#! /usr/bin/env python3 # def newton_example ( ): from sympy import cbrt from sympy import diff from sympy import exp from sympy import symbols import sympy print ( '' ) print ( 'newton_example():' ) print ( ' sympy version: ' + sympy.__version__ ) print ( ' We plan to apply the Newton method to a function f(x).' ) print ( ' We have f(x) = x^(1/3) exp(-x^2).' ) print ( ' We want a formula for the derivative of f(x).' ) print ( ' We also seek the second derivative.' ) x = symbols ( 'x' ) print ( '' ) print ( ' Initially, we define f(x) using a fractional power.' ) print ( ' sympy() treats 1/3 as a numerical value, not a symbolic.' ) print ( '' ) print ( ' f = x**(1/3) * exp(-x**2)' ) f = x**(1/3) * exp ( - x**2 ) dfdx = diff ( f, x ) print ( ' d f /dx = ', dfdx ) d2fdx2 = diff ( f, x, 2 ) print ( ' d2 f /dx2 = ', d2fdx2 ) print ( '' ) print ( ' Redefine f(x) using the sympy() cbrt() function.' ) print ( ' Now we expect a purely symbolic result.' ) print ( '' ) print ( ' f = cbrt(x) * exp(-x**2)' ) f = cbrt ( x ) * exp ( - x**2 ) print ( '' ) print ( ' f = cbrt(x) - exp(-x**2)' ) dfdx = diff ( f, x ) print ( ' d f /dx = ', dfdx ) d2fdx2 = diff ( f, x, 2 ) print ( ' d2 f /dx2 = ', d2fdx2 ) return if ( __name__ == "__main__" ): newton_example ( )