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The numpy Library

• numpy() defines a matrix as an array of arrays;
• Matrices represent linear transformations of vectors;
• Initialize a matrix with data, or with zeros, ones, or random values;
• Access an entry by double index, like A[i,j];
• Multiplication A*x=b using np.dot();
• Solve linear system by x=np.linalg.solve(A,b);
• Factorizations: L,U=np.lu(A), or QR, or SVD;
• Matrix eigenvalues: L = np.linalg.eigvals(A);

1 A numpy matrix is an array of arrays

We are familiar now with how to think about a mathematical vector as a numpy() list of numeric values,
with an index 0 ≤ i < m. To extend such arrays to handle matrices, numpy defines an m × n matrix as an
array, each of whose entries is an entire row of the matrix.

Here is one way to define such a matrix, and if you look closely at the square brackets, you can see that
there is one big vector of m = 5 rows, with each row being itself a vector of length n = 4.
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A = np . array ( [
[ 0 , 1 , 2 , 3 ] , <−− row 0
[ 10 , 11 , 12 , 13 ] , <−− row 1
[ 20 , 21 , 22 , 23 ] , <−− row 2
[ 30 , 31 , 32 , 33 ] , <−− row 3
[ 40 , 41 , 42 , 43 ] , <−− row 4
] )

To access a particular entry, you use the notation A[i,j], where i is the row and j the column. Thus, in
the above example, A[2,1]=21. This differs from how we accessed entries in a list of lists, where a typical
index would be A[2][1].

Because the matrix is organized by rows, you can actually also use a single index to refer to all of a row.
So A[1] represents the values [10,11,12,13], although we could also use the standard notation A[1,:] as
well. For columns, we can only use the standard two index notation, as in A[:,0].

For a matrix formed as a numpy() array, the rows must all have the same number of elements, and the
elements must share a common datatype, either logical or numeric.

2 Making matrices

We have already seen how, for small matrices, we can enter the values using the np.array() command, with
the values given in a list of lists.

We can also create many special matrices by commands like:

I = np . i d e n t i t y ( 3 ) <−− r e tu rn s the 3x3 i d e n t i t y matrix .
I = np . eye ( 3 ) <−− a l s o r e tu rn s the 3x3 i d e n t i t y matrix .
O = np . ones ( [ 3 , 2 ] )
R = np . random . random ( [ 3 , 2 ] )
Z = np . z e r o s ( [ 3 , 2 ] )

The same new numpy attributes we saw for vectors are also available for matricesl:

• A.ndim tells us that A is a 2-dimensional array;
• A.shape statement returns (5,4);
• A.shape[0] returns 5, A.shape[1] returns 4;
• A.size returns 20 (total number of entries);
• A.dtype returns int or int64;

We have already seen some examples of how Python indexing works. For our sample matrix A,

A[ 1 , 2 ] = 12
A[ 0 , : ] = [ 0 , 1 , 2 , 3 ] # Row 0
A[ : , 1 ] = [ 1 , 11 , 21 , 31 , 41 ] # Column 1
A[ 2 : 4 , 1 ] = [ 21 , 31 ] # Rows 2 and 3 of column 1
A[ 2 : 4 , 1 : 3 ] = [ [ 2 1 , 2 2 ] , [ 3 1 , 3 2 ] ] # A submatrix

3 Arithmetic, Operators and Functions

A matrix stored as a numpy array has a data type, which is usually logical integer, float, or complex. The
user can specify the datatype of a matrix by adding the dtype = value argument when creating an array.
Otherwise, Python will assume the lowest datatype consistent with the input. In some cases, a matrix
initially of one data type may be “promoted” to a nigher data type in order for an operation to be carried
out smoothly.
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As we say with vectors, a matrix represented by a numpy array can be involved with the operators +, -,
*, /, **, and %. These operators can in general pair a matrix and a scalar, as in A ∗ ∗2 or 7.5 ∗ B. Two
matrices can also be comgined with these operators; in that case, the matrices must have the same number
of rows and columns, and the operations will be carried out elementwise.

Similarly, most numpy functions like np.cos() or np.sqrt() can be applied to a matrix, but the functions
will be applied element by element, resulting in a new matrix of the same shape.

However, there are some exceptions, sometimes called “reduction operators”, in which the result of the
operation is a single number, or a vector. These functions have an optional input keyword axis=?. If it is
omitted, or specified as None, then a single scalar result is returned. If it is 0, then a vector is returned with
a result for each column; an axis value of 1 returns results for each row.

Consider the following table which suggests how one numpy() function can be used in three different ways:

Axis None axis = 0 axis = 1
Result size 1 [1 per column] [1 per row]
np.argmax() array argmax column argmax row argmax
np.argmin() array argmax column argmax row argmax
np.max() array max column max row max
np.mean() array mean column mean row mean
np.min() array min column min row min
np.prod() array prod column prod row prod
np.std() array std column std row std
np.sum() array sum column sum row sum
np.var() array var column var row var

Here are four ways to call np.sum(A) for our example matrix:

np .sum(A)
>>> 430

np .sum(A, ax i s=None )
>>> 430

np .sum(A, ax i s=0)
array ( [ 1 0 0 , 105 , 110 , 115 ] )

np .sum(A, ax i s=1)
array ( [ 6 , 46 , 86 , 126 , 166 ] )

We will need to understand how to call np.sum() when we look at the magic matrix.

4 Rearranging a matrix

There are many numpy() functions for rearranging what’s inside a matrix, to extract a chunk of a matrix,
or to stack two matrices together to make a bigger one. They are often a little tricky to use, so you should
always check the documentation and be willing to make a few mistakes when starting to use them.

B = np . reshape ( A, ( 2 , 10 ) )

makes a new version of the entries of A as a 2× 10 array.

C = A. f l a t t e n ( ) # Not ”np . f l a t t e n (A)”

makes a new version of the entries of A as a “flattened” array (vector) of 20 elements.

D = np . f l i p ud ( A )
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“flips” up and down, making an upside down version of A. There is also a np.fliplr() function which flips
left and right.

E = np . rot90 ( A )

makes a 4× 5 copy of A in which the matrix has been rotated counterclockwise 90 degrees.

F = np . r o l l ( A, s h i f t , ax i s = None/0/1 )

moves each element by shift positions, along all axes, or the column axis, or the row axis.

G = np . t ranspose ( A )
H = A.T

Two different commands which both return the transpose of the matrix, that is, flipping it around its main
diagonal.

G = np . s tack ( ( row1 , row2 ) )

creates a new matrix whose rows are row1, row2, (and row3, etc). The vectors must have the same shape.
This command can also manipulate more complicated objects, and has related vertical and horizontal versions
vstack() and hstack().

5 Magic squares

A magic square of order n is an n× n array of numbers such that all rows, all columns, and both diagonals
have the same sum. It is not obvious at first how to construct a magic square, and hence they are often
considered to be lucky charms with magic properties.

When programmers need a “random” matrix to illustrate some procedure, they frequently use a magic
matrix, since the entries are distinct integers, and the matrix has some interesting properties. MATLAB,
for example, has a built-in magic(n) function to create a magic matrix of any order (except 2!).

Here are magic matrices of order n = 3, 5, 7.

The 3× 3 example:

A3 =

 8 1 6
3 5 7
4 9 2


The 5× 5 example:

A5 =


17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9


The 7× 7 example:

A7 =



30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20


Can we use Python to create a new magic square, by following the steps of the magic square algorithm?
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6 Magic matrix algorithm

As long as the matrix order n is odd, the following algorithm can be used to fill an n × n grid with the
integers 1 through n2, with constant row, column and diagonal sums.

1. Start in the middle of the top row, and let k = 1.

2. Write k in the current grid position;

3. If k = n2, the grid is complete, so stop;

4. Else, set k = k + 1;

5. Plan to move diagonally up and right, “mod n”, that is, wrap to first column or last row if necessary.

6. If this cell is already filled, move vertically down one space instead;

7. Return to step 2.

7 Magic matrix in Python

def magic ( n ) :

A = np . z e r o s ( [ n , n ] )

k = 1
i = 0
j = n // 2

while ( k <= n∗∗2 ) :

A[ i , j ] = k

k = k + 1
#
# Go UP one row , and RIGHT one column , mod n
#

new i = ( i − 1 ) % n
new j = ( j + 1 ) % n

i f ( A[ new i , new j ] ) : # True i f A[ new i , new j ] i s a l ready s e t
i = i + 1

else :
i = new i
j = new j

return A

Listing 1: magic matrix.py

What does “if ( A[new i,new j] ):” mean? Remember that, to Python, 0 plays the role of False and
1, or in fact, any nonzero value, is understood as True. So all we are saying here is if ( A[new i,new j]

has been set):.

8 Verify the Magic

Let’s try to verify that our matrix is magic. Instead of using many individual sum() commands, or multiplying
by a vector of 1’s, we can use the fact that the sum() command can return the sum of rows or columns of a
matrix if we specify the “axis”:

np .sum ( A ) # sums a l l the en t r i e s
np .sum ( A, ax i s = 0 ) # sums the columns
np .sum ( A, ax i s = 1 ) # sums the rows
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It turns out that we can compute the diagonal sum because there is a linear algebra function called trace()

that sums the diagonal elements of a matrix, and numpy() implements it:

np . t r a c e ( A )

How do we get the antidiagonal sum? There are a number of numpy() functions for flipping a matrix. In
particular, flipud() flips up and down, with the result that what was the antidiagonal of the matrix is now
the diagonal.

np . t r a c e ( np . f l i p ud ( A ) )

In any case, if we have done our work correctly, all these operations should return the same magic value.

9 meshgrid(): Making a 2D grid

We have already seen how the np.linspace() function creates an evenly spaced grid of points in one
dimension, which is a big help in plotting, and later in approximation and partial differential equations.
Often we need the same kind of regular grid in two dimensions, usually as the product of simple separate
grids in x and y.
For example, suppose we have 1D grids:

x = np . l i n s p a c e ( 4 , 8 , 3 ) = [ 4 , 6 , 8 ]
y = np . l i n s p a c e ( 10 , 20 , 2 ) = [ 10 , 20 ]

To describe a 2D grid from these components, we call

X, Y = np . meshgrid ( x , y )

resulting in:

X = [ [ 4 , 6 , 8 ] ,
[ 4 , 6 , 8 ] ]

Y = [ [ 10 , 10 , 10 ] ,
[ 20 , 20 , 20 ] ]

so that the (i,j) point in our grid has coordinates ( X[i,j], Y[i,j] ). We will see how useful this idea is
in a simple graphics example:

A standard way of sampling a function z = f(x, y) is to define a grid of m equally spaced points over the
x range, and n equally spaced points over the y range, evaluate the function zi,j = f(xi, yj) and somehow
create a visual display of this information.

Here, we would like to sample the function f(x, y) = 2x2 + 1.05x4 + x6/6 = xy + y2 over the square
−2 ≤ x, y ≤ +2 and then make a contour plot.

def meshgrid example ( ) :

import matp lo t l i b . pyplot as p l t
import numpy as np

x = np . l i n s p a c e ( −2.0 , 2 . 0 , 31 )
y = np . l i n s p a c e ( −2.0 , 2 . 0 , 31 )

X, Y = np . meshgrid ( x , y )

Z = 2 ∗ X∗∗2 − 1 .05 ∗ X∗∗4 + X∗∗6 / 6 + X ∗ Y + Y∗∗2

p l t . contour f ( X, Y, Z , alpha = 0 .5 ) # contours by co l o r
p l t . c o l o rba r ( )
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p l t . contour ( X, Y, Z , l e v e l s = 35 ) # contour by l i n e s
p l t . show ( )

Listing 2: meshgrid example.py

10 Plotting Temperature Data

Suppose we have a set of temperature measurements, taken every 3 hours, over a week. The data is arranged
in a matrix, with each row representing a particular day, and each column a particular time in the range
1am, 4am, ..., 10pm.

T = np . array ( [ \
[ −1, −4, −8, −9, −9, −8, −9, −8 ] , \
[−12 ,−12 ,−12 ,−10 , −5, 0 , 0 , 0 ] , \
[ 1 , 2 , 2 , 4 , 7 , 8 , 7 , 6 ] , \
[ 3 , 3 , 2 , 2 , 3 , 5 , 3 , 1 ] , \
[ 1 , 1 , 2 , 6 , 11 , 12 , 12 , 11 ] , \
[ 8 , 6 , 5 , 5 , 8 , 11 , 9 , 7 ] , \
[ 6 , 5 , 4 , 6 , 8 , 10 , 8 , 7 ] ] )

We could look at this data day by day, and plot it that way:

h = np . l i n s p a c e ( 1 , 22 , 8 ) # 24 hour time
for day in range ( 0 , 7 ) :

p l t . p l o t ( h , T[ day , : ] )
p l t . g r i d ( True )
p l t . show ( )
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Daily temperature variation for 7 days.

If we want a single plot over the whole week, we need to “flatten” the matrix, that is, to make a vector by
stringing the rows together one after another.

Tweek = T. f l a t t e n ( )
p l t . p l o t ( Tweek )
p l t . show ( )

Temperature variation over a week.

11 Analyzing Temperature Data

Now that we have our temperature data, we might want to ask for the minimum, average, and maximums

• for each day
• for each measured time;
• over the whole week.

min day = np .min ( T, ax i s = 1 )
min time = np .min ( T, ax i s = 0 )
min week = np .min ( T )

and our results are:
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min(T) daily = [ -9 -12 1 1 1 5 4]

min(T) time = [-12 -12 -12 -10 -9 -8 -9 -8]

min(T) weekly = -12

You should see that axis=0 computes the minimum value for each column (time), while axis=1 does the
same for rows (days), and with no axis specified, the minimum is over the whole set of data.

You can get similar results using np.max(), np.mean(), and np.sum().
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