Sat Feb 4 20:27:19 2023 random_test(): Python version: 3.8.10 Test random(). random_histogram() makes a histogram of n samples of uniform random values from numpy.random.random(). Graphics saved as "random_histogram.png" mean(r) = 0.4994295687983167 var(r) = 0.08274190835596945 normal_histogram() makes a histogram of n samples of normal random values from numpy.random.normal(). normal mean = 2.000566918454755 normal stdev = 1.4604906393541761 dice_test(): Simulate the Newton-Pepys dice puzzle. Case 1 probability estimate is 0.628 Case 2 probability estimate is 0.607 Case 3 probability estimate is 0.599 logistic_sample_test(): Use the inverse CDF of the logistic distribution to produce 1000 sample points. Graphics saved as "logistic_sample.png" normal_plot_test(): Plot the normal PDF for several parameter sets. Graphics saved as "normal_plot.png" numpy_random_random_test(): Demonstrate some features of the numpy random number generators. x = np.random.random ( ): 0.7239424822511176 s = np.random.random ( size = 1 ): [0.38323592] s = np.random.random ( size = 2 ): [0.38323592] a = np.random.random ( [ 3, 4 ] ): [[0.40055841 0.77456305 0.97019428 0.40222437] [0.14073362 0.51615499 0.43921489 0.5840865 ] [0.32627454 0.58380651 0.79915111 0.89396951]] np.random.seed() can reset the seed: np.random.seed ( seed_value ) x = np.random.random ( ): 0.532833024789759 x = np.random.random ( ): 0.5341366008904166 np.random.seed ( seed_value ) x = np.random.random ( ): 0.532833024789759 x = np.random.uniform(low=a,high=b,size=?) returns values in [a,b] Interval is [ 10 , 15 ] x = np.random.uniform ( low = a, high = b ): 12.670683004452084 v = np.random.uniform ( low = a, high = b, size = 5 ): [12.54776518 13.56782016 11.28499477 13.76346804 14.41939592] x = np.random.standard_normal(size=?) returns normal random values with mean 0, standard deviation 1. v = np.random.standard_normal ( size = [ 3, 4 ] ): [[ 0.4531316 -0.91691233 1.33864041 0.85866797] [ 0.7272307 0.56782948 -1.09536413 -0.50974171] [ 0.48885947 1.27592068 -0.2999348 0.64887209]] x = np.random.normal(loc=mu,scale=sigma,size=?) returns normal random values with mean mu, standard deviation sigma. v = np.random.normal ( loc = 10, scale = 0.5, size = [ 3, 4 ] ): [[10.14474608 9.9718667 9.20452301 10.12984549] [10.2079817 9.20913862 9.09153412 9.91753589] [ 9.89840189 9.31576122 10.30928274 10.38177901]] spd_test(): Matrix A is SPD if x'Ax > 0 for all nonzero vectors x dif2 matrix passes SPD test #1 dif2 matrix passes SPD test #2 fibonacci matrix passes SPD test #1 fibonacci matrix fails SPD test #2 random_test(): Normal end of execution. Sat Feb 4 20:27:27 2023