factors(): Computing and using matrix factors. Compute PLU factorization of A = P * L * U. P: [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] L: [[ 1. 0. 0. 0. ] [ 0.05370206 1. 0. 0. ] [ 0.47009223 0.05383932 1. 0. ] [ 0.91475645 -0.05380217 0.93285297 1. ]] U: [[ 0.75343358 0.11418889 0.3102412 0.48816003] [ 0. 0.85193584 0.11250845 0.5884785 ] [ 0. 0. 0.19559601 0.63164206] [ 0. 0. 0. -0.76282031]] P * L * U = A?: [[0.75343358 0.11418889 0.3102412 0.48816003] [0.04046094 0.85806801 0.12916904 0.6146937 ] [0.35418327 0.09954696 0.34749537 0.89280558] [0.68920823 0.05861902 0.46020426 0.24129498]] Compute QR factorization A = Q * R. Q: [[-0.69662312 0.01442072 0.63612254 -0.33144589] [-0.0374101 -0.99655505 0.01890959 0.07156074] [-0.32747712 -0.04691648 -0.69192105 -0.64171866] [-0.6372405 0.06684994 -0.34093372 0.68790976]] R: [[-1.08155121 -0.18160079 -0.62801099 -0.80919565] [ 0. -0.85421704 -0.10978879 -0.63129323] [ 0. 0. -0.19754456 -0.37786337] [ 0. 0. 0. -0.52475153]] Q * R = A?: [[0.75343358 0.11418889 0.3102412 0.48816003] [0.04046094 0.85806801 0.12916904 0.6146937 ] [0.35418327 0.09954696 0.34749537 0.89280558] [0.68920823 0.05861902 0.46020426 0.24129498]] Compute SVD factorization of A = U * diag ( S ) * V U: [[-0.5314025 0.34580664 0.1908864 -0.74939411] [-0.45105374 -0.8162738 0.35922808 0.03468127] [-0.57165873 -0.02716529 -0.79781931 0.18961197] [-0.43286049 0.46192738 0.44497407 0.63344532]] S: [1.68457836 0.89173256 0.44226206 0.14415462] V: [[-0.54579207 -0.31461629 -0.36862525 -0.68355177] [ 0.60136617 -0.71384368 0.22987531 -0.27557808] [ 0.41256186 0.62565325 0.07498363 -0.65782078] [-0.41262871 0.00134336 0.8975802 -0.15519511]] U * diag ( S ) * V = A?: [[0.75343358 0.11418889 0.3102412 0.48816003] [0.04046094 0.85806801 0.12916904 0.6146937 ] [0.35418327 0.09954696 0.34749537 0.89280558] [0.68920823 0.05861902 0.46020426 0.24129498]] Compute eigen factors A*V=V*diag(L) L: [ 1.60035401 -0.36690791 0.21772556 0.74912028] V: [[-0.52178496 -0.04829617 -0.52326031 0.08935044] [-0.49968901 -0.23883004 -0.24243486 -0.97621329] [-0.51553618 -0.73441564 0.8085253 0.14203584] [-0.4607318 0.63345194 0.11709327 0.13729503]] A*V [[-0.83504066 0.01772025 -0.11392714 0.06693423] [-0.79967931 0.08762863 -0.05278426 -0.73130118] [-0.82504038 0.2694629 0.17603662 0.10640193] [-0.73733399 -0.23241853 0.0254942 0.10285049]] V*diag(L) [[-0.83504066 0.01772025 -0.11392714 0.06693423] [-0.79967931 0.08762863 -0.05278426 -0.73130118] [-0.82504038 0.2694629 0.17603662 0.10640193] [-0.73733399 -0.23241853 0.0254942 0.10285049]]