#! /usr/bin/env python3 # def knapsack_greedy ( p, w, c ): #*****************************************************************************80 # ## knapsack_greedy() applies a greedy algorithm to a knapsack problem. # # Discussion: # # It is assumed that the data has been sorted in decreasing order of P/W. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 27 October 2022 # # Author: # # John Burkardt # # Reference: # # Donald Kreher, Douglas Simpson, # Combinatorial Algorithms, # CRC Press, 1998, # ISBN: 0-8493-3988-X, # LC: QA164.K73. # # Input: # # integer P(N), the "profit" or value of each object. # # integer W(N), the "weight" or cost of each object. # # integer C: the maximum weight capacity for the knapsack. # # Output: # # integer X(N): X(I) is 1 if object I is to be taken, 0 otherwise.. # import numpy as np n = len ( w ) x = np.zeros ( n, dtype = np.int ) mass = 0 for i in range ( 0, n ): if ( mass + w[i] <= c ): x[i] = 1 mass = mass + w[i] return x def knapsack_greedy_test01 ( ): #*****************************************************************************80 # ## knapsack_greedy_test01() tests a greedy algorithm for the knapsack problem. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 29 October 2022 # # Author: # # John Burkardt # import numpy as np print ( '' ) print ( 'knapsack_greedy_test01():' ) print ( ' knapsack_greedy() uses a greedy algorithm to estimate a' ) print ( ' solution of the knapsack problem.' ) for test in range ( 0, 6 ): if ( test == 0 ): c = 26 n = 5 p = np.array ( [ 24, 13, 23, 15, 16 ] ) w = np.array ( [ 12, 7, 11, 8, 9 ] ) elif ( test == 1 ): c = 190 n = 6 p = np.array ( [ 50, 50, 64, 46, 50, 5 ] ) w = np.array ( [ 56, 59, 80, 64, 75, 17 ] ) elif ( test == 1 ): c = 50 n = 7 p = np.array ( [ 70, 20, 39, 37, 7, 5, 10 ] ) w = np.array ( [ 31, 10, 20, 19, 4, 3, 6 ] ) elif ( test == 2 ): c = 104 n = 8 p = np.array ( [ 350, 400, 450, 20, 70, 8, 5, 5 ] ) w = np.array ( [ 25, 35, 45, 5, 25, 3, 2, 2 ] ) elif ( test == 4 ): c = 67 n = 10 p = np.array ( [ 505, 352, 458, 220, 354, 414, 498, 545, 473, 543 ] ) w = np.array ( [ 23, 26, 20, 18, 32, 27, 29, 26, 30, 27 ] ) elif ( test == 5 ): c = 165 n = 10 p = np.array ( [ 92, 57, 49, 68, 60, 43, 67, 84, 87, 72 ] ) w = np.array ( [ 23, 31, 29, 44, 53, 38, 63, 85, 89, 82 ] ) print ( '' ) print ( ' Test', test ) print ( ' Knapsack weight capacity is', c ) print ( ' Object weights:' ) print ( w ) print ( ' Object values:' ) print ( p ) p, w = knapsack_reorder ( p, w ) print ( '' ) print ( ' Object Profit Mass P/M' ) print ( '' ) for i in range ( 0, n ): print ( ' %6d %6d %6d %g' % ( i, p[i], w[i], p[i] / w[i] ) ) x = knapsack_greedy ( p, w, c ) print ( '' ) print ( ' Contents of Knapsack' ) print ( ' Object Profit Mass P/M' ) print ( '' ) chosen = 0 mass = 0 profit = 0 for i in range ( 0, n ): if ( x[i] == 1 ): chosen = chosen + 1 mass = mass + w[i] profit = profit + p[i] print ( ' %6d %6d %6d %g' % ( i, p[i], w[i], p[i] / w[i] ) ) print ( '' ) print ( ' Number of objects chosen =', chosen ) print ( ' Total weight of chosen objects =', mass ) print ( ' Total profit of chosen objects =', profit ) return def knapsack_greedy_test ( ): #*****************************************************************************80 # ## knapsack_greedy_test() tests knapsack_greedy(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 27 October 2022 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'knapsack_greedy_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test knapsack_greedy().' ) knapsack_greedy_test01 ( ) # # Terminate. # print ( '' ) print ( 'knapsack_greedy_test():' ) print ( ' Normal end of execution.' ) return def knapsack_reorder ( p, w ): #*****************************************************************************80 # ## knapsack_reorder() reorders knapsack data by "profit density". # # Discussion: # # This routine must be called to rearrange the data before calling # routines that handle a knapsack problem. # # The "profit density" for object I is defined as P(I)/W(I). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 27 October 2022 # # Author: # # John Burkardt # # Reference: # # Donald Kreher, Douglas Simpson, # Combinatorial Algorithms, # CRC Press, 1998, # ISBN: 0-8493-3988-X, # LC: QA164.K73. # # Input: # # integer P(N), the "profit" or value of each object. # # integer W(N), the "weight" or cost of each object. # # Output: # # integer P2(N), the reordered "profit" or value of each object. # # integer W2(N), the reordered "weight" or cost of each object. # import numpy as np pw = p / w index = np.argsort ( pw ) index = np.flip ( index ) w2 = w[index] p2 = p[index] return p2, w2 def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 06 April 2013 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return None if ( __name__ == '__main__' ): timestamp ( ) knapsack_greedy_test ( ) timestamp ( )