

CHAPTER 3

Numerical Differentiation and Integration

3.1. Finite differences

3.2. Taylor series approach

3.3. Differentiation using interpolating polynomials

3.4. MATLAB methods for finding derivatives

3.5. Numerical integration

3.6. Trapezoidal rule

3.7. Simpson's rules

3.8. Gaussian quadrature

3.9. MATLAB methods

3.10. Problems

3.11. References

Numerical Methods in the Hydrological Sciences
Special Publication Series 57
Copyright 2005 by the American Geophysical Union
doi:10.1029/057SP08

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-1

3. Numerical Differentiation and Integration

There are many situations in the hydrological sciences in which the need to perform a
numerical differentiation or integration arises. Examples include integration of functions that
are difficult or impossible to solve analytically and differentiation or integration of data
having an unknown functional form. Numerical differentiation is also central to the
development of numerical techniques to solve differential equations.

3.1. Finite differences

The definition of a derivative is

0

() ()
() lim

x

f x x f x
f x

x∆ →

+ ∆ −′ =
∆

In numerical differentiation, instead of taking the limit as ∆x approaches zero, ∆x is allowed
to have some small but finite value. The simplest form of a finite difference approximation
of a derivative follows from the definition above:

() ()
()

f x x f x
f x

x
+ ∆ −′ ≅

∆

Thought of geometrically, this estimate of a derivative is the slope of a linear approximation
to the function f over the interval ∆x (Figure 3-1). How well a linear approximation works
depends on the shape of the function f and the size of the interval ∆x.

f(x)

x x+ ∆ x

Figure 3.1. Finite difference approximation to a first derivative.

Copyright 2005 by the American Geophysical Union

&Y

NPendleton
figure3_1.jpg

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-2

3.2. Taylor series approach

It is important that we have a way of determining the error associated with a finite
difference approximation to a derivative. One straightforward way of determining the error
is to use a Taylor series expansion to express the value of a function f(x+∆x) in terms of the
function and its derivatives at a nearby point x:

 () ()
()

2
1

() ()
() () () ...

2 !

n
n

n
f x f x

f x x f x f x x x x R
n +

′′
′+ ∆ = + ∆ + ∆ + + ∆ + (3.1)

where the remainder, Rn+1 is equal to

()
(1)

1
1

()
(1)!

n
n

n
f

R x
n

ξ+
+

+ = ∆
+

 for x < ξ < x+∆x

The error produced by truncating the Taylor series after the f (n)-th term is given by Rn+1 and
is said to be of order (∆x)n+1 or O((∆x)n+1). Although in general we don't know the value of
f (n+1)(ξ), it is evident that the smaller ∆x, the smaller the error [but see Box 3.1 for additional
information].

If we truncate the Taylor series after the first-derivative term,

()2
() () ()f x x f x f x x O x′± ∆ = ± ∆ + ∆

and rearrange the expression to give an equation for f ′(x), we obtain

[]() () () / ()f x f x x f x x O x′ = + ∆ − ∆ + ∆ (3.2)

or

[]() () () / ()f x f x f x x x O x′ = − − ∆ ∆ + ∆ (3.3)

The first of these is called a forward difference and the second, a backward difference
(Figure 3.2). Both expressions have a truncation error of O(∆x).

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-3

f(x)

f′(x)∆x

f′(x)∆x

xx-∆x x+∆x

forward
difference

backward

difference

Figure 3.2. Forward and backward difference approximations to a first derivative.

An expression for f ′(x) with a smaller error (i.e., a higher order approximation) can be
obtained using the first three terms of Taylor series (up to f ″ in Eq. 3.1) for f(x+∆x) and f(x-
∆x) and subtracting to cancel the f ″ terms.

2
3()

() () () () (())
2
x

f x x f x xf x f x O x
∆′ ′′+ ∆ = + ∆ + + ∆

2
3()

() () () () (())
2
x

f x x f x xf x f x O x
∆′ ′′− ∆ = − ∆ + + ∆

Subtracting these leaves,
3() () 2 () (())f x x f x x xf x O x′+ ∆ − − ∆ = ∆ + ∆

Rearranging to give an expression for f ′ gives

2() ()
() (())

2()
f x x f x x

f x O x
x

+ ∆ − − ∆′ = + ∆
∆

 (3.4)

This is referred to as a central difference approximation. The error in this case is of order
(∆x)2, compared to an error of O(∆x) for forward or backward differencing. The higher order
approximation will generally yield a more accurate estimate of the derivative [see Box 3.1].
It can be applied everywhere except at the boundaries where a forward or backward estimate
is necessary.

An O((∆x)2) approximation to f ″(x), the second derivative of f(x), can be obtained by
adding the O((∆x)3) expressions for f(x+∆x) and f(x-∆x), producing

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-4

2
2

() 2 () ()
() (())

()
f x x f x f x x

f x O x
x

− ∆ − + + ∆′′ = + ∆
∆

 (3.5)

3.3. Differentiation using interpolating polynomials

Another way to derive expressions for numerical differentiation is to use interpolating
polynomials. The resulting O(∆x) and O((∆x)2) approximations to f ′ are the same, but the
approach provides some insight into these approximations and into how to generate
expressions for higher order derivatives.

An n-th degree polynomial Pn(x) can be fit through any n+1 points in such a way that the
polynomial is equal to the known function values f(x) at the n+1 points x1, x2, ... xn+1. The
derivative of this polynomial then provides an approximation to the derivative of the function
f(x). Consider the 2nd-order polynomial,

2 1 1 2() () ()()i i i i i iP x a x x a x x x x a+ + += + − + − −

We assume that the values of f(x) are known at 3 values of x. Our aim is to choose the values
ai so that P2(x) = f(x) at each xi. The resulting polynomial P2(x) will provide a smooth
interpolation between the known values of f(x).

To find the coefficients of P2(x), we evaluate the function at x = xi, x = xi+1, and x = xi+2.
For x = xi, this just gives P2(xi) = ai = fi (all other terms are 0). For x =xi+1, P2(xi+1) = ai +
(xi+1-xi) ai+1 = fi+1. It is not hard to determine that this is satisfied if ai+1 = (fi+1 - fi)/(xi+1-xi).
This ratio is referred to as the first divided difference f[xi, xi+1]. By extension, ai+2 = f[xi, xi+1,
xi+2], the second divided difference, which is given by

1 2 1 2 1 1
1 2

2 2 2 1 1

[,] [,] 1
[, ,] i i i i i i i i

i i i
i i i i i i i i

f x x f x x f f f f
f x x x

x x x x x x x x
+ + + + + +

+ +
+ + + + +

 − − −
= = − − − − − 

If the points are evenly spaced, the expression for P2(x) can be simplified. In that case, we
can let ∆x =xi+1-xi and denote fi+1 – fi as ∆fi. With these modifications, the expression for
P2(x) becomes

21
2 2

() ()()
()

2()
i i i

i i i
x x x x x x

P x f f f
x x

+− − −
= + ∆ + ∆

∆ ∆

where ∆2fi = ∆(∆ fi)= ∆(fi+1 - fi) = ∆fi+1- ∆fi = fi+2 -2fi+1+ fi . Letting s=(x-xi)/∆x, the equation
takes a still simpler form,

2
2

(1)
()

2i i i

s s
P x f s f f

−
= + ∆ + ∆

If Pn(x) is a good approximation to f(x) over some range of x, then ()nP x′ should
approximate f′ (x) in that range. Thus we can write, () ()nf x P x error′ ′= + . For example,
computing the derivative of P2(x), assuming evenly spaced points and noting that

() (1)df dx df ds ds dx x df ds= = ∆ , gives

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-5

21
() (2 1)

2
i

i

f
f x f s

x
 ∆

′ = ∆ + − + ∆  
error of O((∆x)2)

If we restrict ourselves to evaluating the derivative at one of the given points, say x=xi+1, then
s=l and the derivative reduces to

2
2

1

22 1
1

22

1
() (())

2

21
() (())

2

(())
2

i
i i

i i i
i i

i i

f
f x f O x

x

f f f
f f O x

x
f f

O x
x

+

+ +
+

+

 ∆
′ = ∆ + + ∆ ∆  

− + = − + + ∆ ∆  
−

= + ∆
∆

This is the same result we obtained using the Taylor series.

 The table below summarizes some of the common formulas for computing numerical
derivatives.

Table 3.1. Formulas for numerical differentiation

1 0
0() ()

f f
f x O x

x
−′ = + ∆

∆
 1st order, forward*

difference

21 1
0() (())

2
f f

f x O x
x

−−′ = + ∆
∆

 2nd order, central
difference

First
derivatives

22 1 0
0

4 3
() (())

2
f f f

f x O x
x

− + −′ = + ∆
∆

 2nd order, forward*
difference

21 0 1
0 2

2
() (())

()
f f f

f x O x
x

−− +′′ = + ∆
∆

 2nd order, central
difference Second

derivatives
23 2 1 0

0 2

4 5 2
() (())

()
f f f f

f x O x
x

− + − +′′ = + ∆
∆

 2nd order, forward§
difference

22 1 1 2
0 3

2 2
() (())

2()
f f f f

f x O x
x

− −− + −′′′ = + ∆
∆

 2nd order, central
difference

Third
derivatives 24 3 2 1 0

0 3

3 14 24 12 5
() (())

()
f f f f f

f x O x
x

− + − + −′′′ = + ∆
∆

2nd order, forward*
difference

* To obtain the backward difference approximation for odd-order derivatives, multiply the forward difference
equation by –1 and make all non-zero subscripts negative; e.g., the 1st-order backward difference approximation to the
first derivative is 0 0 1() () /f x f f x−

′ = − ∆
§ To obtain the backward difference approximation for even-order derivatives, make all non-zero subscripts negative.

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-6

3.4. MATLAB methods for finding derivatives

MATLAB has no built- in derivative functions except diff, which differences a vector;
diff(f) is equivalent to ∆f. A simple forward-difference estimate of the derivative is given
by diff(f)./diff(x), where f are the function values at the n points x. Note that if x has
length n, diff returns a vector of length n- l. diff can be nested, so that ∆2f =
diff(diff(f)). A centered difference estimate of a derivative can be obtained using:
x=x(:)'; %makes x a row vector to begin
xd=[x-h;x+h];
yd=f(xd); %define a function f or substitute the function for f
dfdx=diff(yd)./diff(xd);

MATLAB's symbolic math toolbox offers another option with diff . If we set f='eqn',
and x is the independent variable in f, then
 dfdx=diff(f,'x')

returns the analytical expression for the derivative which can then be evaluated at any desired
values of x.

For equally spaced points, the following expression provides an estimate for f′ (xi) where
xi are values of x where f is known (see Gerald and Wheatley, 1999, or other texts on
numerical analysis for details):

2 31
() ...

2 3

n
i i i

i i

ix x

f f f
f x f

x n =

 ∆ ∆ ∆′ = ∆ − + − ∆  

This can be implemented in MATLAB to examine the improvement in the estimation of f′ (x)
with additional terms and/or smaller values of ∆x. The following m-file deriv.m does this
for the function f=sin(x) and 0<x<2π. The results are compared in Figure 3.3.

%deriv.m -- difference formulae for derivatives

dx=0.1;
x=0:dx:2.*pi;
f=sin(x);
n=length(x);

%first difference
df1=diff(f)./dx;
mean(abs(cos(x(1:n-1))-df1))
plot(x(1:n-1),cos(x(1:n-1))-df1,'-b')
hold on;

%second difference
df2=(diff(f(1:n-1))-diff(diff(f))./2)./dx;
mean(abs(cos(x(1:n-2))-df2))
plot(x(1:n-2),cos(x(1:n-2))-df2,'--r')

%third difference
df3=(diff(f(1:n-2))-diff(diff(f(1:n-1)))./2+diff(diff(diff(f)))./3)./dx;
mean(abs(cos(x(1:n-3))-df3))
plot(x(1:n-3),cos(x(1:n-3))-df3,'-g')

Copyright 2005 by the American Geophysical Union

%deriv.m -- difference formulae for derivatives

dx=0.1;

x=0:dx:2.*pi;

f=sin(x);

n=length(x);

%first difference

df1=diff(f)./dx;

mean(abs(cos(x(1:n-1))-df1))

plot(x(1:n-1),cos(x(1:n-1))-df1)

hold on;

%second difference

df2=(diff(f(1:n-1))-diff(diff(f))./2)./dx;

mean(abs(cos(x(1:n-2))-df2))

plot(x(1:n-2),cos(x(1:n-2))-df2)

%third difference

df3=(diff(f(1:n-2))-diff(diff(f(1:n-1)))./2+diff(diff(diff(f)))./3)./dx;

mean(abs(cos(x(1:n-3))-df3))

plot(x(1:n-3),cos(x(1:n-3))-df3)

%smaller dx

dx2=0.01; x2=0:dx2:2.*pi;

f2=sin(x2); n2=length(x2)

df1=diff(f2)./dx2; %first differenc

plot(x2(1:n2-1),cos(x2(1:n2-1))-df1)

mean(abs(cos(x2(1:n2-1))-df1))

hold off

legend('1st diff','2nd diff','3rd diff','1st diff, 0.1*dx')

ylabel ('error in derivative estimate')

xlabel ('x')

NPendleton
deriv.m

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-7

%smaller dx
dx2=0.01; x2=0:dx2:2.*pi;
f2=sin(x2); n2=length(x2);
df1=diff(f2)./dx2; %first difference
plot(x2(1:n2-1),cos(x2(1:n2-1))-df1,'--c')
mean(abs(cos(x2(1:n2-1))-df1))

hold off;
legend('1st diff','2nd diff','3rd diff','1st diff, 0.1*dx')
xlabel ('x'); ylabel ('error in derivative estimate')

Figure 3.3. Accuracy of finite difference estimates of the derivative of sin(x).

3.5. Numerical integration

We will consider three methods of numerical integration: the trapezoidal rule, Simpson's
rule(s), and Gaussian quadrature. MATLAB has functions trapz, quad, and quadl that
perform numerical integration. In addition, the symbolic math function int finds integrals.

3.6. Trapezoidal rule

The simplest approach to numerically integrating a function f over the interval [a,b] is to
divide the interval into n subdivisions of equal width, ∆x=(b-a)/n and approximate f in each
interval either by the value of f at the midpoint of the interval, which gives the rectangular
rule, or by the average of the function over the interval, ½(fi+1 + fi), which gives the
trapezoidal rule. The rectangular rule approximates the function over each subinterval as a
constant, while the trapezoidal rule makes a linear approximation to the function (Figure 3.4).
Over each subinterval, the trapezoidal rule gives

0 1 2 3 4 5 6 -0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

er
ro

r i
n

de
riv

at
iv

e
es

tim
at

e

x

1st diff
2nd diff
3rd diff
1st diff, 0.1*dx

Copyright 2005 by the American Geophysical Union

error in derivative estimate

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.05
0

— 1st diff
===+ 2nd diff
— 3rd diff
-=- 1st diff, 0.1*dx ||

il T

NPendleton
figure3_3.jpg

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-8

1

1
1

() ()
() ()

2 2

i

i

i i
i i

x

x

f x f x x
f x dx x f f

+
+

+
+ ∆

≅ ∆ = +∫

xi xi+1a b

trapezoidal

rule

rectangular

rule

Figure 3.4. Trapezoidal and rectangular approximations of an integral.

If the interval [a,b] is subdivided into n subintervals of size ∆x, then, over the whole

interval, the trapezoidal rule gives

2 3() (2 2 ... 2)
2 a n b

b

a

x
f x dx f f f f f

∆
= + + + + +∫

This is called the composite trapezoidal rule. However, it is not necessary for the
subintervals to be equally spaced when applying the trapezoidal rule. This and its simplicity
make it a valuable technique.

As we would expect, the errors associated with the trapezoidal rule depend on the step
size. We need to consider two errors in this case. The first is the local error for each step,
which is O((∆x)3). Generally, the trapezoidal rule is applied over an interval comprising n
equal steps. The total error, or global error is given by the sum of the local errors, and can
be shown to be O((∆x)2) [Box 3.1].

The trapezoidal rule is simple, but uses only a linear approximation between successive
points to estimate the integral. We could expect better accuracy if we instead approximated
the function over two adjacent subintervals of equal width using a quadratic. This can be
done with interpolating polynomials.

First, consider the interpolating polynomial P1(x) = fi + s∆fi . If we integrate P1(x)
between x0 and x1, noting that dx=∆x ds, we get

Copyright 2005 by the American Geophysical Union

rectangular

i+1

NPendleton
figure3_4.jpg

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-9

1

0

2
1 1

0 0 0 0 0 0 0 0

0 1 0 0 1

1

0

1
() () | | ()

2 2

[2 ()] ()
2 2

x s

x s

s
f x dx x f s f ds xf s x f x f f

x x
f f f f f

=

=

≅ ∆ + ∆ = ∆ +∆ ∆ = ∆ + ∆

∆ ∆
= + − = +

∫ ∫

This is the trapezoidal rule. The same approach can be used to develop higher order methods
such as Simpson's rules.

3.7. Simpson's rules

Following the same procedure as above with the polynomial P2(x) gives us

2

0

2 2
0 0 0 0 0 0

0 1 2

2

0

(1) 1
() () (2 2)

2 3

(4)
3

x

x

s s
f x dx x f s f f ds x f f f

x
f f f

−
≅ ∆ + ∆ + ∆ = ∆ + ∆ + ∆

∆
= + +

∫ ∫

The local error term is O((∆x)5). If we did the same thing using a cubic approximation over
three adjacent subintervals, we would obtain

3

0 0

3

3 0 1 2 3

3
() () (3 3)

8

x x

x x

x
f x dx P x dx f f f f

∆
= = + + +∫ ∫

with a local error O((∆x)5); this is Simpson's 3/8 rule. Notice that adding the extra point into
the formula does not increase the order of accuracy of the approximation.

The first of these equations (based on a quadratic) is called Simpson's 1/3 rule. The
corresponding composite formula for the integral over the interval [a,b] is

1 2 3 4 1() (4 2 4 2 ... 4)
3 a n b

a

b x
f x dx f f f f f f f−

∆
= + + + + + + +∫

with a global error term of O((∆x)4). Because the method uses pairs of panels, the number of
panels (subintervals) must be even. If the number of panels is uneven, another rule, e.g.
Simpson's 3/8 rule, could be used at one end and the 1/3 rule over the remaining even
number of panels. Alternatively, the size of the panels can be adjusted to accommodate an
even number of panels.

The trapezoidal rule and Simpson's rules are examples of the general family of Newton-
Cotes integration formulas. The general form is

() ()n

b

a a

b

f x dx P x dx≅∫ ∫

with an error of O((∆x)n+1). For interpolating polynomials of order 1, 2, and 3, the Newton-
Cotes formulas give the trapezoidal rule, Simpson's 1/3 rule, and Simpson's 3/8 rule,
respectively. If the degree of the interpolating polynomial is too high, errors due to round-off

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-10

and local irregularities can cause a problem [Box 3.1]. This is why usually only the lower-
degree Newton-Cotes formulas are used.

3.8. Gaussian quadrature

Another common method for numerical integration is Gaussian quadrature. Although
this method is most easily derived using the method of undetermined coefficients (e.g., see
Gerald and Wheatley, 1999), we can gain an appreciation for its origin by recognizing that
the methods we've described so far all have the form

1

() ()
nb

i ia
i

f x w f x
=

≅ ∑∫

where wi are weights assigned to values of f(xi) in the integration formulas. The Newton-
Cotes methods are based on evenly spaced values of x. However, we could let the x 's be free
parameters in our attempt to fit a polynomial through the function. This requires that f(x) is
known explicitly so it can be evaluated at any desired value of x. Using this approach, we
can improve the accuracy of, e.g., a two-point method over that attainable with the
trapezoidal rule. With two points, x1 and x2, and two weights, a and b, we can fit exactly
polynomials of order 0, 1, 2, and 3. To simplify the calculations, we will evaluate the
integrals over the interval [-1 1]. A transformation can be used to change these limits to
those for any other bounded region.

1

1 1 2 2
1

() () ()f x dx w f x w f x
−

= +∫

We require this formula to be exact for polynomials of order three or less, including f(x)=x3,
f(x)=x2, f(x)=x, and f(x)=1. Substituting these into the equation above gives,

1
3 33

1 1 2 2
1

1
2 22

1 1 2 2
1

1

1 1 2 2
1

1

1 2
1

0

2 / 3

0

2

x dt w x w x

x dx w x w x

xdx w x w x

dx w w

−

−

−

−

= = +

= = +

= = +

= = +

∫

∫

∫

∫

We now have four equations for the four unknown parameters, w1, w2, x1, and x2. Solving
these gives w1= w2=1, and x2 = -x1 = 1 / 3 = 0.5773. Substituting these values back into

1 1 2 2f w x w x= +∫ results in
1

1

1 1
() () ()

3 3
f x dx f f

−

−
≅ +∫

This sum gives the exact integral of any cubic over the interval from -1 to 1. If the limits are
[a,b] rather than [-1,1], then it is necessary to use the linear transformation t = [(b-a)x +
b+a]/2, dt = [(b-a)/2]dx, which gives

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-11

() ()1

1

()
2 2

b

a

b a b a x b a
f t dt f dx

−

− − + + 
=  

 
∫ ∫

Gaussian quadrature can be extended to include more than two points. The general
expression has the form

1

11

() ()
n

i i i
i

f x dx w f x
=−

≅ ∑∫

and is exact for functions that are polynomials of degree 2n-1 or less. A method for
determining the weights wi and the xi's uses Legendre polynomials (see Gerald and Wheatley,
1999, or other texts on numerical analysis for details).

3.9. MATLAB methods

As noted previously, MATLAB has built- in functions to integrate using the trapezoidal
rule and variants of Simpson's rule and another higher-order approximation.

trapz: z=trapz(x,y) or z=trapz(y) computes the integral of y with respect to x using
trapezoidal integration. trapz(y) assumes unit spacing between data points. For other
spacings, multiply z by the actual interval width. trapz(x,y) can be used for unequally
spaced grids.

quad: a=quad('fname',a,b,[tol],[trace]) approximates the integral of a function over
the interval [a,b] using quadrature. The default tolerance is 1E-3. The function fname must
return a vector of output values when given a vector of input values. quad uses a "recursive
adaptive, Simpson's rule"; quadl uses high order recursive, adaptive Lobatto quadrature.
Neither can integrate over singularities (essentially, places where the function is undefined).

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-12

3.10. Problems

1. Use forward, backward, and central difference approximations to numerically

differentiate x over the range 0<x<2. Compare the answers to the exact solutions at
x=0.2, 0.5, 2 for ∆x=0.05 and 0.02. How are the errors affected by the method and step
size?

2. The Gaussian error function erf(x) is

2

0

2
()

x terf x e dt
π

−= ∫

a) Write an m-file implementing Simpson's 1/3 rule.

b) Use the m-file to evaluate erf(x) between 0 and 5 (inclusive) with ∆x = 0.1.

c) How small does ∆x have to be for the answer to be correct to 4 decimal places
(error<0.00005) at x = 1? Note that MATLAB has a built- in function erf that you can
use to check the accuracy of your answer. [MATLAB's erf function also uses a
numerical solution, but it is accurate to 1E-16.]

d) Compare your answer to the results of trapz for the same ∆x and quad or quadl for
the same level of error.

3. The velocity distribution at the centerline of a steady, uniform channel flow is
approximately given by the equation,

()*

0() ln() ln()
u

u z z z
κ

= −

where the shear velocity *u ghS= , S is channel slope, κ = 0.41, z is level above the
bottom, h is flow depth, and z0 is the level close to the bed where the velocity u = 0. Use
this velocity equation to generate values of velocity at 0.1h intervals for a flow with h =
0.7 m, S = 2.5×10-4, z0 = 1×10-4 m. We will consider these to be our “data”.

a) Depth-averaged velocity u< > is defined as 1

0
()

h
h u z dz− ∫ . For the logarithmic

velocity profile indicated above, the exact integral 1
* 0[ln(0.367) ln()]u u h zκ −< >= − .

For wide, rectangular channels, this is a good approximation to the mean velocity in
the channel. Numerically integrate the velocity “data” generated above to estimate
the depth-averaged velocity using trapz. Compare the results to the exact integral.

b) The exact derivative of the velocity profile is * /()u zκ . Differentiate the profile
“data” using centered differences and compare to the exact value.

c) Add some noise to the data to represent measurement/instrument error. This can be
done using the MATLAB command un=u+a*randn(size(z)) where a is the
amplitude of the noise and z is the vector of vertical positions; let a = 0.1. Now,

Copyright 2005 by the American Geophysical Union

Hornberger and Wiberg: Numerical Methods in the Hydrological Sciences

3-13

repeat the integration and differentiation of parts a) and b) to see how much the
addition of this noise affects the results.

d) The most efficient way to get a good numerical estimate of udz∫ for a logarithmic

velocity profile is to perform the integration on a logarithmically spaced grid for
which the grid spacing close to the bottom is smaller than that near the surface.
Compare the results of integrating the velocity profile (using trapz) over 20 equally
spaced points and 20 logarithmically spaced points to the exact solution.

3.11. References

Gerald C.F. and P.O. Wheatley, Applied Numerical Analysis, 319 pp., Addison Wesley, Reading, MA, 1999.

Copyright 2005 by the American Geophysical Union

Box 3.1. Errors in numerical methods

There are two principal sources of error in numerical computation. One is due to the fact
that an approximation is being made (e.g., a derivative is being approximated by a finite
difference). These errors are called truncation errors. The second is due to the fact that
computers have limited precision, i.e., they can store only a finite number of decimal places.
These errors are called roundoff errors.

Truncation errors arise when a function is approximated using a finite number of terms in
an infinite series. For example, truncated Taylor series are the basis of finite difference
approximations to derivatives (Chapter 3.2). The error in a finite difference approximation to
a derivative is a direct result of the number of terms retained in the Taylor series (i.e., where
the series is truncated). Truncation error is also present in other numerical approximations.
In numerical integration, for example, when each increment of area under a curve is
calculated using a polynomial approximation to the true function (Chapters 3.6-3.7),
truncation errors arise that are related to the order of the approximating polynomial. For
example an nth-order polynomial approximation to a function results in an error in the integral
over an increment ∆x of O(∆x)n+2 (local error). When the integrals over each increment are
summed to approximate the integral over some domain a≤x≤b, the local errors sum to give a
global error of O(∆x)n+1. Truncation errors decrease as step size (∆x) is decreased – the finite
difference approximation to a derivative is better (has lower truncation error) when ∆x is
"small" relative to when ∆x is "large."

 Roundoff errors stem from the fact that computers have a maximum number of digits that
can be used to express a number. This means that the machine value given to fractional
numbers without finite digit representations, for example, 1/3 = 0.33333333…, will be
rounded or chopped at the precision of the computer. It also means that there is a limit to how
large or small a number a computer can represent in floating point form. For many
computations, the small changes in values resulting from roundoff are insignificant.
However, roundoff errors can become important. For example, subtraction of two nearly
identical numbers (as occurs when computing finite differences with very small values of ∆x)
can lead to relatively large roundoff error depending on the number of significant digits
retained in the calculation. Interestingly, this means that approximations to derivatives will
be improved by reducing ∆x to some level because truncation errors are reduced, but that
further decreases in ∆x will make the estimate worse because roundoff error becomes large
and dominates for very small values of ∆x. Roundoff error can also complicate some logical
operations that depend on establishing equality between two values if one or both are the
result of computations that involved chopping or rounding.

Finally, in the hydrological sciences, measured data are often used in a calculation. For
example, one might want to find the derivative of water velocity with respect to height above
a streambed using numerical differentiation of data measured using a flowmeter. Such data
are subject to measurement errors, which are then inserted into any numerical computation in
which they are used.

Copyright 2005 by the American Geophysical Union

	Chapter 3 Table of Contents
	3. Numerical Differentiation and Integration
	3.1. Finite differences
	Figure 3.1. Finite difference approximation to a first derivative.

	3.2. Taylor series approach
	Figure 3.2. Forward and backward difference approximations to a first derivative.

	3.3. Differentiation using interpolating polynomials
	Table 3.1. Formulas for numerical differentiation

	3.4. MATLAB methods for finding derivatives
	deriv.m
	Figure 3.3. Accuracy of finite difference estimates of the derivative of sin(x).

	3.5. Numerical integration
	3.6. Trapezoidal rule
	Figure 3.4. Trapezoidal and rectangular approximations of an integral.

	3.7. Simpson's rules
	3.8. Gaussian quadrature
	3.9. MATLAB methods
	3.10. Problems
	3.11. References
	Box 3.1. Errors in numerical methods

