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Network of the Segment Polarity Genes in the
Fruit Fly D. Melanogaster

This network consists of the genes whose function is
to define the segment boundaries and polarity in the
D. melanogaster embryo. Each one of the four cells

The tuning of this set of parameters is one main in the network consists of 5 genes and the products

feature in the early stage of this project. encoded by them, as well as two protein
compounds and 6 more elements from neighbor

cells. m
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w

We perform a series of experiments on the 21-variable
model obtained in [LS] , adjusting our method by
applying the genetic algorithm twice.

1. Elementis of the Genetic Algorithm

An important problem in computational biology is the
modeling of several types of networks, ranging from
gene regulatory networks and metabolic networks to
neural response networks.

In order to control the evolutionary search for a
satisfactory solution model, our genetic algorithm
uses 12 parameters (e.g. population size, mutation
rate, crossover rate, etc).

Genome: A finite dynamical system model as a set
of d polynomials over =, (finite field of 2 elements)

Fitness function: Hamming distance between time
series generated by the model and the input time
series along with a measure of model complexity

In [LS], Laubenbacher and Stigler presented an algorithm
that takes as input time series of system measurements,
including certain perturbation time series, and provides
as output a discrete dynamical system over a finite field. Mutated Initial States: Improve robustness of

estimated model

4. Computational Algebra Tools

We formulated an upper bound for the number of
variables in every monomial, given the input time
series samples. This formulation is based on the
maximum support of a monomial member of any
Grobner basis of the ideal that vanishes on a time
series f, which greatly restricts the genetic algorithm

Since functions over finite fields can always be _ - |
represented by polynomial functions, one can use tools Mutation: Addltlon or removal of one variable from
from computational algebra for this purpose. The key one monomial
step in the algorithm is an interpolation step, which leads
to a model that fits the given data set exactly. Due to the
fact that biological data sets tend to contain noise, the
algorithm leads to over-fitting.

Crossover: Creation of a Polynomial as mixture of
subsets of the monomials from two parent models.

. . o 2. Input Data search space, improving the efficiency of the
Here we present a genetlc algonthm’ that OptImIZGS the . . . : . Optimization. Label ol Corrected 1LOOpS deleted
model produced by the Laubenbacher_Stig|er a|gorithm Time Series: A set of discrete time series over =, Parameter Set . ‘

between model complexity and data fit. This algorithm with different initial states

(implemented in C++), uses tools from computational
algebra Iin order to provide a computationally simple
description of the mutation rules.

Knockout Data: Perturbed data from the knockout of
some or all of the entities in the network

Testing and Tunin

Candidate Model: Obtained by applying L-S
algorithm to the available data.

Table 1. Considering [AO] model (21 nodes and 44 links), we compare our
results with [LS]. The second column refers to the number of excessive
links in [LS] topology that the G.A. corrected and the second column
represents the number of loops that the G.A. deleted.

We employed an 8-variable model to generate time
series and perturbed data, as Input Into the
Laubenbacher-Stigler method and/or directly as input

SGRETE POLYNOMIAL MODELS
into the genetic algorithm.

3. Effectiveness of Fithess Score
A discrete polynomial model is a vector function

he performance of the G.A. is significantly improved - FINAL COMMENTS

when the model from L-S was used as input in the G.A.

We used empirical measurements to verify that if an
estimated model is close to the true model, then the

f=(f,..,f): &> <"
time series produced by the estimated model will

1. Initial results indicate that our Genetic Algorithm
approach to either discovery or refinement of a

where = is a finite field and fl It & are local have a small Hamming distance from that prOdUCGd dynamical SyStem model can be an effective
update polynomials for each node / = 1.....,n. by the true model from the same initial state. f, = X, + X, element of a robust system for genetic network
: . . : f.o= X+ XX iIdentification.
the dliorected gpraph wherF()e: ° is the number of mutations between two models, fy = X3+ X4X¢ 2. An extension of this algorithm for more general finite
| and h is the average Hamming distance between fy= X4+ Xg fields is being performed as part of a second phase
vertices := states of system time series produced by the two models. fo = X5 + X of this project.
. fo=X
Edge from v; to v iff {(v;)=v _ fi - Xi
Therefore a time series is represented as a path in this g = X5+ X; - REFERENCES

graph.
Example of a model and phase space graph
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from the genetic algorithm. In red are the extra links that the
last two share and finally, the purple link is the extra link that
L-S model has and that the genetic algorithm was able to
delete.
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