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Abstract

Smolyak demonstrated a procedure for eficient multidimensional quadrature based on a family of one-
dimensional quadrature rules. A particular family of nested Clenshaw Curtis rules is most commonly
used in this context. Nestedness controls the point growth of sparse grids in high dimension, but in lower
dimensions, it can actually result in significant embarassing inefficiencies. A simple change to the Smolyak
construction greatly reduces the point count when relatively low dimensions are involved. Similar benefits
can be obtained when the Smolyak procedure is based on other families of quadrature rules. Numerical
tables show that the modified rule has a significant point count reduction, while preserving the precision
of the unmodified rule.

1 Introduction

Sparse grids, as defined by Smolyak [9], are powerful and efficient tools for interpollation, quadrature,
and optimization of functions with behaviour dependending on a multidimensional argument. By stricktly
controlling the number of function evaluations required, sparse grids can handle problems in dimensions far
beyond the reach of any other methods except Monte Carlo. One of the techniques that can be used to
extend the power of a sparse grid is nestedness; that is, the reuse of data from lower order calculations. A
very common example of a sparse grid is based on the nested Clenshaw Curtis rules. Nestedness comes at
a price, which for the Clenshaw Curtis rules means that each successive element of the family uses about
twice as many points as the previous one, an example of exponential growth. For various reasons, this
exponential growth does not dominate the behavior of sparse grids in high dimension and low to moderate
level. However, in relatively low dimensions, say d < 5, a Clenshaw Curtis sparse grid incurs obvious, and
as it turns out, easily avoidable, expense because of its simple-minded reliance on nested rules.

In an analisis of the properties of spase grids based on Clenshaw Curtis rules, Novak and Ritter [6] showed
that the exactness of the sparse grid is related in a simple way to the exactness of the 1D quadrature rules
used to construct it; this result shows that there is actually considerable freedom available when specifying
how a sparse grid is to be constructed. Using this guideline, a simple modification allows the creation of
Clenshaw Curtis sparse grids that are smaller, but of the same exactness as the classic grids.

Sparse grids can also be constructed from Legendre quadrature rules. Since these rules are not nested, the
construction pattern associated with Clenshaw Curtis rules is surely inappropriate as a model. Again, the
Novak and Ritter guideline can be used in order to arrive at an efficient sparse grid with known exactness.

The Patterson family of quadrature rules represents an interesting mix of the features of the Clenshaw
Curtis and Legendre families of rules. The family is nested (although in a different way from the Clenshaw
Curtis family) and of increased accuracy (although less than the Legendre family). Again, Novak and Ritter
can be used to specify a construction plan of guaranteed exactness and demonstrable efficiency.

As suggested earlier, the efficiency to be gained by this approach is most prominent when the sparse grid
is generated in relatively low dimensions. However, many sparse grid techniques that are applied to high
dimensions actually select a small subspace for preferential treatment, or apply anisotropic weights that have
a similar effect; such cases may also be be regarded as low dimensional, and hence possibly affected by the
improvements considered here.



In order to focus on the main point of the argument, a number of simplifying assumptions will be made:

e sparse grids are being constructed in order to estimate the integral I(f) of a function of a multidimen-
sional argument;

e the multidimensional integration region is the unit hypercube [—1, +1]™;

e Q represents an indexed family of quadrature rules for the interval [—1, +1], with typical element Q%

e the same family Q will be used to select each component of the sparse grid;

The outline of the reminder of this paper is as follows: Section 2 presents some background material
on the Clenshaw Curtis family of 1D quadrature rules, the Smolyak construction procedure, the notion of
exactness for quadrature, and the Novak and Ritter exactness constraint. Section 3 presents the classic
construction of sparse grids from the Clenshaw Curtis family, and then reconstructs such sparse grids using
Novak and Ritter. Sections 4 and 5 carry out similar operations for sparse grids based on Legendre and
Patterson families. Section 6 presents some simple numerical tests indicating that the modified approach
produces sparse grids that outperform the classic variety.

2 Construction of Sparse Grids for Quadrature

A version of the univariate quadrature problem seeks to estimate the integral I(f) = fjll flx)dz. A
quadrature rule () for this problem is a set of n points z and weights w which produce the integral
estimate:
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Such a quadrature rule is said to have exactness of degree d if the integral estimate is exact whenever the
integrand f is a polynomial of degree d or less. A common strategy for quadrature involves assembling an
indexed family Q of quadrature rules of increasing exactness. By applying rules of increasing index to a
given problem, a reasonable estimate of the quadrature error may be made.

A version of the multivariate quadrature problem may be posed in the same way for a function of a
variable z € [—1,+1]™. Quadrature rules for this problem may be constructed by making m selections from
Q and forming the product rule. A significant drawback of this approach arises because, if the 1D rule of
exactness d requires n points, then the product rule of corresponding exactness requires n™ points, a fact
which rules out the product approach except for low dimensions or degrees of exactness.

The sparse grid construction of Smolyak [9] showed how simpler product rules could be combined in a way
that achieved the exactness of a given product rule. Of course, if enough simple product rules are involved,
the total number of points can grow arbitrarily. Thus, a key idea in the implementation of Smolyak’s
procedure was to prefer quadrature families Q that were nested, which greatly reduces the point count of
the sparse grid.

Smolyak’s formula produces a sequence of m-dimensional sparse grids with an index ¢ = 0,1, 2, ... often
called the level: .
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It is natural to expect that, for a given spacial dimension m, the sequence of sparse grids A(¢,m), ¢ =
0,1,2,... produce integral estimates of increasing exactness. Novak and Ritter were able to show that, if
based on the classic Clenshaw-Curtis family, the sparse grid of level £ would have exactness 2¢ + 1. It will
be seen shortly that this theorem suggests a more efficient way to employ the Clenshaw Curtis family; it
can also be extended to other families of 1D rules. At the moment, it is enough to note that this theorem
demonstrates that, at least for smooth integrands, a sequence of sparse grids can be used to produce integral
estimates of rapidly improving accuracy.



Table 1: Exactness and CCE/CCL/CCS 1D rule sizes

¢ = index 01 2 3 4 5 6 7 8 9 10
e; (required) |1 3 5 7 9 11 13 15 17 19 21
n; (CCE) 1 3 5 9 17 33 65 125 257 513 1025
n; (CCL) 13 5 7 9 11 13 15 17 19 21
n; (CCS) 13 5 9 9 1v 17 17 17 33 33

3 Using the Clenshaw-Curtis Quadrature Family

Clenshaw and Curtis [1] presented a family of easily-computed 1D quadrature rules with positive weight and
nested abscissas. Their purposes required the evaluation of a sequence of estimates, and so nesting was a
valuable way of reducing the number of times the integrand was evaluated. The rules were defined on the
interval [—1,+1]. The first rule (i = 0) has size ng = 1, but all subsequent rules have size n; = 2 + 1, thus
exhibiting exponential growth. This 1D quadrature family will be denoted by CCE. Because of symmetry
and the fact that the rules are all of odd size, the exactness e of each rule is the same as its size, that is
e=n.

Novak and Ritter showed that the exactness of sparse grids constructed from a family Q was related
to the exactness of the members of that family. In particular, they showed that, if every 1D rule Q* had
exactness at least 2¢ + 1, then the sparse grid of level ¢ is guaranteed to have exactness at least 2¢ + 1.

This condition is easily verified for the CCE family; Novak and Ritter require that the exactness sequence
for the 1D family be at least 2i + 1 but it has alredy been observed that e; = n; = 2 +1 > 2i + 1 (the
case @ = 0 is treated seperately), and hence the desired exactness of sparse grids constructed from the CCE
family follows.

Since efficiency is a vital concern for high dimensional problems, it is natural to wonder whether there is
an unnecessary cost associated with the fact that the CCE family exponentially exceeds the linear Novak and
Ritter requirement. This excess is most obvious if one imagines using the Smolyak procedure to construct a
sequence of 1D “sparse grids”, which simply produces the elements of the quadrature family.

The nesting of the CCE family, which is so beneficial in higher dimensions, is forcing the doubling in
size that is so troubling in lower dimensions. It is worth asking if there are simple alternatives to the CCE
family that will moderate the doubling effect.

An obvious choice would be to abandon nesting. The CCE family selected a particular sequence of sizes
to guarantee nesting. Instead, it is possible to choose a sequence of sizes n that guarantee the Novak and
Ritter condition, namely n; = 2i+ 1,2 = 0,1,2,.... This family will be denoted by CCL. Because these rules
have odd size, the exactness condition is still met, although the perfect nesting of the CCE family has been
abandoned.

A second choice is to preserve nesting, but to change the way the individual quadrature rules are indexed.
This rule will be denoted CCS, for the “slow growth” option. The informal definition of this family is that
the i-th member of the family is the smallest member of the CCE family that has exactness at least 2 + 1.
Another way of viewing the CCS family is to imagine that the elements in the sequence are the same as those
in the CCE sequence, but that any element, once it occurs in the sequence at position i, may be repeated
at one or more subsequent positions, if it satisfies the corresponding exactness requirements.

Table 1 compares the sizes of the 1D rules in the CCE, CCL and CCS families:

It is clear that the three families differ little for low index ¢, but that the two newly-defined families avoid
the exponential explosion afflicting the higher-index elements of the CCE family.

The differences are suggested by Table 2, which counts the number of points in the corresponding sparse
grids for several moderate dimensions. The improvement offered by the new families is strongest in the
sparse grids of lowest dimension.



Table 2: CCE/CCL/CCS sparse grid point counts in 2D, 6D, 10D

{ = level 0 1 2 3 4 5 6 7 8 9 10
Dimension 2

ng (CCE) 1 5 13 29 65 145 321 705 1,537 3,329 7,169
ng (CCL) 1 5 13 29 57 105 177 281 425 611 855
ng (CCS) 1 5 13 29 49 81 129 161 225 257 385
Dimension 6

ng (CCE) 1 13 85 389 1,457 4,865 15,121 44,689 127,105 350,657 943,553
ng (CCL) 1 13 85 389 1,433 4,533 12,961 33,817 82,153 188,039 408,995
ng (CCS) 1 13 85 389 1,409 4,289 11,473 27,697 61,345 126,401 244,289
Dimension 10

ng (CCE) 1 21 221 1,581 8,801 41,265 171,425 652,065 2,320,385 7,836,545 25,370,753
ng (CCL) 1 21 221 1,681 8,761 40,425 162,385 584,665 ? ? ?
ng (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 1,677,665 4,810,625 12,803,073

4 Using the Legendre Quadrature Family

Gaussian quadrature rules offer increased exactness, at the same time constraining the choice of abscissa
location. An n-point Gauss-Legendre rule, for instance, defined on the interval [—1, 1], will have exactness
e; = 2n; — 1. A quadrature family built from the Legendre rule will benefit from the increased accuracy,
but has the disadvantage that there is almost no oportunity for nesting, aside from the occurrence of the
abscissa x = 0 in every rule of odd size.

If it is desired to construct sparse grids using the Gauss-Legendre family, it is reasonable to imitate the
procedure used for the classic Clenshaw-Curtis example, which can be understood as choosing the next rule
by adding a new abscissa within each subinterval of the current rule. This will again amount to exponential
growth, so the family will be denoted by GLE. Since the rules are open, the growth pattern differs from the
CCE family, producing rules of size n; = 1,3,7,15,31,63,...,2°t! — 1.

Since there is little nesting advantage available in this case, it makes more sense to be guided by the
Novak and Ritter criterion. Taking it strictly, the GLL family can be constructed, with a linearly growing
size sequence of n; = 1,2,3,4,...,4 + 1, which just satisfies the exactness constraint.

However, it is tempting to consider forming a family only using odd rules; this takes whatever advantage
is to be had from the repeated abscissa x = 0, at the expense of often using slightly more powerful rules.
This family will be denote GLO.

Table 3 compares the point counts for the three Gauss-Legendre-based quadrature families in moderate
dimensions. It is hardly surprising that the GLE family grows so rapidly, but it is truly disconcerting to see
that GLO sparse grids use far fewer points than GLL, and do so by using bigger 1D rules! It is a testament
to the somewhat unpredictable power of nesting, in this case applied to a single repeated abscissa!

5 Using the Patterson Quadrature Family

Patterson [7] produced a family of quadrature rules that are completely nested like the CCE family, with an
exponential growth in size like the GLE family, and an exactness that may be estimated as e; =~ %ni, about
halfway between the exactnesses of Clenshaw-Curtis and Gauss-Legendre rules.

Let GPE denote the quadrature family formed by the Patterson rules, with sizes 1,3,7,15,31,.... Let
GPS denote the “slow growth” quadrature family formed by applying the Novak and Ritter constraint to
the Patterson rules.

Table 4 compares the point counts for the two Gauss-Patterson-based quadrature famlies. In this case,
the advantages of using the GPS rule are already evident at level 2, and strongly persist through dimension
10.



Table 3: GLE/GLL/GLO sparse grid point counts in 2D, 6D, 10D

f = level 1 2 3 4 5 6 7 8 9 10

Dimension 2

ny (GLE) 5 21 73 221 609 1,573 3,881 9,261 21,553 49,205

ng (GLL) 5 13 29 53 89 137 201 281 381 501

ng (GLO) 5 9 17 33 45 81 97 161 181 281

Dimension 6

ng (GLE) 13 109 713 3,953 19,397 86,517 357,153 1,382,361 5,065,693 17,709,469

ng (GLL) 13 85 389 1,433 4,541 12,841 33,193 79,729 180,077 385,901

ng (GLO) 13 73 257 737 1,925 4,509 9,837 20,445 40,025 75,917

Dimension 10

ng (GLE) 21 261 2,441 18,881 126,925 764,365 4,208,385 21,493,065 102,935,845 466,201,781

ng (GLL) 21 221 1,581 8,761 40,405 162,025 581,385 1,904,465 5,778,965 ?

ng (GLO) 21 201 1,201 5,281 19,165 61,285 177,525 474,885 1,192,425 2,835,589
Table 4: GPE/GPS sparse grid point counts in 2D, 6D, 10D

? = level 1 2 3 4 5 6 7 8 9 10

Dimension 2

ny (GPE) 5 17 49 129 321 769 1,793 4,097 9,217 20,481

ng (GPS) 5 9 17 33 33 65 97 97 161 161

Dimension 6

ny (GPE) 13 97 545 2,561 10,625 40,193 141,569 471,041 1,496,065 4,571,137

ng (GPS) 13 73 257 737 1,889 4,161 8,481 16,929 30,689 53,729

Dimension 10

ny (GPE) 21 241 2,001 13,441 77,505 397,825 1,862,145 8,085,505 32,978,945 127,574,017

ng (GPS) 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 2,347,809




Table 5: CCS/GLO/GPS point counts in 2D, 6D, 10D

{ = level 0 1 2 3 4 5 6 7 8 9 10
Dimension 2

ny (CCS) 1 5 13 29 49 81 129 161 225 257 385
ng (GLO) 1 5 9 17 29 41 65 81 121 141 201
ng (GPS) 1 5 9 17 33 33 65 97 97 161 161
Dimension 6

ng (CCS) 1 13 85 389 1,409 4,289 11,473 27,697 61,345 126,401 244,289
ng (GLO) 1 13 73 257 737 1,925 4,509 9,837 20,445 40,025 75,917
ng (GPS) 1 13 73 257 737 1,889 4,161 8,481 16,929 30,689 53,729
Dimension 10

ng (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 1,677,665 4,810,625 12,803,073
ng (GLO) 1 21 201 1,201 5,281 19,165 61,285 177,525 474,885 1,192,425 2,835,589
ng (GPS) 1 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 2,347,809
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Figure 1: CCE (green) vs CCS (red) on Genz Functions
Error decay for Clenshaw-Curtis Exponential (CCE) and Clenshaw-Curtis Slow (CCS)
sparse grids on Genz product peak, corner peak, and gaussian integrands,

Dimension = 6.

Thus, the Novak and Ritter guidelines have suggested improved versions of the CCE, GLE and GPE
families for use in sparse grid construction. Since these families all represent approaches to the quadrature
problem, table 5 compares the point counts.

6 Numerical Examples

Genz[2] prescribed a number of test integands for multidimensional quadrature.

Given two sparse grid

families, a comparison can be made by applying successive elements of each family to the test integrand, and
observing the relationship between the number of function evaluations required and the quadrature error.
Figures [1], [2] and [3] display the results of such comparisons between the CCE and CCS, GLO and GLS,
and GPE and GPS families, for quadrature in a space of dimension 6. For the GLO versus GLS comparison,
there is a consistent advantage for the slow growth family. The advantage is not so clear for the GPE versus

GPS comparison.
Figure [4] comparse the CCS, GLO and GPS families.

7 Conclusion

Smolyak’s sparse grid procedure is widely used for computations in moderate and high dimension, and was
devised to avoid the exponential growth in point count incurred by a straight-forward product rule approach.
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Figure 2: GLO (green) vs GLS (red) on Genz Functions
Error decay for Gauss-Legendre Odd (GLO) and Gauss-Legendre Slow (GLS)
sparse grids on Genz product peak, corner peak, and gaussian integrands,
Dimension = 6.
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Figure 3: GPE (green) vs GPS (red) on Genz Functions
Error decay for Gauss-Patterson Exponential (GPE) and Gauss-Patterson Slow (GPS)
sparse grids on Genz product peak, corner peak, and gaussian integrands,
Dimension = 6.
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Figure 4: CCS (red) vs GLO (green) vs GPS (black) on Genz Functions
Error decay comparison for CCS/GLO/GPS families, Dimension 6



It is thus somewhat surprising that, in the most common example of a sparse grid, the 1D quadrature family
is designed to exhibit exponential point growth. It turns out that this peculiarity is rarely an issue, since the
1D rules of very large order play very little role in practical high dimensional problems.

However, the bigger 1D rules do come into play in lower dimensional sparse grids. Since such sparse grids
are also of importance, the methods discussed here offer an approach that can detect unnecessary growth in
the 1D quadrature rules, and indicate how to adjust the sequence of rules according to the Novak and Ritter
criterion. No new quadrature rules need to be devised; rather, some rules can be re-used for several steps of
the sparse grid construction process.

The tables suggest that the benefit of this approach varies widely depending on the peticular family, the
spacial dimension, and the range of sparse grid levels of interest. The numerical results confirm that the
adjusted rules perform with the desired accuracy.

Some publicly available software for sparse grid computations includes versions of the slow-growth strat-
egy described here. In particular, Petras [8] presents a C program called smolpak, which implements slow-
growth sparse grid construction for the nested Kronrod-Patterson family. Heiss and Winschel [4] describe
a Matlab package called nwspgr that includes slow-growth sparse grid construction for quadrature over the
unit hypercube, using either Gauss-Legendre or nested Kronrod-Patterson families; the package also includes
slow-growth options for the Hermite weight over R™, using both the standard Gauss-Hermite or a nested
Patterson-type family developed by Genz and Keister [3]. Recently, a C++ package known as tasmanian [10]
has been developed at Oak Ridge National Laboratory, supporting the construction of sparse grids using the
slow-growth option for several quadrature families.

The original Smolyak construction was a fundamental breakthrough in efficient analysis of high-dimensional
problems. This discussion shows that, particularly in lower dimensions, the standard procedure can be use-
fully modified to produce sparse grids of equivalent exactness at a much reduced cost in terms of function
evaluations. These results, discussed only in the isotropic case, also have implications for computations in
higher dimensions, since the anisotropic approach to such problems essentially transforms them to a kind of
lower dimensional problem in which the same efficiency improvements could be expected.
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