Computers and Mathematics with Applications 64 (2012) 2663-2681

Contents lists available at SciVerse ScienceDirect '.:gg.:;';“u*g;.as

withapplications

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Generalized edge-weighted centroidal Voronoi tessellations for
geometry processing”

Yu Wang?, Lili Ju®*, Desheng Wang ¢, Xiaogiang Wang ¢

2 CGGVeritas Hub, 9 Serangoon North Ave 5, Singapore 554531, Singapore

b Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

¢ Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
4 Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA

ARTICLE INFO ABSTRACT

Artic{e history: In this paper, we propose a generalized edge-weighted centroidal Voronoi tessellation
Received 5 March 2012 (GEWCVT) model and corresponding solution algorithms, then apply them for geometry
Received in revised form 9 July 2012 processing such as curve/surface smoothing and reconstruction. The main idea of the
Accepted 25 July 2012

method is to seek a good way to discretize the similarity and regularity measures of the
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1. Introduction

Smoothing and reconstruction of curves (in R?) or surfaces (in R?®) are two basic topics in geometry processing. These
problems can be addressed in the same variational framework, in which we often need to minimize a certain functional
such as

&) = / AMur — Ugaal? dx+7§ (o + B distr, ) ds (1.1)
2 r

where 2 is the computing domain (occupied by the data), I" is the interface (curve or surface) to be smoothed or
reconstructed, dist, , is the unsigned distance function of points on I to the given data (point sets or line segments or
surface patches, etc.), u; and u4q, are the labeling (characteristic) functions induced from 7" and the given data respectively,
and «, B and A in (1.1) are tuning parameters to be selected (could be constants or functions). The first term in the right hand
side measures the similarity between the solution I" and the input data, and the second term measures the regularity of I".
In this paper this unified variational framework will be expressed in the centroidal Voronoi tessellation (CVT) languages as
that in [1]. Basically in this approach, assuming the function u is a labeling function, a special distance between a point
and a label/cluster which takes account of geometric information of clusters’ boundaries needs to be defined; with this
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distance function we then are able to generalize the notions of Voronoi diagrams and apply the Lloyd iteration to minimize
the objective functional.

Currently popular methods used to solve the above minimization problem (1.1) include PDE-based methods [2-5]
and graph-based methods [6-8]. The differences between these two approaches are mainly in two aspects. The first
main difference is that the PDE-based methods use continuous functions to represent interfaces whereas the graph-
based methods use discrete functions, the other one is that the PDE-based methods basically solve the Euler-Lagrangian
equations derived from the proposed variational formulations, which usually gives local minimizers unless the functional is
convex, while the graph-based methods always seek global minimizers in a certain finite space as long as the functional is
graph-representable. Thus, graph-based methods are often much more efficient and robust while PDE-based methods are
sometimes more general and accurate. The accuracy issues can be explained in two ways: first, PDE-base methods compute
the interface by interpolating the function value (e.g., zero-level-set) and therefore normally have sub-pixel accuracy, on
the other hand graph-based methods often only give partitions of the grids and sub-pixel accuracy is not so meaningful in
this case; second, in the process of approximating a continuous model, graph-based methods introduce some model errors
(see [9] for more details), and the errors of PDE-based methods basically come from the numerical solution not modeling
itself. Due to more and more extensive research conducted on both sides the gap between them is becoming smaller and
smaller.

In the fields of statistics and machine learning, the k-means clustering is a classic method in wide use. The interested
reader can refer to [10] and the references cited therein. The basic k-means algorithm can be viewed as a special case of
the centroidal Voronoi tessellation (CVT) methodology [11]. As a versatile methodology, the model of CVT [12,13] has been
introduced to numerous fields and applications, such as image processing, data analysis and quantization, computational
geometry, sensor networks, numerical partial differential equations [12,11], and so on. Recently, in [1], the authors first
developed an edge-weighted centroidal Voronoi tessellation (EWCVT) model for image segmentation applications (discrete
structured points in R?), in which the image intensity information is appropriately combined together with the length of
cluster boundaries. The method is guaranteed to converge to local minimizers, an aspect which is analogous to PDE-based
methods. EWCVTs for continuous domains in R? are discussed in [14]. EWCVT-based algorithms are essentially clustering
algorithms like k-means [10] so they are computationally much less expensive than the traditional PDE-based algorithms
when the number of phases (or clusters or level sets) are large. In contrast to the graph-cut methods, the EWCVT-based
methods converge to local minima but often require much less memory, especially for multi-phase cases. As a matter of
fact, EWCVT-based methods provide a new way to approximate the well-known Mumford-Shah model [15].

The objective of this paper is to develop a generalized EWCVT (GEWCVT) model and corresponding algorithms, and apply
them to geometry processing problems such as curve/surface smoothing and reconstruction. The first term (fitting) in the
functional (1.1) can be naturally approximated by a discrete clustering energy functional, and the key part is how to interpret
the second term (regularity) in the CVT context. Following the formation of the EWCVT model proposed in [1], our idea is
to introduce a predefined neighborhood and a generalized edge energy (weighted curve length or surface area) that can be
computed by counting the number of edge points and multiplying by some associated weight (constant or nonconstant)
within the neighborhood. A generalized edge-weighted distance then can be derived for the discretized functional and,
consequently, generalized edge-weighted Voronoi regions can be defined. With this new edge-weighted distance, we then
develop a GEWCVT model and corresponding algorithms for its construction. It is worthwhile pointing out that when the
edged-weighted function is constant the GEWCVT degenerates to the EWCVT. In other words, EWCVT is a special case of the
GEWCVT and without ambiguity they are all called GEWCVT hereafter.

The remainder of this paper is organized as follows. In Section 2 the proposed functional for curve/surface smoothing
and reconstruction is interpreted and discretized in the CVT context, and then in Section 3, we present the GEWCVT model
and algorithms as well as the difference between GEWCVT and EWCVT. In Section 4, some implementation issues are
discussed regarding the proposed algorithms. In Section 5, various numerical experiments are provided to demonstrate
the effectiveness and efficiency of our method for geometry processing. Finally, concluding remarks are given in Section 6.

2. A discrete model and energy for geometry processing

As discussed in [16,17], the basic variational models for geometry processing problems will often have the following
form:

I' = argmin(similarity(I", data) + regularity(I")) (2.1)

where “data” denotes the given data, which could be curves, surfaces or a point set, and I" denotes the codimension one
object (for the 2D space it is a curve and for the 3D space it is a surface). In this paper, we consider the following general
functional for modeling (2.1): find I" that minimizes the objective functional

F(IN) = f AMur — Udaral? dx+7§ rds. (2.2)
2

r

The first term in the right hand side of (2.2) measures the similarity of I" to the data set as usual, and the second term is a
measure of the regularity of I with the function r being a chosen non-negative continuous function defined on the whole
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Fig. 2.1. Shadow area is the set of local edge points associated with (x, y).

domain £2 related to ur. The first term in the right hand side of (2.2) can be easily expressed by the CVT language such as

DA — taaa (), (23)
xeD
where D is a discrete representation of £2. We note that D could be structured or non-structured, uniform or nonuniform
meshes. This is essentially a weighted clustering energy. The crucial step is to seek a discretization of the second term which
is suitable for clustering algorithms. For simplicity, in the following we derive everything in the two-dimensional space
(i.e., x = (x, y)), but formulations and results for three or higher dimensional spaces can be similarly obtained.

Assume that the domain §2 is divided by I into several clusters. For the indicator function u, the points in the same
cluster have the same value. For a point (x,y) € D, its neighborhood ,,(x, ¥) is chosen as a disk centered at (x, y) with
radius w. A point in D is identified as an edge point if there are points within its neighborhood belonging to a different
cluster. Let us define a local characteristic function as

1 ifur,y) #urx,y)

0 otherwise (24)

Xopn Y)Y = {

where (X',y") € M, (x,y). Assume that w is small enough so that the intersection of I" and ¥, (x, y) can be viewed as a
straight line segment (see Fig. 2.1). Then

109) = [ (6.9 ey’ (25)
Ne
denotes the area inside the shadowed region in Fig. 2.1. We can show that

3
lim —/ r(x, Yl(x,y) dxdy = y{ rds,
2 r

w—0 43

with the proof given in the following.
For points in a band with width 2w along I', the following identity holds

I(x,y) = ®’6 — w*sinb cos O , (2.6)

where 6 is the angle shown in Fig. 2.1. Obviously, for points outside the band, we have I(x,y) = 0. Hence, instead of
computing the integral on the whole domain, the computation is only carried out within the band. Let h = w cos 6, then we
have

3
lim —/ rl dxdy = / yg r(s, h)(w?0 — w? sin6 cos 0) dsdh
403 Jo w—>0 20°

w—0

/2
= lim —/ % r(s, wcos)(6 — sinf cos O)w sin O dsdf

w—0 2w

w—0 2

/2
= lim = f jﬁ r(s, wcos ) (6 — sinf cos ) sinH dsdb

/2
= / % lim r(s, wcos @) (@ — sin6 cos ) sinO dsdd

1—*(1)*)
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3 /2
f/ % r(s, 0)(0 — sinf cos 9) sin O dsdb
2 0 r

3

/2
= / (0 — sin® cos ) sin 6 d@% r(s,0) ds
2 .Jo r

% r ds. (2.7)
r

Here r (s, h) is assumed to be continuous along the normal direction in order to let changing variables of the integration and
taking limits make sense, and this assumption is valid for most applications. The above proof is only for the case of using
the circle as neighborhood, and for other type of neighborhoods such as rectangle, the proof is similar but the constant will
be different from 4%. The choice of neighborhood system, especially the parameter w, depends on the application (see the
remark in Section SHS.

Thus, disregarding the scaling effect, we get a discrete version of the functional # as follows in the two-dimensional
space:

~ 1
Fw= ) Mooy — v )P+ — [ > r(x,y)l(x,y)] (2.8)

(x,y)eD (x,y)eD

The second term in the right hand of (2.8) is called the generalized edge energy, thus we name the functional (2.8) an
generalized edge-weighted clustering energy. We also note that it is not hard to show for a general d-dimensional space,
one can obtain the following objective functional:

d+1
xeD w xeD

~ 1
Fu) =Y AU — tua®)|* + [Zr(x)l(x)} : (2.9)

This is a generalization of the discrete functional developed in [1] in which A(X) does not appear and r(X) is just a constant
weighting function. A CVT-based minimization procedure for this functional will be derived in the next section.

3. Generalized edge-weighted centroidal Voronoi tessellations

The aim of this section is to build the generalized EWCVT model for the discrete functional (2.9) and develop fast methods
for its minimization based on the CVT methodology studied in [12,1]. By computing the variation of the functional, the
corresponding Euler-Lagrangian equation of (2.9) can be obtained and then the minimization can be achieved by some
classical descent methods. However, these approaches, like PDE-based methods, usually lack efficiency. As a matter of fact,
the minimizer of the functional (2.9) is merely a labeling function and can be obtained by classical clustering algorithms
which are essentially integer programming problems.

3.1. Generalized edge-weighted Voronoi tessellation and its construction

The problem is to determine the variation of the generalized edge-weighted clustering energy (2.9) when the labeling
function u(x) of a grid point x is changed from its current label ¢;, to another label c;,. The energy (2.9) can be rewritten as

F(u) =< 3 A(x’)|u(x/>—udam(x’)|2> + 10U (X) — tgara (X

X' €D, x'#x

1
+ [( > r(x/)l(x/)) +r<x)l(x)] (3.1)

X €D,X/ #x
The change of the first term is clearly zero and that of the second term is given by
AX)[Ce, — Ugara X)) — A(X) |ty — Uaaa (X[ (3.2)
The variation of edge energy (ignoring the scaler ﬁ for a moment) for X caused by such change of the label is
r(x)[ng, (X) — ng, (x)] (3.3)
where n; is the size of the set

Al = {x' | X € N,(x), andu(X') = ¢;, and X' # x}.



Y. Wang et al. / Computers and Mathematics with Applications 64 (2012) 2663-2681 2667

Eq. (3.3) is the amount of the change of the size of neighborhood of X, and can be also written as

Yo=Y r, (3.4)

X cA? X eAd

since n;, = ZX,E Al landn;, = Zx,e A2 1. The variation of edge energy (without the weight ﬁ) for X' is
Do) = > ). (3.5)
X cA? X eAd

Summing (3.2), (3.4), (3.5), the variation of the total energy f'(u) due to transferring the point x from the label ¢, to ¢, is
given by

Do)+l - Y Irx) +r®]

] O
X' €Ay X €Ay

Mx)('“‘m‘“(x) — ¢, * = [Ugara®) — |2> + Wi+l

Thus, the generalized edge-weighted distance from a point (X) to a label ¢; can be defined as

. 1
dist* (X, ¢) = | AW Uaara®) — G2+ ——= D [rX) +rX)]. (36)
w X' €Ny (X)\Ax,

We would particularly like to remark that this distance (3.6) is not defined in the usual mathematics sense, it is called a
distance just because we follow the conventions used in CVT-based methods [1,14]. Note that r(X) is non-negative to ensure
that the above distance function is always meaningful, and when r(x) is constant Eq. (3.6) naturally reduces to the change
of the edge-weighted distance proposed in [1]. Given a set of labels ¢ = {cs}ﬁzl, corresponding Voronoi regions associated

with the generalized edge-weighted distance dist* defined in (3.6), D = {D,}._, of D can be defined as

Ds = {x € D | dist"(x, ¢;) < dist*(x,¢;), t=1,...,L, t #s}. (3.7)

We call such a set of {D5}§:] a generalized edge-weighted Voronoi tessellation (GEWVT) of D associated with the generators
C= {c5}§=1 and the distance function dist*. An iterative algorithm for its calculation is given below:

L

s—1 of the domain D:

Algorithm 1 (GEWVT). Given a set of generators {c; ﬁ:] and an arbitrary partition {f)s}

1. Forevery (x,y) € D,
(a) calculate and compare the generalized edge-weighted distance defined in (3.6) from the point (x,y) to all the
generators {c;}:_,;
(b) move the point (x, ) to the cluster whose generator has the smallest edge-weighted distance to the (x, y), and update
{Ds}i_y.

2. If no point is moved, return {D,}:

s—; and exit; otherwise go to Step 1.

Since Algorithm 1-GEWVT strictly decreases the objective functional £ (u) along the iterations and the (discrete) input data
is finite, this algorithm will terminate in finite steps.

A way to accelerate Algorithm 1-GEWVT is to only consider the points near the edge points and in each iteration the
computation will be carried out merely in a narrow-band around the edge points. The overhead is to update the narrow
band within each iteration, which is negligible compared with the number of points in the whole domain. Such a strategy
dramatically improves the efficiency of Algorithm GEWVT, and leads to the following Narrow-Banded GEWVT algorithm.

Algorithm 2 (Narrow-Banded GEWVT). Given a set of generators {cs}ﬁzl and an arbitrary partition {bs 521 of the domain D:

1. For every (x,y) € D, if there exists some (X', y') € N, (x,y) such that (x,y) € 551 and x',y) € 552 (s1 # s3) then mark
the point (x, y) as Band; otherwise, mark (x, y) as Fixed. Repeat this process until each point in D is either marked as
Band or Fixed.

2. For every (x, y) marked as Band,

(a) calculate and compare the generalized edge-weighted distance defined in (3.6) from the point (x, y) to all the
generators {c;}:_;;
(b) move the point (x, y) to the cluster whose generator has the smallest edge-weighted distance to the (x, y), and update
Dy}, )
3. If no point is moved, return {D; §:1 and exit; otherwise go to Step 1.

Algorithm 2-Narrow-Banded GEWVT is a much more efficient implementation than Algorithm 1-GEWVT.
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3.2. Generalized edge-weighted centroidal Voronoi tessellation and its construction

Any feasible solution u(x) of the minimization problem of }C(u) defined in (2.9) can be uniquely represented by a set of
generators {cs ﬁ:] and their corresponding GEWVTs {Ds ﬁ;l such that

u(x) = ¢ for some s such thatx € D;. (3.8)

Then, seeking a minimizer of F ) is equivalent to finding the optimal generators and the associated GEWVT.

When the {Ds}§:1 is fixed, the generalized edge energy at each point is fixed, and therefore, the problem of finding the
optimal generators becomes the classical problem of determining centroids of the Voronoi regions, which can be computed
by

> AX)u(x)
~ X€Ds .
CG=—c——, i=1,...,L 3.9
B SPYE) 2
X€Dg
Based on the CVT methodology [12], the process of seeking minimizers of (2.9) is to find the generators ¢ = {c;}-_, and the

s=1
associated GEWVT D = {D;}:_, such that
c=0C, s=1,...,L (3.10)

In this case, we call the {C, D} a generalized edge-weighted centroidal Voronoi tessellation (GEWCVT) of D, similar to the
EWCVT developed in [1].

Analogous to the classical CVT approach, the minimization is achieved by Lloyd iteration [27,28] - iteratively updating
generators {c;}:_, and generalized edge-weighted Voronoi tessellations {D,}:_, until they converge, which leads to the
algorithm below.

Algorithm 3 (GEWCVT). Given an integer L and an arbitrary partition {f)s}izl of the domain D:

1. For every Ds,s=1,...,L determine its centroid & by (3.9). ~
2. Replace the generators {Cs}§:1 by {55}5:1, and construct the associated GEWVT {Dgew}ﬁz1 by Algorithm 2.
3. If the difference between {D'*"}t_, and {D,}:_, is small, return {D™"}-_, and exit; otherwise set D, = DI for

s=1,...,Land go to Step 1.
To compare the difference between two tessellations, the number of the point (x, y) € §2 such that
(x.y) €D; and (x,y) ¢ Dj"

will be counted, which is denoted by Nchgnge. Therefore, when the Nepange is small enough the iterations will terminate. In
practice, one also can use energy change ratio as the stopping criteria, as discussed in the Section 5.

In Algorithm 3-GEWCVT, although the point transferring between clusters occurs immediately after the possible
reduction is found, the update of the generators is delayed until the start of the next iteration. Actually, the generators
can be updated just after point transferring happens and this has been used to improve the efficiency of the GEWCVT-based
algorithms in many applications [11,1].

4. Applications to geometry processing
In the last two sections we presented a GEWCVT-based approach for discretizing and minimizing the functional of type

(2.2). We now will apply the above proposed techniques to two specific applications in geometry processing, i.e., smoothing
and reconstruction, and also discuss some details on implementation and parameter setting.

4.1. Data representation

These two problems are closely related and can be addressed in the following discrete framework (letting r(x) =
a(x) + Bx) distr,,, (X)):

~ 1
F) = hdata®)UF) — Uara®)* + [Z(fx (%) + BX) distr,, (x))l(x)} (4.1)

d+1
xeD w xeD

where I is the curve (or surface) we seek and I, the given data, which can be either a set of line segments (or triangular
faces) describing the given curve (surface) or just scattered points whose exact form depends on the application. The
unsigned distance function from a point x to the data set Iy, is defined as usual, i.e.,

distry,, (0 = _inf dist(x.y),

Y€ldata
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ur is the piecewise constant level set function induced by I, and u4, is the one induced by jgq. Adatar @data, and B are
some weight functions to be selected, and in particular they can be input-data-dependent. In fact, if we treat u as a labeling
function and let r (x) = agarq + B distr,,,, then the above functional has exactly the same form as the functional (2.2). Thus,
the curve/surface smoothing and reconstruction problems are optimization problems in this sense.

The curve/surface I" is implicitly represented by the discontinuities of u . In our approach, the discrete domain D will
be divided into several clusters by I" and each cluster shares a unique value of u, which is called “label” of that cluster.
Therefore it is also obviously different from the traditional level set method [18,19] or phase-field method [20,21,17]. When
the data is given by line segments (or triangular surface mesh), the labeling function u44, can be generated by counting ray
crossings. The basic idea of ray crossings is that if a point p is in the polygon (polyhedron) a ray from p will intersect the
polygon (or polyhedron) boundary an odd number of times, otherwise an even number of times. Let us take a simple 2D
problem as an example. Suppose the closed curve is discretized as a closed polygon, which separates the domain of interest
into two disconnected subdomains, i.e. interior and exterior ones. The interior region is composed of the points with odd
crossings and the exterior region the points with even ray crossings. It is natural to give the interior subdomain a label and
the exterior subdomain another label. When applied to multi-subdomain problems, the principles are essential similar.

When the data is not given in the form of line or surface segments, for example, in most surface reconstruction problems,
it is impossible to completely mark the interior and exterior regions. Even for surface smoothing problems, sometimes it
is also unnecessary to completely mark the interior and exterior regions. To resolve these issues, the following method is
used. For easy presentation, our discussions will be based on a two-cluster problem. First, suppose the unsigned distance
function is available, then a fuzzy region is defined as

$SFuzy = {x: diStham (X) < dw} (4.2)

where the thickness of the fuzzy region dy;, may depend on the noisy level and data resolution. If the data is dense and
within a reasonably noise level, the £2r,,;, will separate the domain into at least two subdomains. After the fuzzy region is
established, the whole domain has a partitioning: inside, outside and fuzzy regions. Then we can give labels for the regions,
i.e., the value of ugq,. We also need to determine the topological information of the points in the fuzzy region by ray-crossing
counting in curve/surface smoothing.

The second issue is about computation of the unsigned distance function, which is needed in the functional (4.1) and the
$2ruzzy construction. The simplest way to do this is for each grid point to compute the distance to all segments and then take
the smallest as the final distance; otherwise, we use the fast sweeping method [22] to compute the distance function using
a background grid. This method has complexity O(N) for uniform grids, where N is the grids number.

The last issue is the selection of parameter functions Agqq, @, and 8. Generally, @ and 8 can be constants for curve/surface
smoothing and reconstruction applications. There are also certain differences between these two applications, especially
Adata aS discussed below.

4.2. Determination of Agqtq

4.2.1. Smoothing process

When the functional is modeling the smoothing process, 8 can be zero since the uyq, is determined at each point and
therefore the distance between the solution curve (or surface) and the given noisy data is completely controlled by the
topological information, i.e. the labeling function. Hence the parameter 44, plays a role controlling the distance between
the solution curve (or surface) and the given one, which is usually a constant depending on noise level.

Recently, a better algorithm for determining A 44, (for two-phase problems) was proposed in [ 17] that could help preserve
curve/surface features during smoothing process. The main observation is that in order to keep the special features of the
given data the smoothing effect should be small in the feature regions or equivalently the closeness parameter Aggq(X)
should be large. Therefore a data-dependent (nonconstant) parameter function A4 (X) can be used to improve smoothing
results. So far as the features such as corners and edges are concerned, a quantity that can indicate singularities of the noisy
datais needed. To this purpose, we generalize the idea developed in [17] to more general multi-phase problems. Letx € D be
a point on the curve (or surface). A reference ball S(x) centered at the point X with radius r is introduced for the “averaging”
— for removing effects caused by noise and detecting singularities. If x is not close to the junctions, the reference circle S(x)
is divided into two parts A and B by the boundary I'". If the portion of the boundary, I" NS (x), is smooth (thus locally straight)
enough, the volumes of A and B should be roughly the same as the ball is small enough. While if the point x is a singularity
point, i.e. a corner or edge point, the area of two parts will be quite different even when the ball S(x) is small enough. Denote
the areas of A, B and S(x) by |A|, |B| and |S(x)| respectively. The ratio defined by

_ min(la]. )
T =50l (43)

can be viewed as the singularity indicator. It is obvious that 0 < t,(x) < % and 7, (X) attains the maximum % only when
I’ NS(x) is straight and passes X. The smaller t; () is, the more singular x is. Moreover, the above observations also basically

hold for the case of a noisy curve (or surface) if the radius of S(x) is large enough to cover the amplitude of the noise. If x
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is a junction point of multiple phases (i.e., a singular point), the above observation is still true except that the ball S(x) is

divided into k parts A1, Ay, . . ., Ax. The definition of 7, (x) becomes
min(|A;[)
X)) = —. (4.4)
' ISX)|

The following algorithm is used in our implementation for determining t, (X).

Algorithm 4 (Determination of 7,(X)). Suppose the phase number is k. For every node x in the computational domain D:

1. Choose a reference ball & (X, 1) centered at X with a radius r.

2. Count the number of nodes, N = Zi N;, contained inside the reference ball & (X, 1), where N; denotes the number of
nodes with label i in & (X, ). Set Ny, = min{Ny, N, ..., Ni}.

3. If Npin = Ny and ugq¢q(X) = k then set 7, (X) = Np;n/N, otherwise, 7, (x) = 1/2.

Note that the last step guarantees that only the points near the curve (or surface) are considered to be possible singular
points. Once the “singularity” measure 7, is available, A4, in the functional can be set to be large in regions near singular
points and small otherwise. In other words, we specify a non-homogeneous “attraction potential” making corners or edges
more attractive. For example, we set

Adata(X) = A1 + A2(1 — 27:(X)) (4.5)

where A, and A, are some positive parameters. Taking this form, A4q:(X) will be large for corner or edge regions and attain
its minimum in flat regions. Both constant and nonconstant A4, Will be tested in our numerical experiments.

4.2.2. Reconstruction process

The parameter Agq, plays a even more significant role in reconstruction applications. In this case, the topological
information is not readily usable, (actually it is the information being reconstructed), and only geometric information is
completely applicable. The following weighted minimal surface or geodesic active contour model [23,5,24] is commonly
used for reconstruction, in which the distance function acts as a potential field attracting the initial surface to the local
minimizers of

Ecac(I") = f diStrdam ds. (46)
r

It is well-known that global minimizers of the functional above are isolated points and its meaningful solutions correspond
to the local minimizers [23]. This fact also implies that the final solution is sensitive to initial guesses. Therefore, using
global optimization methods such as the graph-cut methods to minimize this functional needs some special techniques
[25]. As pointed out in [26,8], the narrow-banded implementation is equivalent to minimizing the functional (2.2) with a
non-constant function A 44 such as

_ C x ¢ QFuzzy
)\dam(x) - {0 X e -QFuzZy (4'7)

where 25, is defined in (4.2), and C is a large constant. Here the width of the fuzzy region is the same as the one in the
computation of the labeling function. Such a choice of A44, guarantees that the labeling function of the solution surface in
the region away from the data coincides with g4, While in the fuzzy region discontinuity of the labeling function is forced to
align with the data set. It has been numerically verified in [8] that by choosing an appropriate band width d,;,, the computed
minimizers of the functional (4.1) always give good results.

5. Numerical experiments

In this section, various examples are presented to illustrate the effectiveness, efficiency and robustness of the proposed
GEWCVT-based method. All experiments were conducted on a PC with Intel Pentium 4 CPU of 3.2 GHz and 4 GB memory.
The first subsection presents results of curve/surface smoothing in the discrete setting, and the second subsection gives
examples of curve/surface reconstruction. Since uniform meshes of the domain are used, the outputs of our GEWCVT-based
algorithm are merely partitions of the mesh nodes. We also note that discretization artifacts are inevitable, especially for
three-dimensional problems, thus the surface examples presented here are all post-processed by a Laplacian smoothing
filter to effectively eliminate the discretization artifacts. “Marching Cube” [29] is used to extract surfaces from the partitioned
voxel data.

The examples are presented in two categories: smoothing and reconstruction. For both categories, examples start with
two-phase problems, i.e. L = 2 for a partition {D;}._,, then some L > 2 examples are presented including 2-D and 3-D cases.
To emphasize, two-phase and multi-phase problems are treated with no difference by the proposed algorithms, and in fact
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the phase number is just a user-defined parameter in our code. In our experiments, we take .V, to be a circle centered at
point (x, y) with radius w. As to the stopping criteria the following two conditions are used: the first one is

P,
< (5.1)
Ptot
where P, denotes the number of transferred points and P, denotes the total number of points in the domain of interest;
the second one is

|En+1 _ En|

g =G (5.2)
where E"! denotes the value of the functional in the current step and E" denotes the value of the functional in the previous
step. In our experiments, we set c; = 2.0e — 5 and ¢, = 1.0e — 4. Once either of the above conditions is satisfied, our
GEWCVT-based algorithm will be terminated. (In other words, if the change of the value of the functional is quite small or
very few points are transferred, the iteration will end.) Particularly, the neighborhood ,,, (X, y) defined in Algorithm 2 is
taken to be a square centered at point (x, y) with side length w; = 2w. Based on our experiments, w can be very small, for
example just a few times the mesh size. This is partially because in the application of geometry processing, the initial guess
can be easily obtained, for example, in the smoothing process, one may take it to just be the noisy interface. For all numerical
examples, we let h = max(hy, hy) for 2D cases, where hy, h, denotes the mesh size in the x and y directions respectively,
and h = max(hy, hy, h,) for 3D cases. Based on our experiences, w typically ranges from 3h to 6h, and a larger neighborhood
does not produce significant visible differences and a too small neighborhood can not approximate the arc-length (surface
area) of the boundaries very well [30].

5.1. Smoothing examples

For smoothing applications, the selection of parameters A4, ¢, § 0ften depends on the noise level. A typical choice is to
set 8 = 0 and Agqq = 1.0, then o can be computed according to the given noise level [31]. However, for a real application
whose noise level is unknown, the automatic selection of regularization parameter is an issue requiring special attention.
Efficiently choosing the parameter is still an active and interesting research topic beyond the scope of this paper. For a more
detailed discussion, the interested reader can refer to [32-34] and references therein. Roughly speaking, a too small « results
in insufficient noise removal and a too large & may yield a trivial constant solution. In [1,30] a simple way is provided to

roughly determine the parameter « (again assume 8 = 0 and A4q, = 1.0): compute ?A] = ern [U1(X) — Ugata(X)|? | and
F = ﬁ [erD(a)l(x)] and then « is chosen such that

max(f], fz)
min(ﬁl» ﬁz)
is satisfied. In other words, we want to prevent either a similarity term or regularity term from dominating. This procedure
can be automatically incorporated into the Lloyd iteration, as proposed in [30] for any given M. We also note that in order to
preserve features, the ratio ’;—2 should be large (at least 1000). In our experiments A, is fixed to be 1, and X, is multiplied by

10 each time until the resulting objective function does not decrease. A more automatic way to determine the parameters
A1 and A, needs further investigations in the future.

In the following 2D examples the computation domain is [—1, 1] x [—1, 1] unless otherwise specified. The first two
smoothing examples are two-phase problems, see Fig. 5.1 which presents smoothing of a noisy cat curve and Fig. 5.2 which
shows smoothing of a noisy Air Jordan logo. The noisy curves are obtained from segmentation. Due to low resolution, the
boundaries of the segmentation results have a lot of zig-zags and some outliers, which can be observed from Fig. 5.1(a) and
Fig. 5.2(a). For both examples, we use a uniform 1000 x 1000 rectangular mesh and set the neighborhood size w = 4h,
where h = 1/500 is the mesh size. We also take a constant 144, = 1.0 for both examples. We would like to show the effect
of the parameters o and § through these two examples. For the cat example, we fix the parameter « = 0.03. Fig. 5.1(b)
presents the smoothing result obtained by our algorithm with g = 9.0 and Fig. 5.1(c) does that with 8 = 0.0. It is obvious
that smaller 8 produces a smoother result, since the curve closer to the noisy curve results in smaller cost for larger 8. For
the Air Jordan logo example, we fix the parameter 8 = 0. The smoothing results with « = 0.02 and « = 0.04 are given in
Fig. 5.2(b) and (c) respectively. It can be easily observed from this example that as « increases, the result becomes smoother.
This is because « controls the regularization effect and larger « means curves with shorter length are expected. Overall,
under the specified resolution all zig-zags are effectively eliminated for both examples.

Fig. 5.3 illustrates a multi-phase example. In this example, the target curves separate the plane into 4 disconnected
domains; see Fig. 5.3(a), which presents the noisy curve of a number eight. A uniform 1000 x 1000 mesh is again used. In
order to show the effect of the neighborhood size w, we fix Agqq = 1.0, @ = 0.06 and 8 = 0 and vary the value of w in
this example. Fig. 5.3(b) and (c) show the smoothing results with @ = 4h and w = 5h, respectively. It is easy to see from

=M<10
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Fig. 5.1. Smoothing of a noisy cat by our GEWCVT-based algorithm with w = 4h, Agqr = 1.0 and « = 0.03. (a) The noisy curve; (b) the smoothed curve
using f = 9.0 (CPU time = 1.16 s); (c) the smoothed curve using 8 = 0 (CPU time = 2.27 s).

AL

Fig.5.2. Smoothing of a noisy Air Jordan logo by our GEWCVT-based algorithm with @ = 4h, Age,s = 1.0, and B = 0.(a) The noisy curve; (b) the smoothed
curve using @ = 0.02 (CPU time = 0.93 s); (c) the smoothed curve using « = 0.04 (CPU time = 1.42s).

Fig. 5.3. Smoothing of a noisy number eight by our GEWCVT-based algorithm with A4qq = 1.0, @ = 0.06 and B8 = 0. (a) The noisy curves; (b) the
smoothed curve using w = 4h (CPU time = 1.2 s); (c) the smoothed curve using w = 5h (CPU time = 2.5s).

the results that with larger neighborhood size the proposed algorithm produces smoother results; on the other hand, using
larger neighborhood sizes requires more computational cost. It is worth noting that in smoothing applications, 8 be zero
since the similarity can be measured by integration of the difference of the labeling function. However, this is not true in the
case of reconstruction examples, where the similarity is measured by integration of the distance field induced by the given
data. In the next subsection, this will be discussed thoroughly.

Fig. 5.4 illustrates another multi-phase example of curves formed by five noisy circles, in which the phase number is
10. Moreover, in this example curves have intersections, which makes smoothing much more difficult. A 1000 x 1000
grid is used. The initial noisy curves (see Fig. 5.4(a)) are first processed by our GEWCVT-based algorithm with Ageq = 1.0,
o = 0.05, 8 = 1.0 and w = 4h. It takes 1.82 s to obtain the result as shown in Fig. 5.4(b), from which it can be seen that
noise is removed and the resulting curves are smooth indeed. However, the intersections of the curves are shifted a lot,
and the resulting curves have quite different topologies from the original ones. In order to preserve these intersections, we
then change to a data-dependent similarity parameter function A4qy. First, Algorithm 4 is used to detect corners. To this
purpose, the reference ball in Algorithm 4 is chosen as a ball with radius r = 8w, and A44,4(X) is computed by formula
(4.5) with Ay = 1.0, A, = 1000.0. Fig. 5.4(c) presents the smoothing result with this similarity parameter function, from
which it can be observed that all intersections are well preserved. It takes a total of 15.3 s including 14.47 s used to compute
Adata (X). Along with intersections, the noise near the intersected region is kept as well, in some situation this phenomenon is
undesirable. To tackle this problem, the resulting curve in Fig. 5.4(c) is again smoothed with constant similarity Ag4q = 1.0
one more time. Note that the regularity parameter o« now needs to be reduced since the input curve (i.e., Fig. 5.4(c)) has
much less noise. Fig. 5.4(d) presents the final smoothing result by our algorithm with « = 0.01, where the noise in the
intersected regions is also eliminated and the intersections are satisfactorily preserved.
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Fig. 5.4. Smoothing of curves formed by five noisy circles by our GEWCVT-based algorithm with @ = 4h and 8§ = 1.0. (a) The noisy curves; (b) the

smoothed curve using Ag4qrq = 1.0 and @ = 0.05 (CPU time = 1.82 s). (c) the smoothed curve using « = 0.05 and a nonconstant Agq, (X) defined in (4.5)
with A; = 1.0, A, = 1000.0 (CPU time = 15.3 s). (d) the final smoothed curve after one more processing using A4qq = 1.0 and ¢ = 0.01.

Fig. 5.5. Look for triple junction.

The next example shows that the GEWCVT model indeed approximates the arc-length very well, in particular, the
difference between the multi-phase graph-cuts method and the GEWCVT-based method is manifested through this example.
Although both methods work for discrete valued functions and inevitably introduce some model errors for continuous
problems, the magnitude of model errors of the GEWCVT-based method is much smaller. The graph-cuts method often
has serious metric errors [9,35] caused by using anisotropic total variation approximation and neighborhood systems. On
the other hand, the GEWCVT method introduces errors when approximating the curves by straight lines just in a small
neighborhood. The triple junction example will qualitatively demonstrate this issue. As shown in Fig. 5.5, we want to recover
a triple junction by filling in the circle region by minimizing the following simple objective functional

&) = / AU — Udara|? dx+7€ ds (5.3)
2 r

where the similarity parameter A is 0 inside the circle region and 1 otherwise. The global minimizer of this problem should
fill in the circle region with the minimum total length of the boundaries between the labels, i.e., the boundaries meet with
a 120° angle in the center.

Fig. 5.6 presents the solutions of the graph-cuts method [8] with different neighborhood systems. Fig. 5.6(a) gives the
result using a 4-neighborhood system. It is clear that the result is not the global minimizer in the continuous setting, but
it is the solution under the given graph metrics. As the neighborhood increases to 8, the result becomes quite different, as
shown in Fig. 5.6(b). However, again this is not the correct solution for the problem. The result is still far from the 120° triple
junction, not even close to the center, although a quite large neighborhood (32-neighborhood) has been used. This is mainly
caused by the metrication error from the anisotropic total variation approximation.

Fig. 5.7 gives the solutions of the GEWCVT method with different neighborhood size. Fig. 5.7(a) gives the result using a
neighborhood with w = h, where h is the mesh size. The result is not so good since the neighborhood size is too small to
accurately approximate arc length. The result in Fig. 5.7(b) is much better due to a larger neighborhood; @ = 2h in this
case. However, it still can be observed that the junction shifts horizontally somewhat to the right. By increasing the size of
the neighborhood to 3h, the result is improved further, as presented in Fig. 5.7(c). The junction is drawn back to the center,
although there are server pixels’ shifting. When the size of the neighborhood becomes 4h, this shifting is reduced to 2 pixels,
as presented in Fig. 5.7(d). However, an even larger neighborhood, e.g. = 5h, will not change the result further, which
implies that we have already obtained a convergent solution. In contrast to the result presented in Fig. 5.6(d), the result in
Fig. 5.7(d) is very close to the exact solution, which clearly illustrates that the GEWCVT method has a smaller model error
than the multi-phase graph-cuts method and could be a better approximation to the Mumford-Shah model [15]. Fig. 5.8
illustrates evolution of the labels with the iteration for the case of w = 4h.
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Fig. 5.6. Results of the graph-cuts method for the triple junction problem. (a)-(d) show the results with different neighborhoods: (a) 4-neighborhood; (b)
8-neighborhood; (c) 16-neighborhood; (d) 32-neighborhood.
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Fig. 5.7. Results of the GEWCVT method for the triple junction problem. (a)-(d) show the results with the neighborhoods having different radius w: (a)
o = h; (b) w = 2h; (¢) w = 3h; (d) w = 4h.

Fig. 5.8. Results of the GEWCVT method for the triple junction problem. (a)-(d) show the results after different iterations with the same neighborhood
radius w = 4h: (a) after 10 iterations (b) after 100 iterations; (c) after 200 iterations; (d) final result.

Table 5.1
Computation times for the triple junction problem.
Graph-cuts Neighborhood size 4-nb 8-nb 16-nb 32-nb 64-nb
CPU time 0.13s 03s 091s 24s 7.36s
GEWCVT Neighborhood size w= w =2h w = 3h w = 4h w = 5h
CPU time 032s 1.57s 18s 249 s 261s

Table 5.1 records the CPU times for the triple junction problem. The image size used for previous examples is 200 x 200.
When the neighborhood is relative small, for example 4-neighborhood for graph-cuts and w = h for GEWCVT, the graph-
cuts performs much faster than the GEWCVT. However, as the size of the neighborhood increases, the GEWCVT becomes
more efficient. For example, using 64-neighborhood the graph-cuts needs 7.36 s to solve the triple junction problem whereas
GEWCVT method takes only 2.61 s with the neighborhood size @ = 5h; at the same time, the result produced by the GEWCVT
method is much more accurate than the one obtained by the graph-cuts method. To conclude, the graph-cuts method could
be more adapted for applications in which only small neighborhoods are used, and the GEWCVT method is often more
suitable and accurate for applications where large neighborhoods are needed.

Fig. 5.9 presents a surface smoothing example, in which a noisy round-cube is smoothed by the proposed GEWCVT
method. Since there are no sharp corners and edges, the similarity parameter A4, is selected as the constant 1.0 in this
example, and o = 0.6, 8 = 0 and w = 4h. A 200 x 200 x 200 rectangular mesh is used for this example. It takes 214.3 s to
obtain the result as shown in Fig. 5.9(b), from which it can be seen that noise is removed.

Fig. 5.10 illustrates another surface smoothing example. For this example, a 400 x 400 x 400 rectangular mesh and
w = 5h are used. This highly noisy surface has some obvious features, which are smeared out when the constant similarity
parameter is used, as shown in Fig. 5.10(b). In order to preserve these features, the data-dependent similarity parameter
function A4qq is again used. Algorithm 4 can be straightforwardly extended to the 3D case to detect corners and edges. In
this example the reference ball in Algorithm 4 is chosen as a ball with radius r = 2w, and 44 (X) is computed by formula
(4.5) with A1 = 1.0, A, = 20000.0. Fig. 5.10(c) presents the smoothing result with this similarity parameter function, from
which it can be observed that all important features are well preserved.
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Fig.5.9. Smoothing of a surface by our GEWCVT-based algorithm with w = 4h, Agqe = 0.6 and 8 = 0.0. (a) The noisy surfaces; (b) the smoothed surface
(CPU time = 214.3 s).

Fig. 5.10. Smoothing of a highly noisy surface by our GEWCVT-based algorithm with @ = 5h and 8 = 0.0. (a) The noisy surfaces; (b) the smoothed
surfaces using Agqe = 1.0 and @ = 1.0 (CPU time = 1042.34 s). (c) The smoothed surfaces using &« = 1.0 and a nonconstant g4 (X) defined in (4.5) with
A1 = 1.0, A, = 20000.0 (CPU time = 3235.06 s).

5.2. Reconstruction examples

As described in Section 4, in the reconstruction applications a region $2p,,, with a proper width dy must be first
established, which divides the whole domain into several disconnected subregions, and ug4q, assigns different labels to each
of the subregions. Inside the £2f,, region, ug.q is always given by the smallest label in our implementation, and the initial
guess ug is simply equal to ugq,. For example, in the case of two-phase problems the interior region has label 1 and the
exterior region has label 2, while the §2p,,,, has label 1 as well. It is worth pointing out that the width of the $2p,, is crucial
in reconstruction applications. By the definition of the $2,,, the £2r,,,, may not be watertight for too small dy;,. On the other
hand, too large d;;, will result in bad initial guesses, and hence longer iteration time. For a problem whose phase number is
given, dy; can be easily determined as follows:(1) Set di, = 2h; (2) Double dg;, until our region growing method can detect
the phase number correctly; (3) For the noisy example, continue increasing the d;;, by the multiplication factor 2 as long as
the phase number does not change. For a problem whose phase number is unknown, one can still use step (1) and (3) to
determine dg;. For most reconstruction examples « = 0.0 and we find that 8 = 60 works for most examples. Only for noisy
cases, one needs to tune the parameter « to remove noise.

Fig. 5.11 shows reconstruction of a Chinese character “WANG”. The noisy point set is shown in Fig. 5.11(a) and it roughly
separates the plane into two parts. The points are distributed in a 1000 x 1000 mesh. For this example, since the sampling
is not so dense, the width of the fuzzy region is taken to be di;, = 10h We define A 44, according to (4.7) with Cop,y,y=1€6 and
B = 60. The reconstructed curve using our GEWCVT-based method algorithm with @ = 0 is presented in Fig. 5.11(b) and
that with @ = 0.02 in Fig. 5.11(c). With extra regularization, the resulting curve in Fig. 5.11(c) is clearly smoother than the
one in Fig. 5.11(b), as expected, however it also requires longer computation time.

Fig. 5.12 shows reconstruction of another Chinese character “LI” that has three disconnected components. This example
can be viewed as a four-phase reconstruction problem, which still can be automatically handled by the proposed GEWCVT-
based method. The point set is shown in Fig. 5.12(a) and the reconstructed curve is presented in Fig. 5.12(b). The GEWCVT
algorithms took 3.03 s on a 1000 x 1000 grid, while the width of the fuzzy region is d;;, = 5h, w = 5h,« = 0.02,and 8 = 60
this time.

The following examples present results of surface reconstruction in three-dimensional space. In Fig. 5.13 a synthe-
sized example by adding noise to a sphere is used to study the performance of the proposed GEWCVT method in
highly noisy cases. For comparison, the reconstructed surfaces obtained by the Crust algorithm [36] and Poisson Sur-
face Reconstruction (PSR) [37] are also presented. The noisy point set is shown in Fig. 5.13(a). Fig. 5.13(b) presents
the reconstructed surface obtained by the Crust algorithm (the source code we used is provided by Luigi Giaccari
http://www.mathworks.com/matlabcentral/fileexchange), from which it can be seen that the influence of noise is not elim-
inated. Fig. 5.13(c) shows the result of PSR (the source code is from http://www.cs.jhu.edu/~misha/Code/PoissonRecon/).
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Fig. 5.11. Reconstruction of a Chinese character “WANG” by our GEWCVT-based algorithm with beta = 60 and di, = 10 max(hy, hy). (a) The given noisy
point set; (b) the reconstructed curve using « = 0 (CPU time = 2.08 s). (¢) the reconstructed curve using &« = 0.02 (CPU time = 3.33s).
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Fig. 5.12. Reconstruction of a Chinese character "LI"” by our GEWCVT-based algorithm with « = 0.02, 8 = 60 and dy, = 5h. (a) The given noisy point set;
(b) the reconstructed curve (CPU time = 3.03 s).
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Fig. 5.13. Comparisons for an extremely noisy point set. (a) The given unorganized noisy point set; (b) the reconstructed surface generated by the Crust
algorithm; (c)the reconstructed surface generated by PSR with depth = 10, samplesPerNode = 40; (d) the reconstructed surface generated by our GEWCVT
method using a 200 x 200 x 200 mesh, and @ = 0.01, 8 = 1.0.

b

Though the PSR can smooth out noise very well, in this extreme case the reconstruction by PSR still has a lot of undesir-
able patches caused by noise. In contrast, our method yields a much smoother reconstruction, as shown in Fig. 5.13(d). In
order to remove the noise, we set the regularization parameter « = 0.01 in this example. The computation times for Crust,
Poisson Surface Reconstruction and GEWCVT are 10.47 s, 15.23 s and 34.44 s respectively. Although the current GEWCVT
implementation is the slowest among the three methods, it yields the best reconstruction even in this extremely noisy case.

In Fig. 5.14, the initial noisy point set presents the shape of a horse, as shown in Fig. 5.14(a), which includes
494,195 sampling points (data were obtained from Large Geometric Models Archive of Georgia Institute of Technology
http://www.cc.gatech.edu/projects/large_models/). We set « = 0.0, 8 = 60 and again define X4 according to (4.7) with
Coy,,,,=1.0e6. The width of the fuzzy region is selected as dy, = 2h. We reconstruct the target surface using our GEWCVT-
based algorithm on two different meshes, one is 400 x 400 x 400 and the other is 800 x 800 x 800, see Fig. 5.14(b) and (c)
for the results. As mentioned before, a few passes of the Laplacian smoothing are performed on the reconstructed surfaces
to eliminate the stair-case artifacts. Compared with Fig. 5.14(b), the surface in Fig. 5.14(c) has more details in the face and
presents clear grains on the muscles. Thus, a higher resolution mesh results in better quality, but also more computation
cost.

The example shown in Fig. 5.15 is a reconstruction of a girl model called “Bimba”, whose data set has 74,764 points
(Fig. 5.15(a)) and was obtained from Aim@Shape Shape Repository (http://shapes.aim-at-shape.net/). All parameters are set
to the same values as in the previous example except the width $2p,,d:» = 4h. In order to capture fine features such as the
plaits of the girl, the surface reconstruction is carried on a 800 x 800 x 800 mesh which consumes 464.09 s. From Fig. 5.15(b),
it can be observed that all the fine features such as plaits and facial expressions are faithfully reconstructed.
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Fig. 5.14. Reconstruction of a 3D horse on different meshes by our GEWCVT-based algorithm with « = 0.0, 8 = 60, and d;;, = 2h. (a) The given noisy
point set; (b) The reconstructed surface using a 400 x 400 x 400 mesh (CPU time = 52.6 s); (¢) the reconstructed surface using a 800 x 800 x 800 mesh
(CPU time = 397.15s).

Fig. 5.15. Reconstruction of a “Bimba” model by our GEWCVT-based algorithm with @ = 0.0, 8 = 60, and dy, = 4h. (a) The given noisy point set; (b) the
reconstructed surface using a 800 x 800 x 800 mesh (CPU time = 464.1 s).

The following example in Fig. 5.16 demonstrates that the proposed GEWCVT-based method is capable of tackling non-
uniform sampling. As shown in Fig. 5.16(a), the point set (196,278 points) of the frog model has a hole at the bottom. To
deal with such a non-uniform sampling example using uniform meshes, normally a very coarse mesh has to be used so
that the hole is contained in one grid. However, such a strategy clearly cannot produce a satisfactory surface if the hole is
large and fine features exist. Actually, since the sampling of this example is quite dense, apart from the hole, by specifying
a relative thick fuzzy region the proposed GEWCVT-based method is able to resolve fine features with high resolution as
well as overcome the difficulties caused by non-uniform sampling. We use the same parameters A4qzq, ®adeq, and B as that in
the former example in Fig. 5.14. Fig. 5.16(b) shows the reconstructed surface on a 200 x 200 x 200 mesh, where the width
of the £2p,,,y region dy, = 10h, which is large enough to envelop the hole. It is obvious that the hole is filled, as shown in
Fig. 5.16(b). Due to the existence of the hole, as the mesh size decreases the width of the £2r,,,, region has to be maintained;
it means that d;;, = 20h on a 400 x 400 x 400 mesh and 40h on a 800 x 800 x 800 mesh. This leads to a considerably long
computation time since the solution depends on the choice of the initial §2r,,, region. In order to efficiently obtain good
initial guesses in the presence of the non-uniform sampling, a hierarchy implementation is used. The problem is first solved
on a coarse mesh, then the result on the coarse mesh will be mapped on a fine mesh, and the Curst region on the fine mesh
is built based on the result from the coarse mesh. For simplicity, we always halve the mesh size, and denote 2h and h as
the mesh size of the coarse mesh and fine mesh respectively. The detailed idea is as follows. Let u,zj’ « be the solution on the
coarse mesh, and ftf‘,jy « be alabeling function on the fine mesh. If ulzf « has an adjacent node which has a different label, ﬁgi,Zj,Zk
and ﬁgiil,zjﬂlkil are marked as §2py,,y, otherwise ﬁgi,Zj,Zk and ﬁgiil’zjil’zkﬂare set equal to uf?k By the above technique
every node in the fine mesh has an initial label by setting ”Zam = ii", the problem then can be solved on the fine mesh. By
such implementation the computation cost on the fine mesh can be considerably reduced. The reconstructed surfaces from
the frog model using our GEWCVT-based algorithm on finer meshes are presented in Fig. 5.16(c) and (d) respectively.

Fig. 5.17 presents the surface reconstruction of a statue called “Fertility”. The point set consists of 241,607 points and
is obtained from the Aim@Shape Shape Repository as well. This model has several regions which are under-sampled, as
shown in Fig. 5.17(a), and moreover it has thin and elongated parts which require high resolution to preserve the correct
topology. Use of a uniform mesh with at least 400 x 400 resolution is needed, otherwise the arms could be be disconnected.
The result shown in Fig. 5.17(b) is reconstructed using a 800 x 800 x 800 mesh by our GEWCVT-based algorithm with the
same parameters as the example in Fig. 5.16(d). It takes in total 1859.9 s.
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Point Set
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=
)

Fig. 5.16. Reconstruction of a frog model by our GEWCVT-based algorithm with « = 0.0 and 8 = 60. (a) The given noisy point set; (b) the reconstructed
surface using a 200 x 200 x 200 mesh with dy, = 10h (CPU time = 73.5 s); (c) the reconstructed surface using a 400 x 400 x 400 mesh with d;, = 20h
(CPU time = 194.7 s); (d) the reconstructed surface using a 800 x 800 x 800 mesh with d, = 40h (CPU time = 916.7 s).

b é
Fig. 5.17. Reconstruction of the "Fertility” model by our GEWCVT-based algorithm with « = 0.0 and 8 = 60 and d;, = 40h. (a) The given noisy point set;
(b) the reconstructed surface using a 800 x 800 x 800 mesh (CPU time = 1859.9 s).

a
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Fig. 5.18. Reconstruction of the surface of two intersecting spheres by our GEWCVT-based algorithm with @ = 0.0 and 8 = 60 and dy, = 8h.(a) The given
noisy point set; (b) the reconstructed surface using a 400 x 400 x 400 mesh (CPU time = 294.7 s); (c) the decomposition of the surface for visualization.

a b

Fig. 5.19. Reconstruction of two entangled cubes by our GEWCVT-based algorithm with « = 0.0 and 8§ = 60 and d;, = 8h. (a) The given unorganized
noisy point set; (b) the reconstructed surface using a 400 x 400 x 400 mesh (CPU time = 313.7 s).

Fig. 5.18 illustrates a multi-phase (four phases) example of two intersected spheres. Fig. 5.18(a) shows the point set,
which consists of 3,442 points. The 400 x 400 x 400 mesh is used to resolve the intersection parts. The width of the £2g,,y is
dy, = 8h, which is relatively large since the sampling points are very coarse. Fig. 5.18(b) presents the reconstructed surface
by our algorithm viewed from the outside, and Fig. 5.18(c) gives the decomposition of the surface, from which the topology
of the surface can be easily observed.

Fig. 5.19 presents another multi-phase (two phases) reconstruction example, in which two cubic frames are entangled
with each other. The input data has 15,344 points, as shown in Fig. 5.19(a). Although this example can be modeled as a
two-phase problem, by means of the multi-phase implementation the phase numbers are automatically determined and
the surface can be extracted from the partitioned voxel data without any artificial intervention. The computation is carried
on a 400 x 400 x 400 mesh and takes 313.75 s, see Fig. 5.19(b) for the final reconstructed surface.

6. Conclusions and future Works

In this paper, we propose an important generalization of the edge-weighted centroidal Voronoi tessellation model
developed in [1]. By this new model, a large range of variational models can be interpreted in CVT or clustering language.
A unified variational framework is exposed in this paper, and solution algorithms are developed and applied to geometry
processing such as curve/surface smoothing and reconstruction. Moreover, compared to all existing methods, the proposed
model is able to address challenging multi-phase problems in an accurate and easy-to-implement way. Through various
numerical examples, the proposed GEWCVT-based method is shown to be an effective and robust tool for such applications.
As a new clustering method, the GEWCVT method can not only be applied to image segmentation [1] and geometry
processing, but also some problems in data analysis and quantization, which is one of our future projects. On the other hand,
there is still much scope for improving the efficiency of the GEWCVT-based methods in 3D applications, such as adopting
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the octree grids as in PSR [37], quasi-Newton type iterations [38] or adaptive tetrahedron meshes as in [8]. In addition, since
all the computations in the GEWCVT method are done in discrete space, using a GPU (graphics processing unit) to accelerate
the GEWCVT method as [39] is also an interesting and important research topic for us. The alternating convex minimization
techniques developed in [40,41] prove very efficient for solving L' regularized functionals but the nonconvexity of our
functional makes it difficult to directly apply these fast minimization techniques. One promising research direction is to
study the feasibility of applying the alternating minimization on the convexified functional, as done in [42,43].
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