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Abstract—Identity crime is well known, prevalent, and costly; and credit application fraud is a specific case of identity crime. The
existing nondata mining detection system of business rules and scorecards, and known fraud matching have limitations. To address
these limitations and combat identity crime in real time, this paper proposes a new multilayered detection system complemented with
two additional layers: communal detection (CD) and spike detection (SD). CD finds real social relationships to reduce the suspicion
score, and is tamper resistant to synthetic social relationships. It is the whitelist-oriented approach on a fixed set of attributes. SD finds
spikes in duplicates to increase the suspicion score, and is probe-resistant for attributes. It is the attribute-oriented approach on a
variable-size set of attributes. Together, CD and SD can detect more types of attacks, better account for changing legal behavior, and
remove the redundant attributes. Experiments were carried out on CD and SD with several million real credit applications. Results on
the data support the hypothesis that successful credit application fraud patterns are sudden and exhibit sharp spikes in duplicates.
Although this research is specific to credit application fraud detection, the concept of resilience, together with adaptivity and quality
data discussed in the paper, are general to the design, implementation, and evaluation of all detection systems.

Index Terms—Data mining-based fraud detection, security, data stream mining, anomaly detection.

1 INTRODUCTION

IDENTITY crime is defined as broadly as possible in this
paper. At one extreme, synthetic identity fraud refers to
the use of plausible but fictitious identities. These are
effortless to create but more difficult to apply successfully.
At the other extreme, real identity theft refers to illegal use
of innocent people’s complete identity details. These can be
harder to obtain (although large volumes of some identity
data are widely available) but easier to successfully apply.
In reality, identity crime can be committed with a mix of
both synthetic and real identity details.

Identity crime has become prominent because there is so
much real identity data available on the Web, and
confidential data accessible through unsecured mailboxes.
It has also become easy for perpetrators to hide their true
identities. This can happen in a myriad of insurance, credit,
and telecommunications fraud, as well as other more
serious crimes. In addition to this, identity crime is
prevalent and costly in developed countries that do not
have nationally registered identity numbers.

Data breaches which involve lost or stolen consumers’
identity information can lead to other frauds such as tax
returns, home equity, and payment card fraud. Consumers
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can incur thousands of dollars in out-of-pocket expenses.
The US law requires offending organizations to notify
consumers, so that consumers can mitigate the harm. As a
result, these organizations incur economic damage, such as
notification costs, fines, and lost business [24].

Credit applications are Internet or paper-based forms
with written requests by potential customers for credit
cards, mortgage loans, and personal loans. Credit applica-
tion fraud is a specific case of identity crime, involving
synthetic identity fraud and real identity theft.

As in identity crime, credit application fraud has reached
a critical mass of fraudsters who are highly experienced,
organized, and sophisticated [10]. Their visible patterns can
be different to each other and constantly change. They are
persistent, due to the high financial rewards, and the risk
and effort involved are minimal. Based on anecdotal
observations of experienced credit application investigators,
fraudsters can use software automation to manipulate
particular values within an application and increase
frequency of successful values.

Duplicates (or matches) refer to applications which
share common values. There are two types of duplicates:
exact (or identical) duplicates have the all same values;
near (or approximate) duplicates have some same values
(or characters), some similar values with slightly altered
spellings, or both. This paper argues that each successful
credit application fraud pattern is represented by a sudden
and sharp spike in duplicates within a short time, relative
to the established baseline level.

Duplicates are hard to avoid from fraudsters’ point-of-
view because duplicates increase their’ success rate. The
synthetic identity fraudster has low success rate, and is
likely to reuse fictitious identities which have been
successful before. The identity thief has limited time
because innocent people can discover the fraud early and
take action, and will quickly use the same real identities at
different places.

Published by the IEEE Computer Society
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It will be shown later in this paper that many fraudsters
operate this way with these applications and that their
characteristic pattern of behavior can be detected by the
methods reported. In short, the new methods are based on
white-listing and detecting spikes of similar applications.
White-listing uses real social relationships on a fixed set of
attributes. This reduces false positives by lowering some
suspicion scores. Detecting spikes in duplicates, on a
variable set of attributes, increases true positives by
adjusting suspicion scores appropriately.

Throughout this paper, data mining is defined as the
real-time search for patterns in a principled (or systematic)
fashion. These patterns can be highly indicative of early
symptoms in identity crime, especially synthetic identity
fraud [22].

1.1 Main Challenges for Detection Systems

Resilience is the ability to degrade gracefully when under
most real attacks. The basic question asked by all detection
systems is whether they can achieve resilience. To do so, the
detection system trades off a small degree of efficiency
(degrades processing speed) for a much larger degree of
effectiveness (improves security by detecting most real
attacks). In fact, any form of security involves tradeoffs [26].

The detection system needs “defence-in-depth” with
multiple, sequential, and independent layers of defence
[25] to cover different types of attacks. These layers are
needed to reduce false negatives. In other words, any
successful attack has to pass every layer of defence without
being detected.

The two greatest challenges for the data mining-based
layers of defence are adaptivity and use of quality data.
These challenges need to be addressed in order to reduce
false positives.

Adaptivity accounts for morphing fraud behavior, as the
attempt to observe fraud changes its behavior. But what is
not obvious, yet equally important, is the need to also
account for changing legal (or legitimate) behavior within a
changing environment. In the credit application domain,
changing legal behavior is exhibited by communal relation-
ships (such as rising/falling numbers of siblings) and can
be caused by external events (such as introduction of
organizational marketing campaigns). This means legal
behavior can be hard to distinguish from fraud behavior,
but it will be shown later in this paper that they are indeed
distinguishable from each other.

The detection system needs to exercise caution with
applications which reflect communal relationships. It also
needs to make allowance for certain external events.

Quality data are highly desirable for data mining and
data quality can be improved through the real time
removal of data errors (or noise). The detection system
has to filter duplicates which have been reentered due to
human error or for other reasons. It also needs to ignore
redundant attributes which have many missing values, and
other issues.

1.2 Existing Identity Crime Detection System

There are nondata mining layers of defence to protect
against credit application fraud, each with its unique
strengths and weaknesses.

The first existing defence is made up of business rules
and scorecards. In Australia, one business rule is the
hundred-point physical identity check test which requires
the applicant to provide sufficient point-weighted identity
documents face-to-face. They must add up to at least
100 points, where a passport is worth 70 points. Another
business rule is to contact (or investigate) the applicant over
the telephone or Internet. The above two business rules are
highly effective, but human resource intensive. To rely less
on human resources, a common business rule is to match an
application’s identity number, address, or phone number
against external databases. This is convenient, but the
public telephone and address directories, semipublic voters’
register, and credit history data can have data quality issues
of accuracy, completeness, and timeliness. In addition,
scorecards for credit scoring can catch a small percentage of
fraud which does not look creditworthy; but it also removes
outlier applications which have a higher probability of
being fraudulent.

The second existing defence is known fraud matching.
Here, known frauds are complete applications which were
confirmed to have the intent to defraud and usually
periodically recorded into a blacklist. Subsequently, the
current applications are matched against the blacklist. This
has the benefit and clarity of hindsight because patterns
often repeat themselves. However, there are two main
problems in using known frauds. First, they are untimely
due to long time delays, in days or months, for fraud to
reveal itself, and be reported and recorded. This provides a
window of opportunity for fraudsters. Second, recording of
frauds is highly manual. This means known frauds can be
incorrect [11], expensive, difficult to obtain [21], [3], and
have the potential of breaching privacy.

In the real-time credit application fraud detection
domain, this paper argues against the use of classification
(or supervised) algorithms which use class labels. In
addition to the problems of using known frauds, these
algorithms, such as logistic regression, neural networks, or
Support Vector Machines (SVM), cannot achieve scalability
or handle the extreme imbalanced class [11] in credit
application data streams. As fraud and legal behavior
changes frequently, the classifiers will deteriorate rapidly
and the supervised classification algorithms will need to be
trained on the new data. But the training time is too long for
real-time credit application fraud detection because the new
training data have too many derived numerical attributes
(converted from the original, sparse string attributes) and
too few known frauds.

This paper acknowledges that in another domain, real-
time credit card transactional fraud detection, there are the
same issues of scalability, extremely imbalanced classes,
and changing behavior. For example, Fairlsaac—a company
renown for their predictive fraud analytics—has been
successfully applying supervised classification algorithms,
including neural networks and SVM.

1.3 New Data Mining-Based Layers of Defence

The main objective of this research is to achieve resilience
by adding two new, real time, data mining-based layers to
complement the two existing nondata mining layers
discussed in the section. These new layers will improve
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detection of fraudulent applications because the detection
system can detect more types of attacks, better account for
changing legal behavior, and remove the redundant
attributes.

These new layers are not human resource intensive.
They represent patterns in a score where the higher the
score for an application, the higher the suspicion of fraud
(or anomaly). In this way, only the highest scores require
human intervention. These two new layers, communal and
spike detection, do not use external databases, but only
the credit application database per se. And crucially, these
two layers are unsupervised algorithms which are not
completely dependent on known frauds but use them only
for evaluation.

The main contribution of this paper is the demonstration
of resilience, with adaptivity and quality data in real-time
data mining-based detection algorithms. The first new layer
is Communal Detection (CD): the whitelist-oriented ap-
proach on a fixed set of attributes. To complement and
strengthen CD, the second new layer is Spike Detection
(SD): the attribute-oriented approach on a variable-size set
of attributes.

The second contribution is the significant extension of
knowledge in credit application fraud detection because
publications in this area are rare. In addition, this research
uses the key ideas from other related domains to design the
credit application fraud detection algorithms.

Finally, the last contribution is the recommendation of
credit application fraud detection as one of the many
solutions to identity crime. Being at the first stage of the
credit life cycle, credit application fraud detection also
prevents some credit transactional fraud.

Section 2 gives an overview of related work in credit
application fraud detection and other domains. Section 3
presents the justifications and anatomy of the CD algorithm,
followed by the SD algorithm. Before the analysis and
interpretation of CD and SD results, Section 4 considers the
legal and ethical responsibility of handling application data,
and describes the data, evaluation measures, and experi-
mental design. Section 5 concludes the paper.

2 BACKGROUND

Many individual data mining algorithms have been
designed, implemented, and evaluated in fraud detection.
Yet until now, to the best of the researchers’” knowledge,
resilience of data mining algorithms in a complete detection
system has not been explicitly addressed.

Much work in credit application fraud detection remains
proprietary and exact performance figures unpublished,
therefore there is no way to compare the CD and
SD algorithms against their leading industry methods and
techniques. For example, [14] has ID Score-Risk which gives
a combined view of each credit application’s characteristics
and their similarity to other industry-provided or Web
identity’s characteristics. In another example, [7] has Detect
which provides four categories of policy rules to signal
fraud, one of which is checking a new credit application
against historical application data for consistency.

Case-based reasoning (CBR) is the only known prior
publication in the screening of credit applications [29]. CBR
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analyzes the hardest cases which have been misclassified by
existing methods and techniques. Retrieval uses thresholded
nearest neighbor matching. Diagnosis utilizes multiple
selection criteria (probabilistic curve, best match, negative
selection, density selection, and default) and resolution
strategies (sequential resolution-default, best guess, and
combined confidence) to analyze the retrieved cases. CBR
has 20 percent higher true positive and true negative rates
than common algorithms on credit applications.

The CD and SD algorithms, which monitor the significant
increase or decrease in amount of something important
(Section 3), are similar in concept to credit transactional fraud
detection and bioterrorism detection. Peer group analysis [2]
monitors interaccount behavior over time. It compares the
cumulative mean weekly amount between a target account
and other similar accounts (peer group) at subsequent time
points. The suspicion score is a t-statistic which determines
the standardized distance from the centroid of the peer
group. On credit card accounts, the time window to
calculate a peer group is 13 weeks, and the future time
window is 4 weeks. Break point analysis [2] monitors
intraaccount behavior over time. It detects rapid spending
or sharp increases in weekly spending within a single
account. Accounts are ranked by the t-test. The fixed-length
moving transaction window contains 24 transactions: the
first 20 for training and the next four for evaluation on credit
card accounts. Bayesian networks [31] uncover simulated
anthrax attacks from real emergency department data.
Wong [30] surveys algorithms for finding suspicious
activity in time for disease outbreaks. Goldenberg et al. [9]
use time series analysis to track early symptoms of synthetic
anthrax outbreaks from daily sales of retail medication
(throat, cough, and nasal) and some grocery items (facial
tissues, orange juice, and soup). Control-chart-based statis-
tics, exponential weighted moving averages, and general-
ized linear models were tested on the same bioterrorism
detection data and alert rate [15].

The SD algorithm, which specifies how much the current
prediction is influenced by past observations (Section 3.3), is
related to Exponentially Weighted Moving Average
(EWMA) in statistical process control research [23]. In
particular, like EWMA, the SD algorithm performs linear
forecasting on the smoothed time series, and their advan-
tages include low implementation and computational com-
plexity. In addition, the SD algorithm is similar to change
point detection in biosurveillance research, which maintains
a cumulative sum (CUSUM) of positive deviations from the
mean [13]. Like CUSUM, the SD algorithm raises an alert
when the score/CUSUM exceeds a threshold, and both
detects change points faster as they are sensitive to small
shifts from the mean. Unlike CUSUM, the SD algorithm
weighs and chooses string attributes, not numerical ones.

3 THE METHODS

This section is divided into four sections to systematically
explain the CD algorithm (first two sections) and the
SD algorithm (last two sections). Each section commences
with a clearer discussion about its purposes.
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3.1 Communal Detection

This section motivates the need for CD and its adaptive
approach.

Suppose there were two credit card applications that
provided the same postal address, home phone number,
and date of birth, but one stated the applicant’s name to be
John Smith, and the other stated the applicant’s name to be
Joan Smith. These applications could be interpreted in
three ways:

1. Either it is a fraudster attempting to obtain multiple
credit cards using near duplicated data.

2. Possibly there are twins living in the same house
who both are applying for a credit card.

3. Or it can be the same person applying twice, and
there is a typographical error of one character in the
first name.

With the CD layer, any two similar applications could be
easily interpreted as (1) because this paper’s detection
methods use the similarity of the current application to all
prior applications (not just known frauds) as the suspicion
score. However, for this particular scenario, CD would also
recognize these two applications as either (2) or (3) by
lowering the suspicion score due to the higher possibility
that they are legitimate.

To account for legal behavior and data errors, CD is the
whitelist-oriented approach on a fixed set of attributes. The
whitelist, a list of communal and self-relationships between
applications, is crucial because it reduces the scores of these
legal behaviors and false positives. Communal relationships
are near duplicates which reflect the social relationships
from tight familial bonds to casual acquaintances: family
members, housemates, colleagues, neighbors, or friends
[17]. The family member relationship can be further broken
down into more detailed relationships such as husband-
wife, parent-child, brother-sister, male-female cousin (or
both male, or both female), as well as uncle-niece (or uncle-
nephew, auntie-niece, auntie-nephew). Self-relationships
highlight the same applicant as a result of legitimate
behavior (for simplicity, self-relationships are regarded as
communal relationships).

Broadly speaking, the whitelist is constructed by
ranking link-types between applicants by volume. The
larger the volume for a link-type, the higher the probability
of a communal relationship. On when and how the
whitelist is constructed, please refer to Section 3.2, Step 6
of the CD algorithm.

However, there are two problems with the whitelist.
First, there can be focused attacks on the whitelist by
fraudsters when they submit applications with synthetic
communal relationships. Although it is difficult to make
definitive statements that fraudsters will attempt this, it is
also wrong to assume that this will not happen. The
solution proposed in this paper is to make the contents of
the whitelist become less predictable. The values of some
parameters (different from an application’s identity value)
are automatically changed such that it also changes the
whitelist’s link types. In general, tampering is not limited to
hardware, but can also refer to manipulating software such
as code. For our domain, tamper resistance refers to making

it more difficult for fraudsters to manipulate or circumvent
data mining by providing false data.

Second, the volume and ranks of the whitelist’s real
communal relationships change over time. To make the
whitelist exercise caution with (or more adaptive to)
changing legal behavior, the whitelist is continually being
reconstructed.

3.2 CD Algorithm Design

This section explains how the CD algorithm works in real
time by giving scores when there are exact or similar
matches between categorical data; and in terms of its nine
inputs, three outputs, and six steps.

This research focuses on one rapid and continuous data
stream [19] of applications. For clarity, let G represent the
overall stream which contains multiple and consecutive
{922,951, G, Gz +1, Gut2, - - -} Minidiscrete streams.

e g,: current Minidiscrete stream which contains
multiple and consecutive {uy1,uz9, ..., Uy} micro-
discrete streams.

e 1 fixed interval of the current month, fortnight, or
week in the year.

e p: variable number of microdiscrete streams in a
Minidiscrete stream.

Also, let u,, represent the current microdiscrete stream
which contains multiple and consecutive {v, 1,052, ..,
Uryq) applications. The current application’s links are
restricted to previous applications within a moving window,
and this window can be larger than the number of
applications within the current microdiscrete stream.

e y: fixed interval of the current day, hour, minute,
or second.

e ¢ variable number of applications in a microdis-
crete stream.

Here, it is necessary to describe a single and contin-
uous stream of applications as being made up of separate
chunks: a Minidiscrete stream is long-term (for example, a
month of applications); while a microdiscrete stream is
short-term (for example, a day of applications). They help
to specify precisely when and how the detection system
will automatically change its configurations. For example,
the CD algorithm reconstructs its whitelist at the end of
the month and resets its parameter values at the end of
the day; the SD algorithm does attribute selection and
updates CD attribute weights at the end of the month.
Also, for example, long-term previous average score, long-
term previous average links, and average density of each
attribute are calculated from data in a Minidiscrete
stream; short-term current average score and short-term
current average links are calculated from data in a
microdiscrete stream.

With this data stream perspective in mind, the
CD algorithm matches the current application against a
moving window of previous applications. It accounts for
attribute weights which reflect the degree of importance in
attributes. The CD algorithm matches all links against the
whitelist to find communal relationships and reduce their
link score. It then calculates the current application’s score
using every link score and previous application score. At
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TABLE 1
Overview of Communal Detection Algorithm

Inputs

v; (current application)

W number of v; (moving window)

R link—type (ink-types in current whitelist)
Tsimilarity (string similarity threshold)
Tuttrivute (attribute threshold)

n (exact duplicate filter)

a (exponential smoothing factor)

Tinput (input size threshold)

SoA (State-of-Alert)

Outputs

S(v;) (suspicion score)

Same or new parameter value
New whitelist

CD algorithm

Step 1: Multi-attribute link [match v; against W number of
v; to determine if a single attribute exceeds Tyimiiarity; and
create multi-attribute links if near duplicates’ similarity exceeds
Tattrivute OF an exact duplicates’ time difference exceeds 7]

Step 2: Single-link score [calculate single-link score by match-
ing Step 1’s multi-attribute links against Ry 1inx—typel

Step 3: Single-link average previous score [calculate average
previous scores from Step 1’s linked previous applications]

Step 4: Multiple-links score [calculate S(v;) based on weighted
average (using o) of Step 2’s link scores and Step 3’s average
previous scores]

Step 5: Parameter’s value change [determine same or new
parameter value through SoA (for example, by comparing input
size against Tjypy¢) at end of ug y]

Step 6: Whitelist change [determine new whitelist at end of g;]

the end of the current microdiscrete data stream, the
CD algorithm determines the SoA and updates one random
parameter’s value such that it trades off effectiveness with
efficiency, or vice versa. At the end of the current
Minidiscrete data stream, it constructs the new whitelist.

Table 1 shows the data input, six most influential
parameters, and two adaptive parameters.

e v;: unscored current application. N is its number of
attributes. a;; is the value of the kth attribute in
application v;.

e W:moving (or sliding) window of previous applica-
tions. It determines the short time search space for
the current application. CD utilizes an application-
based window (such as the previous 10,000 applica-
tions). v; is the scored previous application. a; is the
value of the kth attribute in application v;.

® Ry link—type is a set of unique and sorted link-types (in
descending order by number of links), in the link-
type attribute of the current whitelist. M is the
number of link-types.

®  Tymilarity: String similarity threshold between two
values.

®  Tyurivute: attribute threshold which requires a mini-
mum number of matched attributes to link two
applications.

e 1 exact duplicate filter at the link level. It removes
links of exact duplicates from the same organization
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within minutes, likely to be data errors by customers
or employees.

e o exponential smoothing factor. In CD, o gradually
discounts the effect of average previous scores as the
older scores become less relevant.

e T, input size threshold. When the environment
evolves significantly over time, the input size
threshold Tj,,,, may have to be manually adjusted.

e SoA (State-of-Alert): condition of reduced, same, or
heightened watchfulness for each parameter.

Table 1 also shows the three outputs.

e  S(v;): CD suspicion score of current application.

e Same or new parameter values for each parameter.

e New whitelist.

While Table 1 gives an overview of the CD algorithm’s
six steps, the details in each step are presented below.

Step 1: Multiattribute link. The first step of the
CD algorithm matches every current application’s value
against a moving window of previous applications’ values
to find links

1,
ek:{o

where e, is the single-attribute match between the current
value and a previous value. The first case uses Jaro-
Winkler(.) [30], is case sensitive, and can also be cross-
matched between current value and previous values from
another similar attribute. The second case is a nonmatch
because values are not similar

if Jaro — Winkler(ai,kv a’j,k) > Tsimilurity:
otherwise,

(1)

. N
erey...en, if Topripute <Y g < N—1

N
eij = or P j—en =N 2)
’ and Time(a; r, ajr) > 1,
g, otherwise,

where ¢;; is the multiattribute link (or binary string)
between the current application and a previous application.
¢ is the empty string. The first case uses Time(.) which is the
time difference in minutes. The second case has no link
(empty string) because it is not a near duplicate, or it is an
exact duplicate within the time filter.

Step 2: Single-link communal detection. The second
step of the CD algorithm accounts for attribute weights,
and matches every current application’s link against the
whitelist to find communal relationships and reduce their
link score

N .
Zk:l(ek‘ X wk) X Wz, if €ij S %z,link—type

and e; ; # ¢,
S(eisj) = Zi\:l(ek X wk)a if €i,j € §R17.Zinkhtype (3)
and e; ; # ¢,
0, otherwise,

where S(e;;) is the single-link score. This terminology
“single-link score” is adopted over “multiattribute link
score” to focus on a single link between two applications,
not on the matching of attributes between them. The first
case uses wy, which is the attribute weight with default
values of l\,, and w, which is the weight of the zth link-
type in the whitelist. The second case is the graylist
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TABLE 2
Sample of Six Credit Applications with Six Attributes
i | Given | Family | Unit Street Home Date
or | name name no. name phone of
j no. birth
1 John Smith 1 Circular | 91234567 | 1/1/1982
road
2 Joan Smith 1 Circular | 91234567 | 1/1/1982
road
3 Jack Jones 3 Square 93535353 | 3/2/1955
drive
4 Ella Jones 3 Square | 93535353 | 6/8/1957
drive
5 Riley Lee 2 Circular | 91235678 | 5/3/1983
road
6 | Liam | Smyth 2 Circular | 91235678 | 1/1/1982
road

(neither in the blacklist nor whitelist) link score. The last
case is when there is no multiattribute link.

Step 3: Single-link average previous score. The third
step of the CD algorithm is the calculation of every linked
previous applications” score for inclusion into the current
application’s score. The previous scores act as the estab-
lished baseline level

S(v:
(U]) s if €ij ?é e
Bi = Eo(v)) (4)
J and E()(Uj) > 0,
0, otherwise,

where f3; is the single-link average previous score. As there
will be no linked applications, the initial values of 3; =0
since S(v;) =0 and E,(v;) = 0. S(v;) is the suspicion score
of a previous application to which the current application
links. S(v;) was computed the same way as S(v;)—a
previous application was once a current application.
Eo(v;) is the number of outlinks from the previous
application. The first case gives the average score of each
previous application. The last case is when there is no
multiattribute link.

Step 4: Multiple-links score. The fourth step of the CD
algorithm is the calculation of every current application’s
score using every link and previous application score

Sti)= Y [Sleiy) + B, ()

v;eK (v;)

where S(v;) is the CD suspicion score of the current
application. K (v;) is the set of previous applications within
the moving window to which the current application links.
Therefore, a high score is the result of strong links between
current application and the previous applications (repre-
sented by S(e;;)), the high scores from linked previous
applications (represented by (;), and a large number of
linked previous applications (represented by >, c () [])

S()= Y (1 —a)xSei) +axp, (6)

v €K (v;)

where (6) incorporates « [6] into (5).

Step 5: Parameter’s value change. At the end of the
current microdiscrete data stream, the adaptive CD algo-
rithm determines the State-of-Alert (SoA) and updates one

TABLE 3
Sample Whitelist

[ z [ Link-type [ No. | Weight |
1 010101 2 0.25
2 011111 1 0.5
3 011110 1 0.75
4 001110 1 1

random parameter’s value such that there is a tradeoff
between effectiveness with efficiency, or vice versa. This
increases the tamper resistance in parameters

low, if ¢ > Tynpu and Q1 > Q.
and 0,1 > 5:v,ya
SoA = ¢ high, if ¢ < Tippur and Q1 < Qg y, (7)
and 6, 1 < 61,1/,
medium, otherwise,

where SoA is the state-of-alert at the end of every
microdiscrete data stream. §2,_; is the long-term previous
average score and (2., is the short-term current average
score. 6,1 is the long-term previous average links and 6, is
the short-term current average links. Collectively, these are
termed output suspiciousness.

The first case sets SoA to low when input size is high and
output suspiciousness is low. The adaptive CD algorithm
trades off one random parameter’s effectiveness (degrades
communal relationship security) for efficiency (improves
computation speed). For example, a smaller moving
window, fewer link types in the whitelist, or a larger
attribute threshold decreases the algorithm’s effectiveness
but increases its efficiency.

Conversely, the second case sets SoA to high when its
conditions are the opposite of the first case. The adaptive CD
algorithm will trade off one random parameter’s efficiency
(degrades speed) for effectiveness (improves security).

The last case sets SoA to medium. The adaptive CD
algorithm will not change any parameter’s value.

Step 6: Whitelist change. At the end of the current
Minidiscrete data stream, the adaptive CD algorithm con-
structs the new whitelist on the current Minidiscrete stream’s
links. This increases the tamper-resistance in the whitelist.

Table 2 provides a sample of six credit applications with
six attributes, to show how communal relationships are
extracted from credit applications.

The whitelist is constructed from multiattribute links
generated from Step 1 of the CD algorithm on the training
data. In our simple illustration, the CD algorithm is
assumed to have the following parameter settings:
Tsimitarity = 0.8, Thutrivute = 3, and M = 4. If Table 2 is used
as training data, five multi-attribute links will be generated:
e12=011111, e;6 = 010101, ey = 010101, e54 = 011110,
and e5¢ = 001110. These multiattribute links capture com-
munal relationships: John and Joan are twins, Jack and Ella
are married, Riley and Liam are housemates, John and Joan
are neighbors with Riley and Liam; and John, Joan, and
Liam share the same birthday.

Table 3 shows the sample whitelist constructed from
credit applications in Table 2. A whitelist contains three
attributes. They include the link type, which is a unique link
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determined from aggregated links from training data, and
its corresponding number of this type of link and its link-
type weight. There will be many link types, so the quantity
of link types are predetermined by selecting the most
frequent ones to be in the whitelist. Specifically, the link
types in the whitelist are processed in the following
manner. The link-types are first sorted in descending order
by number of links. For the highest ranked link type, the
link type weight starts at {;. Each subsequent link-type
weight is then incrementally increased by ;, until the
lowest ranked link-type weight is one. In other words, a
higher ranked link type is given a smaller link-type weight
and is most likely a communal relationship.

3.3 Spike Detection

This section contrasts SD with CD; and presents the need
for SD, in order to improve resilience and adaptivity.

Before proceeding with a description of SD, it is
necessary to reinforce that CD finds real social relationships
to reduce the suspicion score, and is tamper resistant to
synthetic social relationships. It is the whitelist-oriented
approach on a fixed set of attributes. In contrast, SD finds
spikes to increase the suspicion score, and is probe resistant
for attributes. Probe resistance reduces the chances a
fraudster will discover attributes used in the SD score
calculation. It is the attribute-oriented approach on a
variable-size set of attributes. A side note: SD cannot use
a whitelist-oriented approach because it was not designed
to create multiattribute links on a fixed-size set of attributes.

CD has a fundamental weakness in its attribute thresh-
old. Specifically, CD must match at least three values for
our data set. With less than three matched values, our
whitelist does not contain real social relationships because
some values, such as given name and unit number, are not
unique identifiers. The fraudster can duplicate one or two
important values which CD cannot detect.

SD complements CD. The redundant attributes are either
too sparse where no patterns can be detected, or too dense
where no denser values can be found. The redundant
attributes are continually filtered, only selected attributes in
the form of not-too-sparse and not-too-dense attributes are
used for the SD suspicion score. In this way, the exposure of
the detection system to probing of attributes is reduced
because only one or two attributes are adaptively selected.

Suppose there was a bank’s marketing campaign to give
attractive benefits for it’s new ladies’ platinum credit card.
This will cause a spike in the number of legitimate credit
card applications by women, which can be erroneously
interpreted by the system as a fraudster attack.

To account for the changing legal behavior caused by
external events, SD strengthens CD by providing attribute
weights which reflect the degree of importance in attributes.
The attributes are adaptive for CD in the sense that its
attribute weights are continually determined. This ad-
dresses external events such as the entry of new organiza-
tions and exit of existing ones, and marketing campaigns of
organizations which do not contain any patterns and are
likely to cause three natural changes in attribute weights.
These changes are volume drift where the overall volume
fluctuates, population drift where the volume of both fraud
and legal classes fluctuates independent of each other, and
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TABLE 4
Overview of Spike Detection Algorithm

Inputs

v; (current application)

W number of v; (moving window)

t (current step)

Tsimitarity (String similarity threshold)
0 (time difference filter)

a (exponential smoothing factor)

Outputs
S(v;) (suspicion score)
wy, (attribute weight)

SD algorithm

Step 1: Single-step scaled counts [match v; against W number
of v; to determine if a single value exceeds T;miiarity and its
time difference exceeds 6]

Step 2: Single-value spike detection [calculate current value’s
score based on weighted average (using «) of ¢ Step 1’s scaled
matches]

Step 3: Multiple-values score [calculate S(v;) from Step 2’s
value scores and Step 4’s wy]

Step 4: SD attributes selection [determine wy, for SD at end of
gel

Step 5: CD attribute weights change [determine wy, for CD at
end of g.]

concept drift which involves changing legal characteristics
that can become similar to fraud characteristics. By tuning
attribute weights, the detection system makes allowance for
these external events.

In general, SD trades off effectiveness (degrades security
because it has more false positives without filtering out
communal relationships and some data errors) for effi-
ciency (improves computation speed because it does not
match against the whitelist, and can compute each attribute
in parallel on multiple workstations). In contrast, CD trades
off efficiency (degrades computation speed) for effective-
ness (improves security by accounting for communal
relationships and more data errors).

3.4 SD Algorithm Design

This section explains how the SD algorithm works in real
time with the CD algorithm, and in terms of its six inputs,
two outputs, and five steps.

From the data stream point-of-view, using a series of
window steps, the SD algorithm matches the current
application’s value against a moving window of previous
applications” values. It calculates the current value’s score
by integrating all steps to find spikes. Then, it calculates the
current application’s score using all values’ scores and
attribute weights. Also, at the end of the current Mini-
discrete data stream, the SD algorithm selects the attributes
for the SD suspicion score, and updates the attribute
weights for CD.

Table 4 shows the data input and five parameters.

e v;: unscored current application (previously intro-
duced in Section 3.1).

e W: In SD, it is a time-based window (such as
previous 10 days).
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t: current step, also the number of steps in W.

®  Timiarity: string similarity threshold between two
values (previously described in Section 3.1).

e O: time difference filter at the link level. It is a
simplified version of the exact duplicate filter.

e o:InSD, it gradually discounts the effect of previous

steps of each value as the older steps become less

relevant.

Table 4 also shows the two outputs.

e  S(v;): SD suspicion score of current application.

e w: In SD, each attribute weight is automatically
updated at the end of the current Minidiscrete
data stream.

While Table 4 gives an overview of the SD algorithm’s

five steps, the details in each step are presented below.

Step 1: Single-step scaled count. The first step of the

SD algorithm matches every current value against a moving
window of previous values in steps

1, if Jaro — Winkler(aig, aji) > Tsimitarity
and Time(a;, a;r) > 0, (8)
0, otherwise,

@i j =

where q; ; is the single-attribute match between the current
value and a previous value. The first case uses Jaro-
Winkler(.) [30], which is case sensitive, and can also be
cross-matched between current value and previous values
from another similar attribute, and Time(.) which is the time
difference in minutes. The second case is a nonmatch
because the values are not similar, or recur too quickly

sr(aik) = w, 9
(@ix) aj.k;ahk) - (9)
where s,(a;;) represents the scaled matches in each step
(the moving window is made up of many steps) to remove
volume effects. L(a; ) is the set of previous values within
each step which the current value matches, and « is the
number of values in each step.

Step 2: Single-value spike detection. The second step of
the SD algorithm is the calculation of every current value’s
score by integrating all steps to find spikes. The previous
steps act as the established baseline level

S selain)

S(air) = (1 —a) x si(aix) +a x 1

(10)
where S(a; ) is the current value score.

Step 3: Multiple-values score. The third step of the
SD algorithm is the calculation of every current applica-
tion’s score using all values’ scores and attribute weights

S(vi) = Zs(fhk) X wy,

k=1

N

(11)
where S(v;) is the SD suspicion score of the current
application.

Step 4: SD attributes selection. At the end of every
current Minidiscrete data stream, the fourth step of the
SD algorithm selects the attributes for the SD suspicion score.
This also highlights the probe-reduction of selected attributes

pxq )
if 1 < Zi:l *?V(atk)
2X N 1 X Zk,:l Wy,

1 1 N 112
Syt \/N XD e (we — )7
0, otherwise,

)

where w;, is the SD attribute weight applied to the
SD attributes in (11). The first case is the average density
of each attribute, or the sum of all value scores within a
Minidiscrete stream for one attribute, relative to all other
applications and attribute weights. In addition, the first case
retains only the best attributes” weights within the lower-
bound (half of default weight) and upperbound (default
weight plus one standard deviation), by setting redundant
attributes” weights to zero.

Step 5: CD attribute weights change. At the end of every
current Minidiscrete data stream, the fifth step of the
SD algorithm updates the attribute weights for CD

XS

(RS Z/i\zl wi

where wj, is the SD attribute weight applied to the
CD attributes in (3).

Standalone CD assumes all attributes are of equal
importance. The resilient combination of CD-SD means
that CD is provided attribute weights by SD, and these
attribute weights reflect degree of importance in attributes.
This is how CD and SD scores are combined to give a
single score.

Wi (13)

4 EXPERIMENTAL RESULTS

4.1 Identity Data—Real Application Data Set

Substantial identity crime can be found in private and
commercial databases containing information collected
about customers, employees, suppliers, and rule violators.
The same situation occurs in public and government-
regulated databases such as birth, death, patient and
disease registries; taxpayers, residents’ address, bank-
ruptcy, and criminals lists.

To reduce identity crime, the most important textual
identity attributes such as personal name, Social Security
Number (SSN), Date-of-Birth (DoB), and address must be
used. The following publications support this argument:
Jonas [16] ranks SSN as most important, followed by
personal name, DoB, and address. Jost [17] assigns highest
weights to permanent attributes (such as SSN and DoB),
followed by stable attributes (such as last name and state),
and transient (or ever changing) attributes (such as mobile
phone number and email address). Sweeney [27] states that
DoB, gender, and postcode can uniquely identify more than
80 percent of the United States (US) population. Head [12]
and Kursun et al. [20] regard name, gender, DoB, and
address as the most important attributes. The most
important identity attributes differ from database to
database. They are least likely to be manipulated, and are
easiest to collect and investigate. They also have the least
missing values, least spelling, and transcription errors, and
have no encrypted values.

Extra precaution had to be taken in this project since this
is the first time, to the best of the researchers’” knowledge,
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Fig. 1. Real Application Data Set (RADS). (a) Daily application volume
for 2 months. (b) Fraud percentage across months.

that so much real identity data have been released for
original credit application fraud detection research. Issues of
privacy, confidentiality, and ethics were of prime concern.

This real data set was chosen because, at experimenta-
tion time, it had the most recent fraud behavior. Although
this real data set cannot be made available, there is a
synthetic data set of 50,000 credit applications which is
available at https://sites.google.com/site/cliftonphua/
communal-fraud-scoring-data.zip.

The specific summaries and basic statistics of the real
credit application data are discussed below. For purposes of
confidentiality, the application volume and fraud percen-
tage in Fig. 1 have been deliberately removed. Also, the
average fraud percentage (known fraud percentage in all
applications) and specific attributes for application fraud
detection cannot be revealed.

There are 13 months (m1 to m13) with several million
applications. Each day (d1 to d31) has more than 10,000 ap-
plications. These historical data are unsampled, time-
stamped to the milliseconds, and modeled as data streams.
Fig. 1a illustrates that the detection system has to handle a
more rapid and continuous data stream on weekdays than
weekends.

There are about 30 raw attributes such as personal
names, addresses, telephone numbers, driver license num-
bers (or SSN), DoB, and other identity attributes (but no link
attribute). Only 19 of the most important identity attributes
(I to XIX) are selected. All numerical attributes are treated
as string attributes. Some of these identifying attributes,
including names, were encrypted to preserve privacy. For
our identity crime detection data, its encrypted attributes
are limited to exact matching because the particular
encryption method was not made known to us. But in a
real application, homomorphic encryption [18] or unen-
crypted attributes would be used to allow string similarity
matching. Another two problems are many missing values
in some attributes, and hash collisions in encrypted
attributes (different original values encrypted into the same
encrypted value), but it is beyond the scope of this paper to
present any solution.

The imbalanced class is extreme, with less than 1 percent
of known frauds in all binary class-labeled (as “fraud” or
“legal”) applications. Fig. 1b depicts that known frauds are
significantly understated in the provided applications. The
main reason for fewer known frauds is having only 8 months
(m7 to ml4) of known frauds linked to 13 months of
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TABLE 5
Confusion Matrix

| | Known frauds | Unknowns |

Alerts tp fp
Non-alerts fn tn

applications. Six months (m1 to m6) of known frauds were
not provided. This results in m6 to m10 having the highest
fraud percentage, but this is not true. Other reasons include
some frauds which were unlabeled, having been inadver-
tently overlooked. Some known frauds are labeled once but
not their duplicates, while some organizations do not
contribute known frauds.

The impact of fewer known frauds means algorithms
will produce poorer results and lead to incorrect evalua-
tion. To reduce this negative impact and improve scal-
ability, the data have been rebalanced by retaining all
known frauds but randomly undersampling unknown
applications by 90 percent.

There are multiple sources, consisting of 31 organiza-
tions (sl to s31) that provided the applications. Top-5 of
these organizations (sl to s5) can be considered large (with
at least 10,000 applications per month), and more important
than others, because they contribute more income to the
credit bureau. Each organization contributes their own
number and type of attributes.

The data quality was enhanced through the cleaning of
two obvious data errors. First, a few organizations’
applications, with slightly more than 10 percent of all
applications, were filtered. This was because some impor-
tant unstructured attributes were encrypted into just one
value. Also, several “dummy” organizations” applications,
comprising less than 2 percent of all applications, were
filtered. They were actually test values particularly common
in some months.

After the above data preprocessing activities, the actual
experimental data provided significantly improved re-
sults. This was observed using the parameter settings in
CD and SD (Section 4.3). These results have been omitted
to focus on the results from CD and SD parameter
settings and attributes.

In addition, which are the training and test data sets? The
CD, SD, and classification algorithms use eight consecutive
months (m6 to m13) out of 13 months data (each month is
also known as a Minidiscrete stream in this paper) where
known frauds are not significantly understated. For creat-
ing whitelist, selecting attributes, or setting attribute
weights in the next month, the training set is the previous
month’s data. For evaluation, the test set is the current
month’s data. Both training and test data sets are separate
from each other. For example, in CD, the initial whitelist is
constructed from m5 training data, applied to m6 test data;
and so on, until the final whitelist is constructed from
ml12 training data, and applied to m13 test data.

4.2 Evaluation Measure

Table 5 shows four main result categories for binary-class
data with a given decision threshold. Alerts (or alarms)
refer to applications with scores which exceed the decision
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TABLE 6
Evaluation Measures
[ Measure | Description |
precision ﬁ
recall, sensitivity tp-ri—ﬁ
(1 - specificity) fp{f =

2Xpreciston Xrecall
precision+recall

thresholds

All scores are ranked in descending or-
der; and sensitivity versus (1 - speci-
ficity) plotted against X thresholds

F-measure curve plotted against X

Receiver
Characteristic
curve

Operating
(ROC)

threshold, and subjected to responses such as human
investigation or outright rejection. Nonalerts are applica-
tions with scores lower than the decision threshold. ¢p, fp,
fn, and tn are the number of true positives (or hits), false
positives (or false alarms), false negatives (or misses), and
true negatives (or normals), respectively.

Table 6 briefly summarizes useful evaluation measures
for scores. This paper uses the F-measure curve [31] and
Receiver Operating Characteristic (ROC) curve [8] with
11 threshold values from zero to one to compare all
experiments. The additional thresholds are needed because
F-measure curves seldom dominate one another over all
thresholds. The F-measure curve is recommended over
other useful measures for the following reasons. First, for
confidentiality reasons, precision-recall curves are not used
as they will reveal true positives, false positives, and false
negatives. Second, in imbalanced class data, ROC curves,
AUC, and accuracy understates false positive percentage
because they use true negatives [5]. Third, being a single-
value measure, NTOP-k [4] does not evaluate results for
more than one threshold. The ROC curve can be used to
compliment F-measure curve because the former allows the
reader to directly interpret if CD and SD are really reducing
false positives. Reducing false positives is very important
because staff costs for manual investigation, and valuable
customers lost due to credit application rejection are very
expensive.

In this paper, the scores have two unique characteristics.
First, the CD score distribution is heavily skewed to the
left, while SD score distribution is more skewed to the
right. Most scores are zero as values are usually sparse. All
the zero scores have been removed since they are not
relevant to decision making. This will result in more
realistic F-measures, although the number of applications
in each F-measure will most likely be different. Second,
some scores can exceed one since each application can be
similar to many others. In contrast, classifier scores from
naive Bayes, decision trees, logistic regression, or SVM
exhibit a normal distribution and each score is between
zero and one.

4.3 CD and SD’s Experimental Design

All experiments were performed on a dedicated 2 Xeon
Quad Core (8 2.0GHz CPUs) and 12 Gb RAM server,
running on Windows Server 2008 platform. Communal
and spike detection algorithms, as well as evaluation
measures, were coded in Java. The application data were
stored in a MySQL database. The plan here is to process all

real applications from RADS with the most influential
parameters and their values. These influential parameters
are known to provide the best results based on the
experience from hundreds of previous experiments. How-
ever, the best results are also dependent on setting the
right value for each influential parameter in practice, as
some parameters are sensitive to a change in their value.

There are seven experiments which focus on specific
claims in this paper:

No-whitelist.
CD-baseline.
CD-adaptive.
SD-baseline.
SD-adaptive.
CD-SD-resilient.

. CD-SD-resilient-best.

The first three experiments address how much the
CD algorithm reduces false positives. The no-whitelist
experiment uses zero link types (M =0) to avoid using
the whitelist. The CD-baseline experiment has the follow-
ing parameter values (based on hundreds of previous
CD experiments):

Nk o=

e W = set to what is convenient for experimentation
(for reasons of confidentiality, the actual W cannot

be given)
e M =100,
L Tsimilarity =03,
o Tattribute =3,
e 1 =120, and
e a=08

In other words, the CD-baseline uses a whitelist with
100 most frequent link types, and sets the string similarity
threshold, attribute threshold, exact duplicate filter, and the
exponential smoothing factor for scores. To validate the
usefulness of the adaptive CD algorithm’s changing
parameter values, CD-adaptive experiment has three para-
meters (W, M, Tgimitariry) Where their values can be changed
according to the SoA.

The fourth and fifth experiments show if the
SD algorithm increases power. The next experiment, SD-
baseline, has the following parameter values (based on
hundreds of previous SD experiments):

e N=19,

o =10,

L4 T@imilarity = 08,
e (=060, and

e a=0238.

In other words, the SD-baseline uses all 19 attributes, a
moving window made up of 10 window steps, and sets
string similarity threshold, time difference filter, and the
exponential smoothing factor for steps. The SD-adaptive
experiment selects two best attributes for its suspicion score.

The last two experiments highlight how well the CD-
SD combination works. The CD-SD-resilient experiment is
actually CD-baseline which uses attribute weights pro-
vided by SD-baseline. To empirically evaluate the detec-
tion system, the final experiment is CD-SD-resilient-best
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Fig. 2. F-measure curves of CD and SD experiments.

experiment with the best parameter setting below (with-
out adaptive CD algorithm’s changing parameter values):

W = set to what is expected to be used in practice,

Tattribute =4, and

.
L4 T;imilarity =1,

[

e SD attribute weights.

4.4 CD and SD’s Results and Discussion

The CD F-measure curves skew to the left. The CD-related
F-measure curves start from 0.04 to 0.06 at threshold 0, and
peak from 0.08 to 0.25 at thresholds 0.2 or 0.3. On the other
hand, the SD F-measure curves skew to the right.

Without the whitelist, the results are inferior. From Fig. 2
at threshold 0.2, the no-whitelist experiment (/-measure
below 0.09) performs poorer than the CD-baseline experi-
ment (F-measure above 0.1). From Fig. 3, the no-whitelist
experiment has about 10 percent more false positives than
the CD-baseline experiment. This verifies the hypothesis
that the whitelist is crucial because it reduces the scores of
these legal behavior and false positives; also, the larger the
volume for a link type, the higher the probability of a
communal relationship.

From Fig. 2 at threshold 0.2, the CD-adaptive experiment
(F-measure above 0.16) has a significantly higher F-
measure than the CD-baseline experiment. From Fig. 3,
the CD-adaptive experiment has about 5 percent less false
positives in the early part of the ROC curve than the CD-
baseline experiment. The interpretation is that the most
useful parameters are moving window and number of link
types. More importantly, the adaptive CD algorithm finds
the balance between effectiveness and efficiency to produce
significantly better results than the CD-baseline experiment.
This empirical evidence suggests that there is tamper
resistance in parameters and the whitelist as some para-
meters” values and whitelist’s link types are changed in a
principled fashion.
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Fig. 3. ROC curves of CD and SD experiments.

From Fig. 2 at threshold 0.7, the SD-adaptive experiment
(F-measure around 0.1) has a significantly higher F-
measure than the SD-baseline experiment. Also, SD-adap-
tive experiment has almost the same F-measure as the CD-
baseline experiment but at different thresholds. Since most
attributes are redundant, the adaptive SD algorithm only
needs to select the two best attributes for calculation of the
suspicion score. This means that the adaptive SD algorithm
on two best attributes produces better results than the
SD algorithm on all attributes, as well as similar results to
the basic CD algorithm on all attributes.

Across thresholds 0.2 to 0.5, the CD-SD-resilient-best
experiment (F-measure above 0.23) has a F-measure which
is more than twice the CD-baseline experiment’s. This is the
most apparent outcome of all experiments: the CD algo-
rithm, strengthened by the SD algorithm’s attribute weights,
and with the right parameter setting, delivers superior
results, despite an extremely imbalanced class (at least for
the given data set). In addition, results from the CD-SD-
resilient experiment supports the view that SD attribute
weights strengthen the CD algorithm; and resilience (CD-
SD-resilience) is shown to be better than adaptivity (CD-
adaptive and SD-adaptive).

Extending CD-SD-resilient-best experiment, Fig. 4
shows the results of doubling the most influential para-
meters’ values. W and Tiuyinue have significant increases in
F-measure over most thresholds, and M has a slight
increase at thresholds 0.2 to 0.4.

Results on the data support the argument that successful
credit application fraud patterns are characterized by
sudden and sharp spikes in duplicates. However, this result
is based on some assumptions and conditions shown by the
research to be critical for effective detection. A larger
moving window and attribute threshold, as well as exact
matching and the whitelist must be used. There must also be
tamper resistance in parameters and the whitelist. It is also
assumed that SD attribute weights are used for SD attributes
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Fig. 4. F-measure curves of CD-SD-resilient-best parameters.

selection (probereduction of attributes), and SD attribute
weights are used for CD attribute weights change. However,
the results can be slightly incorrect because of the encryption
of some attributes and the significantly understated number
of known frauds. Also, the solutions could not account for
the effects of the existing defences—business rules and
scorecards, and known fraud matching—on the results.

4.5 Drilled-Down Results and Discussion

The CD-SD-resilient-best experiment shows that the CD-
SD combination method works best for all 31 organiza-
tions as a whole. The same method may not work well
for every organization. Fig. 5 shows the detailed break-
down of top-5 organizations’ (sl to s5) results from the
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Fig. 5. F-measure curves of top-5 organizations.

0.35 T T T T T T L T T
CD-SD-resilient-best —+—
NB --->¢--
DT -
LoR {3
0.3 SVM - — 7]

VFML &~

0.25

0.2

0.15

0.1

Fig. 6. F-measure curves of five classification algorithms.

CD-SD-resilient-best experiment. Similar to the CD-SD-
resilient-best experiment, the top-5 organizations” F-
measure curves are skewed to the left.

Across thresholds 0.2 to 0.5, two organizations, s1 (F-
measure above 0.22) and s3 (F-measure above 0.19) have
comparable F-measures than the CD-SD-resilient-best ex-
periment (F-measure above 0.23). In contrast, for the same
thresholds, three organizations, s4 (F-measure above 0.16),
s2 (F-measure above 0.08), and s5 (F-measure above 0.05)
have significantly lower F-measures. However, in CD-
baseline experiment, for thresholds 0.2 to 0.5, s5 performs
better than s4. This implies that most methods or parameter
settings can work well for only some organizations.

4.6 Classifier-Comparison Experimental Design,
Results, and Discussion

Are classification algorithms suitable for the real-time credit
application fraud detection domain? To answer the above
question, four popular classification algorithms with de-
fault parameters in WEKA [29] were chosen for classifier
experiments. The algorithms were Naive Bayes (NB), C4.5
Decision Tree (DT), Logistic Regression (LoR), and Support
Vector Machines—current state-of-the-art libSVM. A well-
known data stream classification algorithm, Very Fast
Machine Learner (VFML) which is a Hoeffding decision
tree, is also used with default parameters in MOA [1]. They
were applied to the same training and test data used by CD
and SD algorithms, and there was an extra step to convert
the string attributes to word vector ones. The following
experiments assume that ground truth is available at
training time (see Section 1.2 for a description of the
problems in using known frauds).

Classification algorithms are not the most accurate and
scalable for this domain. Fig. 6 compares the five classifiers
against CD-SD-resilient-best experiment with F-measure
across 11 thresholds. Across thresholds 0.2 to 0.5, CD-SD-
resilient-best experiment’s F-measure can be several times
higher than the five classifiers: NB (F-measure above 0.08),
LoR (F-measure above 0.05), VEML (F-measure above 0.04),
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TABLE 7
Relative Time of Five Classification Algorithms

| Experiment(s) | Relative time |
CD-SD-resilient-best 1
NB 1.25
DT 5
VEML 18
LoR 60
SVM 156

SVM, and DT (F-measure above 0.03). Also, results did not
improve from training the five classifiers on labeled multi-
attribute links, and applying the classifiers to multiattribute
links in the test data. Table 7 measures relative time of five
classifiers using CD-SD-resilient-best experiment as baseline.
Time refers to total system time for the algorithm to complete.
CD-SD-resilient-best experiment is orders of magnitude
faster than the classifier experiments because it does not
need to train on many word vector attributes and with few
known frauds.

5 CONCLUSION

The main focus of this paper is Resilient Identity Crime
Detection; in other words, the real-time search for patterns
in a multilayered and principled fashion, to safeguard
credit applications at the first stage of the credit life cycle.

This paper describes an important domain that has many
problems relevant to other data mining research. It has
documented the development and evaluation in the data
mining layers of defence for a real-time credit application
fraud detection system. In doing so, this research produced
three concepts (or “force multipliers”) which dramatically
increase the detection system’s effectiveness (at the expense
of some efficiency). These concepts are resilience (multi-
layer defence), adaptivity (accounts for changing fraud and
legal behavior), and quality data (real-time removal of data
errors). These concepts are fundamental to the design,
implementation, and evaluation of all fraud detection,
adversarial-related detection, and identity crime-related
detection systems.

The implementation of CD and SD algorithms is practical
because these algorithms are designed for actual use to
complement the existing detection system. Nevertheless,
there are limitations. The first limitation is effectiveness, as
scalability issues, extreme imbalanced class, and time
constraints dictated the use of rebalanced data in this paper.
The counter-argument is that, in practice, the algorithms can
search with a significantly larger moving window, number
of link types in the whitelist, and number of attributes. The
second limitation is in demonstrating the notion of adaptiv-
ity. While in the experiments, CD and SD are updated after
every period, it is not a true evaluation as the fraudsters do
not get a chance to react and change their strategy in
response to CD and SD as would occur if they were deployed
in real life (experiments were performed on historical data).
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