#! /usr/bin/env python3 # def knapsack_dynamic_test ( ): #*****************************************************************************80 # ## knapsack_dynamic_test() tests knapsack_dynamic(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 02 November 2022 # # Author: # # John Burkardt # import numpy as np import platform print ( '' ) print ( 'knapsack_dynamic_test():' ) print ( ' python version: ' + platform.python_version ( ) ) print ( ' numpy version: ' + np.version.version ) print ( ' Test knapsack_dynamic().' ) for test in range ( 0, 6 ): if ( test == 0 ): k = 26 n = 5 v = np.array ( [ 24, 13, 23, 15, 16 ] ) w = np.array ( [ 12, 7, 11, 8, 9 ] ) elif ( test == 1 ): k = 190 n = 6 v = np.array ( [ 50, 50, 64, 46, 50, 5 ] ) w = np.array ( [ 56, 59, 80, 64, 75, 17 ] ) elif ( test == 2 ): k = 50 n = 7 v = np.array ( [ 70, 20, 39, 37, 7, 5, 10 ] ) w = np.array ( [ 31, 10, 20, 19, 4, 3, 6 ] ) elif ( test == 3 ): k = 104 n = 8 v = np.array ( [ 350, 400, 450, 20, 70, 8, 5, 5 ] ) w = np.array ( [ 25, 35, 45, 5, 25, 3, 2, 2 ] ) elif ( test == 4 ): k = 67 n = 10 v = np.array ( [ 505, 352, 458, 220, 354, 414, 498, 545, 473, 543 ] ) w = np.array ( [ 23, 26, 20, 18, 32, 27, 29, 26, 30, 27 ] ) elif ( test == 5 ): k = 165 n = 10 v = np.array ( [ 92, 57, 49, 68, 60, 43, 67, 84, 87, 72 ] ) w = np.array ( [ 23, 31, 29, 44, 53, 38, 63, 85, 89, 82 ] ) knapsack_dynamic_test01 ( v, w, k ) # # Terminate. # print ( '' ) print ( 'knapsack_dynamic_test():' ) print ( ' Normal end of execution.' ) return def knapsack_dynamic ( v, w, k ): #*****************************************************************************80 # ## knapsack_dynamic() uses dynamic programming to solve a knapsack problem. # # Discussion: # # All data must be integers. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 November 2024 # # Author: # # John Burkardt # # Input: # # integer v(n): the profit of each item. # # integer w(n): the weight of each item. # # integer k: the knapsack capacity. # # Output: # # integer item(): the list of item to be taken. # import numpy as np m = knapsack_dynamic_table ( v, w, k ) n = len ( v ) item = np.array ( [], dtype = int ) k2 = k for i in range ( n - 1, -1, -1 ): if ( m[i,k2] < m[i+1,k2] ): k2 = k2 - w[i] item = np.append ( item, i ) return item def knapsack_dynamic_table ( v, w, k ): #*****************************************************************************80 # ## knapsack_dynamic_table() computes a knapsack problem dynamic programming table. # # Discussion: # # All data must be integers. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 02 November 2022 # # Author: # # John Burkardt # # Input: # # integer v(n): the profit of each item. # # integer w(n): the weight of each item. # # integer k: the knapsack capacity. # # Output: # # m(0:n,0:k): m(i,j) is the maximum value of the items # that can be stored in the knapsack, selecting from the first # i items, with a weight no more than j. # import numpy as np n = len ( v ) m = np.zeros ( [ n + 1, k + 1 ] ) # # Consider object i... # for i in range ( 0, n ): # # Consider the weight limit j from 0 through k. # for j in range ( 0, k + 1 ): # # If item i weighs more than j, then it can't be used. # if ( j < w[i] ): m[i+1,j] = m[i,j] # # If item i weighs no more than j, # then it could be used along with the best solution for weight j-w[i]. # If this gives a better result, update. # else: m[i+1,j] = max ( m[i,j], m[i,j-w[i]] + v[i] ) # # The value in m[n,k] is the highest profit using n items for a total # weight no more than k. # return m def knapsack_dynamic_test01 ( v, w, k ): #*****************************************************************************80 # ## knapsack_dynamic_test01() tests knapsack_dynamic(). # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 02 November 2022 # # Author: # # John Burkardt # # Input: # # integer v(n): the value of each item. # # integer w(n): the "weight" or cost of each item. # # integer k: the maximum weight capacity for the knapsack. # n = len ( v ) print ( '' ) print ( ' Number of items is', n ) print ( ' Knapsack capacity is', k ) print ( ' Item values: ' ) print ( v ) print ( ' Item weights:' ) print ( w ) item = knapsack_dynamic ( v, w, k ) d = v / w print ( '' ) print ( ' # Index Value Weight Density' ) print ( '' ) v_total = 0 w_total = 0 item_num = len ( item ) for i in range ( 0, item_num ): j = item[i] print ( ' %2d %2d %5d %5d %8.2f' % ( i, item[i], v[j], w[j], d[j] ) ) v_total = v_total + v[j] w_total = w_total + w[j] d_total = v_total / w_total print ( ' -- ----- -----' ) print ( ' Total: %2d %5d %5d %8.2f' % ( item_num, v_total, w_total, d_total ) ) return def timestamp ( ): #*****************************************************************************80 # ## timestamp() prints the date as a timestamp. # # Licensing: # # This code is distributed under the MIT license. # # Modified: # # 21 August 2019 # # Author: # # John Burkardt # import time t = time.time ( ) print ( time.ctime ( t ) ) return if ( __name__ == '__main__' ): timestamp ( ) knapsack_dynamic_test ( ) timestamp ( )