum Problem

The balanced partition problem gave us N numbers to divide
into subsets of equal sum.

If all the numbers add up to S , then we are looking for two subsets
that add up to S/2, which is really the same as asking for one
subset that adds up to S/2.

This is just a special case of the subset sum problem: select a
subset of N numbers which add up to the target T .

14 / 24

A Pseudo-Fast Algorithm

Let M be the target value, and set vector T(0:M) to -1.

We can get a sum of 0 by using no elements at all, so set T(0) to
0. The next element of the set might be 2. Since 0 is “reachable”,
we know that 0 + 2 is reachable: Set T(2) = 2.

The next value might be 3. Since 0 is reachable, so is 0 + 3, set
T(3) to 3. Since 2 was reachable, so is 2 + 3, so set T(5) to 3.

If the next value is 9, set T(9) = 9, T(12) = 9 and T(14) = 9,
because these became reachable using 9. (Actually, we can’t use 9
twice in one sum, so the actual check will count down.)

Once we have considered all the numbers, then T(M) is either -1
(couldn’t reach it) or it has a nonnegative value, indicating the last
entry in the sum. By backtracking, we can recover the whole sum.

15 / 24

A Pseudo-Fast Algorithm

1 f u n c t i o n t = subse t sum (m, n , a)
2
3 t = ze ro s (m, 1) ;
4
5 f o r i = 1 : n
6 f o r j = m − a (i) : −1 : 0
7
8 i f (j == 0)
9 i f (t (a (i)) == 0)

10 t (a (i)) = a (i)
11 end
12 e l s e i f (t (j) ˜= 0 && t (j+a (i)) == 0)
13 t (j+a (i)) = a (i)
14 end
15
16 end
17
18 end
19
20 r e t u r n
21 end

Listing 1: Subset Sum 16 / 24

The Subset Sum Problem

An example calculation might have a target value of 30, using
the values [2, 3, 9, 14, 23, 11, 2, 5]. At the end of the calculation,
the T vector would look like:

0 1 2 3 4 5 6 7 8 9
--
00 [0, -1, 2, 3, 2, 3, -1, 2, 5, 9,
10 5, 9, 9, 11, 9, 2, 14, 14, 2, 14,
20 11, 2, 11, 14, 2, 14, 14, 11, 14, 2,
30 11]

meaning that 30 = 11 + 14 + 3 + 2

This procedure is guaranteed to find an answer if it exists. Does
this mean the problem is not NP-hard? No, because the amount of
work depends on the value M, which is not controlled by N. Given
any number of values N, we can choose a target M that is N2, N3

or any power of N we like. Thus, we can never give a power of N
that caps the possible work. 17 / 24

Easy Subset Sum Problems

Although the general subset sum problem is NP hard, it becomes
easy if the values are superincreasing, that is, if they can be listed
in such a way that each element is greater than the sum of all the
previous ones.

The classic example of a superincreasing set is

{1, 2, 4, 8, 16, 32, 64, ...}

but we could use a set such as

{2, 7, 11, 21, 42, 89, 180, 354}

The greedy algorithm to form a sum s selects the largest element
no greater than s, then the largest elementno greater than the
remainder, and so on. This takes at most O(n) work.

For example, the sum 208 is formed by 180 + 21 + 7, and we can
also see, just as fast, that there is no subset that will sum to 207.

18 / 24

Public Key Cryptography by Subset Sum

Alice wants to send Bob a message over a public line.

Bob uses a public key encryption scheme, with two keys. He has
posted his public key so that anyone can send him a message, but
he keeps the private key to himself.

Alice converts her message to a sequence of 0’s and 1’s, and then
uses Bob’s public key to encrypt her message, and send it over the
insecure transmission line.

Bob receives the message, and uses his private key to decrypt it.

If a stranger already knew Alice’s message, he could use Bob’s
public key and generate the same encrypted message. But having
the encrypted message and the public key does not allow the
stranger to recover the original message.

Encryption is like a “trapdoor”, easy one way, hard the other.

19 / 24

Public Key Cryptography by Subset Sum

The system works by linking a pair of mathematical problems X
and Y, both of which are subset sum problems.

Problem X uses a set of N values {x1, x2, ..., xN} and problem Y
uses {y1, y2, ..., yN}. The Y values are superincreasing, but the X
values are randomly chosen, so problem Y is easy to solve and X is
NP hard.

Suppose the first N bits of Alice’s message are a1, a2, ..., aN . She
computes the corresponding code word w using problem X (the
public key):

w =
N∑

i=1

aixi

If her message is longer than N bits, she repeats this process as
often as necessary, yielding a sequence of code words.

20 / 24

The Stranger Has a Hard Problem to Solve

Suppose a stranger sees the encoded word w . Because the
public key is available, he also knows the values {x1, x2, ..., xN}.

But in order to recover the original message bits, he must solve the
NP hard subset sum problem:

Find the 0/1 values a1, a2, ..., aN so that w =
∑N

i=1 aixi

While not impossible, this computation can be made extremely
time consuming with a moderate value of N.

21 / 24

Bob Has an Easy Problem to Solve

However, when Bob receives Alice’s coded message, his decoding
task is easy. Using his private key, he applies a simple
transformation to Alice’s message word w , and solves problem Y,
the easy subset sum problem.

The technical details involve a modulus m, a multiplier k, and k−1,
the inverse of k with respect to the modulus m. The private key
values y are chosen first, and the public key values x are:

xi = k ∗ yi mod m

Upon receiving w from Alice, Bob computes

w ′ = k−1 ∗ w mod m

And, “magically”, if Bob solves the simple subset problem Y for
w ′, he gets back the original bits a1, a2, ..., aN that Alice encoded.

22 / 24

Diffie Hellman Merkle

The public key cryptography system outlined here is known as
the Diffie-Hellman or Diffie-Hellman-Merkle scheme.

This scheme was invented because encrypted communication
typically requires that the two correspondents first agree on a
common secret key. But how could the key be kept secret if we
haven’t set up our encryption yet?

The public-key system allowed the encryption key to be
transmitted safely. Subsequent communication would be done with
a more efficient symmetric key system.

The example implementation using the subset sum problem was
broken by one of the authors. However, similar encryption schemes
have been developed, using modular multiplication.

23 / 24

Student Volunteer

24 / 24

