# Subhajit Saha # https://www.geeksforgeeks.org/conways-game-life-python-implementation/ # import argparse import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # setting up the values for the grid ON = 255 OFF = 0 vals = [ON, OFF] def randomGrid ( N ): #*****************************************************************************80 # ## randomGrid() randomly initializes an N x N grid. # grid = np.random.choice ( vals, N * N, p = [ 0.2, 0.8 ] ) grid = np.reshape ( grid, [ N, N ] ) return grid def addGlider(i, j, grid): """adds a glider with top left cell at (i, j)""" glider = np.array([[0, 0, 255], [255, 0, 255], [0, 255, 255]]) grid[i:i+3, j:j+3] = glider def addGosperGliderGun(i, j, grid): """adds a Gosper Glider Gun with top left cell at (i, j)""" gun = np.zeros(11*38).reshape(11, 38) gun[5][1] = gun[5][2] = 255 gun[6][1] = gun[6][2] = 255 gun[3][13] = gun[3][14] = 255 gun[4][12] = gun[4][16] = 255 gun[5][11] = gun[5][17] = 255 gun[6][11] = gun[6][15] = gun[6][17] = gun[6][18] = 255 gun[7][11] = gun[7][17] = 255 gun[8][12] = gun[8][16] = 255 gun[9][13] = gun[9][14] = 255 gun[1][25] = 255 gun[2][23] = gun[2][25] = 255 gun[3][21] = gun[3][22] = 255 gun[4][21] = gun[4][22] = 255 gun[5][21] = gun[5][22] = 255 gun[6][23] = gun[6][25] = 255 gun[7][25] = 255 gun[3][35] = gun[3][36] = 255 gun[4][35] = gun[4][36] = 255 grid[i:i+11, j:j+38] = gun def update ( frameNum, img, grid, N ): # copy grid since we require 8 neighbors # for calculation and we go line by line newGrid = grid.copy() for i in range(N): for j in range(N): # compute 8-neighbor sum # using toroidal boundary conditions - x and y wrap around # so that the simulation takes place on a toroidal surface. total = int((grid[i, (j-1)%N] + grid[i, (j+1)%N] + grid[(i-1)%N, j] + grid[(i+1)%N, j] + grid[(i-1)%N, (j-1)%N] + grid[(i-1)%N, (j+1)%N] + grid[(i+1)%N, (j-1)%N] + grid[(i+1)%N, (j+1)%N])/255) # apply Conway's rules if grid[i, j] == ON: if (total < 2) or (total > 3): newGrid[i, j] = OFF else: if total == 3: newGrid[i, j] = ON # update data img.set_data(newGrid) grid[:] = newGrid[:] return img, # main() function def main(): # Command line args are in sys.argv[1], sys.argv[2] .. # sys.argv[0] is the script name itself and can be ignored # parse arguments parser = argparse.ArgumentParser(description="Runs Conway's Game of Life simulation.") # add arguments parser.add_argument('--grid-size', dest='N', required=False) parser.add_argument('--mov-file', dest='movfile', required=False) parser.add_argument('--interval', dest='interval', required=False) parser.add_argument('--glider', action='store_true', required=False) parser.add_argument('--gosper', action='store_true', required=False) args = parser.parse_args() # set grid size N = 100 if args.N and int(args.N) > 8: N = int(args.N) # set animation update interval updateInterval = 50 if args.interval: updateInterval = int(args.interval) # # Declare the grid. # grid = np.array ( [] ) # check if "glider" demo flag is specified if args.glider: grid = np.zeros(N*N).reshape(N, N) addGlider(1, 1, grid) elif args.gosper: grid = np.zeros(N*N).reshape(N, N) addGosperGliderGun(10, 10, grid) else: # populate grid with random on/off - # more off than on grid = randomGrid ( N ) # set up animation fig, ax = plt.subplots() img = ax.imshow(grid, interpolation='nearest') ani = animation.FuncAnimation(fig, update, fargs=(img, grid, N, ), frames = 10, interval=updateInterval, save_count=50) # # of frames? # set output file if args.movfile: ani.save(args.movfile, fps=30, extra_args=['-vcodec', 'libx264']) plt.show() # call main if __name__ == '__main__': main()