#! /usr/bin/env python3 # def rref_test ( ): #*****************************************************************************80 # ## rref_test() tests rref(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 14 December 2024 # # Author: # # John Burkardt # print ( '' ) print ( 'rref_test():' ) print ( ' Test rref(), reduced row echelon format functions.' ) is_rref_test ( ) pivot_row_test ( ) # # Terminate. # print ( '' ) print ( 'rref_test():' ) print ( ' Normal end of execution.' ) return def is_rref_test ( ): #*****************************************************************************80 # ## is_rref_test() tests is_rref(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 04 December 2024 # # Author: # # John Burkardt # import numpy as np print ( '' ) print ( 'is_rref_test():' ) print ( ' is_rref() reports whether a matrix is in reduced row echelon format.' ) # # Zero rows must come last. # A0 = np.array ( [ \ [ 1, 0, 0, 9, 4 ], \ [ 0, 0, 1, 0, 8 ], \ [ 0, 0, 0, 0, 0 ], \ [ 0, 0, 0, 1, 0 ] \ ] ) # # First nonzero must be to right of first nonzero in previous row. # A1 = np.array ( [ \ [ 1, 0, 0, 9, 4 ], \ [ 0, 0, 0, 1, 0 ], \ [ 0, 0, 1, 0, 8 ], \ [ 0, 0, 0, 0, 0 ] \ ] ) # # First nonzero must be a 1. # A2 = np.array ( [ \ [ 1, 0, 0, 9, 4 ], \ [ 0, 1, 0, 2, 8 ], \ [ 0, 0, 3, 0, 0 ], \ [ 0, 0, 0, 0, 0 ] \ ] ) # # First nonzero must only nonzero in its column. # A3 = np.array ( [ \ [ 1, 0, 3, 9, 4 ], \ [ 0, 1, 0, 2, 8 ], \ [ 0, 0, 1, 0, 0 ], \ [ 0, 0, 0, 0, 0 ] \ ] ) # # RREF example. # A4 = np.array ( [ \ [ 1, 0, 3, 0, 4 ], \ [ 0, 1, 2, 0, 8 ], \ [ 0, 0, 0, 1, 0 ], \ [ 0, 0, 0, 0, 0 ] \ ] ) for A, A_name in [ [ A0, 'A0' ], [ A1, 'A1' ], [ A2, 'A2' ], [ A3, 'A3' ], [ A4, 'A4' ] ]: print ( '' ) print ( ' ' + A_name + ':' ) print ( A ) print ( ' is_rref(' + A_name + ') = ', is_rref ( A ) ) return def is_rref ( A ): #*****************************************************************************80 # ## is_rref() determines if a matrix is in reduced row echelon format. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 14 December 2024 # # Author: # # John Burkardt # # Input: # # A[m,n]: a numpy array defining a matrix. # # Output: # # is_rref: True if A is in reduced row echelon form. # m, n = A.shape c = -1 for r in range ( 0, m ): # # Increment the first legal column for next pivot. # c = c + 1 # # Search for pivot p in this row. # If none, set p = n. # p = n for j in range ( 0, n ): if ( A[r,j] != 0.0 ): p = j break # # If p == n, go to next row. # if ( p == n ): continue # # If p is too early, fail. # if ( p < c ): return False # # Accept p as new c. # c = p # # If A(r,c) is not 1, fail # if ( A[r,c] != 1.0 ): return False # # If A(r,c) is not the only nonzero in column c, fail # for i in range ( 0, m ): if ( i != r ): if ( A[i,c] != 0.0 ): return False return True def pivot_row ( A, row, col ): #*****************************************************************************80 # ## pivot_row() seeks the maximum matrix entry in A[row:,col]. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 December 2024 # # Author: # # John Burkardt # # Input: # # A[m,n]: the matrix to be analyzed. # # row, col: search for the pivot in entries A[row:,col]. # # Output: # # p: if p < m, then A[p,col] contains the pivot entry. # if p == m, then A[row:,col] is entirely zero, and no pivot could be found. # import numpy as np m = A.shape[0] # # Find the index of the entry of maximum magnitude in column COL, # in or below row ROW. # p = np.argmax ( np.abs ( A[row:,col] ) ) + row # # If the maximum magnitude entry is zero, return the special value P = M. # if ( A[p,col] == 0 ): p = m return p def pivot_row_test ( ): #*****************************************************************************80 # ## pivot_row_test() tests pivot_row(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 05 December 2024 # # Author: # # John Burkardt # import numpy as np print ( '' ) print ( 'pivot_row_test():' ) A = np.array ( [ \ [ 1, 10, 0, 0, 0 ], \ [ 0, 2, 4, 0, 0 ], \ [ -5, 0, 8, 0, 0 ], \ [ 0, 9, 7, 0, 6 ] \ ] ) print ( '' ) print ( ' A:' ) print ( A ) m = A.shape[0] for row, col in [ [ 0, 0 ], [ 0, 1 ], [ 1, 2 ], [ 3, 2 ], [ 0, 3 ], [ 1, 4 ] ]: p = pivot_row ( A, row, col ) print ( '' ) if ( p == m ): print ( ' pivot_row( A,', row, ',', col, ') = ', p, '= NO PIVOT' ) else: print ( ' pivot_row( A,', row, ',', col, ') = ', p ) print ( ' A[', p, ',', row, '] = ', A[p,col] ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) rref_test ( ) timestamp ( )