random_line: Data from random_data.txt involves n = 100 items with dimension d = 2 Data statistics: Min = [-0.7722 0.7439] Max = [2.956 7.678] Range = [3.7282 6.9341] Mean = [1.05366843 4.020895 ] Variance = [1.13735492 2.76804376] Graphics saved as "random_line.png" Computed coefficient vector c: 1: Normal equations: [2.44816256 1.49262557] 2: QR factors: [2.44816256 1.49262557] 3: SVD pseudoinverse [2.44816256 1.49262557] 4: numpy lstsq() [2.44816256 1.49262557] 5: sklearn [2.44816256 1.49262557] MSE (mean square errors) 1: Normal equations: 0.23409536764217748 2: QR factors: 0.23409536764217745 3: SVD pseudoinverse 0.2340953676421775 4: numpy lstsq() 0.23409536764217748 5: sklearn 0.2340953676421775 Graphics saved as "random_line_fit.png"